/* -*- Mode: C; c-basic-offset: 4; indent-tabs-mode: nil -*- */
/*
Copyright (C) 2009,2010 Red Hat, Inc.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <inttypes.h>
#include "memslot.h"
static uintptr_t __get_clean_virt(RedMemSlotInfo *info, QXLPHYSICAL addr)
{
return addr & info->memslot_clean_virt_mask;
}
static void print_memslots(RedMemSlotInfo *info)
{
int i;
int x;
for (i = 0; i < info->num_memslots_groups; ++i) {
for (x = 0; x < info->num_memslots; ++x) {
if (!info->mem_slots[i][x].virt_start_addr &&
!info->mem_slots[i][x].virt_end_addr) {
continue;
}
printf("id %d, group %d, virt start %" PRIxPTR ", virt end %" PRIxPTR ", generation %u,"
" delta %" PRIxPTR "\n",
x, i, info->mem_slots[i][x].virt_start_addr,
info->mem_slots[i][x].virt_end_addr, info->mem_slots[i][x].generation,
info->mem_slots[i][x].address_delta);
}
}
}
/* return 1 if validation successfull, 0 otherwise */
int memslot_validate_virt(RedMemSlotInfo *info, uintptr_t virt, int slot_id,
uint32_t add_size, uint32_t group_id)
{
MemSlot *slot;
slot = &info->mem_slots[group_id][slot_id];
if ((virt + add_size) < virt) {
spice_critical("virtual address overlap");
return 0;
}
if (virt < slot->virt_start_addr || (virt + add_size) > slot->virt_end_addr) {
print_memslots(info);
spice_warning("virtual address out of range"
" virt=0x%" G_GINTPTR_MODIFIER "x+0x%x slot_id=%d group_id=%d\n"
" slot=0x%" G_GINTPTR_MODIFIER "x-0x%" G_GINTPTR_MODIFIER "x"
" delta=0x%" G_GINTPTR_MODIFIER "x",
virt, add_size, slot_id, group_id,
slot->virt_start_addr, slot->virt_end_addr, slot->address_delta);
return 0;
}
return 1;
}
uintptr_t memslot_max_size_virt(RedMemSlotInfo *info,
uintptr_t virt, int slot_id,
uint32_t group_id)
{
MemSlot *slot;
slot = &info->mem_slots[group_id][slot_id];
if (virt < slot->virt_start_addr || virt > slot->virt_end_addr) {
return 0;
}
return slot->virt_end_addr - virt;
}
/*
* returns NULL on failure.
*/
void *memslot_get_virt(RedMemSlotInfo *info, QXLPHYSICAL addr, uint32_t add_size,
int group_id)
{
int slot_id;
int generation;
uintptr_t h_virt;
MemSlot *slot;
if (group_id >= info->num_memslots_groups) {
spice_critical("group_id too big");
return NULL;
}
slot_id = memslot_get_id(info, addr);
if (slot_id >= info->num_memslots) {
print_memslots(info);
spice_critical("slot_id %d too big, addr=%" G_GINT64_MODIFIER "x", slot_id, addr);
return NULL;
}
slot = &info->mem_slots[group_id][slot_id];
generation = memslot_get_generation(info, addr);
if (generation != slot->generation) {
print_memslots(info);
spice_critical("address generation is not valid, group_id %d, slot_id %d, "
"gen %d, slot_gen %d",
group_id, slot_id,
generation, slot->generation);
return NULL;
}
h_virt = __get_clean_virt(info, addr);
h_virt += slot->address_delta;
if (!memslot_validate_virt(info, h_virt, slot_id, add_size, group_id)) {
return NULL;
}
return (void*)(uintptr_t)h_virt;
}
void memslot_info_init(RedMemSlotInfo *info,
uint32_t num_groups, uint32_t num_slots,
uint8_t generation_bits,
uint8_t id_bits,
uint8_t internal_groupslot_id)
{
uint32_t i;
spice_assert(num_slots > 0);
spice_assert(num_groups > 0);
info->num_memslots_groups = num_groups;
info->num_memslots = num_slots;
info->generation_bits = generation_bits;
info->mem_slot_bits = id_bits;
info->internal_groupslot_id = internal_groupslot_id;
info->mem_slots = g_new(MemSlot *, num_groups);
for (i = 0; i < num_groups; ++i) {
info->mem_slots[i] = g_new0(MemSlot, num_slots);
}
/* TODO: use QXLPHYSICAL_BITS */
info->memslot_id_shift = 64 - info->mem_slot_bits;
info->memslot_gen_shift = 64 - (info->mem_slot_bits + info->generation_bits);
info->memslot_gen_mask = ~((QXLPHYSICAL)-1 << info->generation_bits);
info->memslot_clean_virt_mask = (((QXLPHYSICAL)(-1)) >>
(info->mem_slot_bits + info->generation_bits));
}
void memslot_info_destroy(RedMemSlotInfo *info)
{
uint32_t i;
for (i = 0; i < info->num_memslots_groups; ++i) {
g_free(info->mem_slots[i]);
}
g_free(info->mem_slots);
}
void memslot_info_add_slot(RedMemSlotInfo *info, uint32_t slot_group_id, uint32_t slot_id,
uintptr_t addr_delta, uintptr_t virt_start, uintptr_t virt_end,
uint32_t generation)
{
spice_assert(info->num_memslots_groups > slot_group_id);
spice_assert(info->num_memslots > slot_id);
info->mem_slots[slot_group_id][slot_id].address_delta = addr_delta;
info->mem_slots[slot_group_id][slot_id].virt_start_addr = virt_start;
info->mem_slots[slot_group_id][slot_id].virt_end_addr = virt_end;
info->mem_slots[slot_group_id][slot_id].generation = generation;
}
void memslot_info_del_slot(RedMemSlotInfo *info, uint32_t slot_group_id, uint32_t slot_id)
{
spice_return_if_fail(info->num_memslots_groups > slot_group_id);
spice_return_if_fail(info->num_memslots > slot_id);
info->mem_slots[slot_group_id][slot_id].virt_start_addr = 0;
info->mem_slots[slot_group_id][slot_id].virt_end_addr = 0;
}
void memslot_info_reset(RedMemSlotInfo *info)
{
uint32_t i;
for (i = 0; i < info->num_memslots_groups; ++i) {
memset(info->mem_slots[i], 0, sizeof(MemSlot) * info->num_memslots);
}
}