/*
* Copyright (c) 2004, 2005 Topspin Communications. All rights reserved.
* Copyright (c) 2004, 2011-2012 Intel Corporation. All rights reserved.
* Copyright (c) 2005, 2006, 2007 Cisco Systems, Inc. All rights reserved.
* Copyright (c) 2005 PathScale, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef INFINIBAND_VERBS_H
#define INFINIBAND_VERBS_H
#include <stdint.h>
#include <pthread.h>
#include <stddef.h>
#include <errno.h>
#include <string.h>
#include <linux/types.h>
#include <stdint.h>
#include <infiniband/verbs_api.h>
#ifdef __cplusplus
#include <limits>
#endif
#if __GNUC__ >= 3
# define __attribute_const __attribute__((const))
#else
# define __attribute_const
#endif
#ifdef __cplusplus
extern "C" {
#endif
union ibv_gid {
uint8_t raw[16];
struct {
__be64 subnet_prefix;
__be64 interface_id;
} global;
};
#define vext_field_avail(type, fld, sz) (offsetof(type, fld) < (sz))
#ifdef __cplusplus
#define __VERBS_ABI_IS_EXTENDED ((void *)std::numeric_limits<uintptr_t>::max())
#else
#define __VERBS_ABI_IS_EXTENDED ((void *)UINTPTR_MAX)
#endif
enum ibv_node_type {
IBV_NODE_UNKNOWN = -1,
IBV_NODE_CA = 1,
IBV_NODE_SWITCH,
IBV_NODE_ROUTER,
IBV_NODE_RNIC,
IBV_NODE_USNIC,
IBV_NODE_USNIC_UDP,
IBV_NODE_UNSPECIFIED,
};
enum ibv_transport_type {
IBV_TRANSPORT_UNKNOWN = -1,
IBV_TRANSPORT_IB = 0,
IBV_TRANSPORT_IWARP,
IBV_TRANSPORT_USNIC,
IBV_TRANSPORT_USNIC_UDP,
IBV_TRANSPORT_UNSPECIFIED,
};
enum ibv_device_cap_flags {
IBV_DEVICE_RESIZE_MAX_WR = 1,
IBV_DEVICE_BAD_PKEY_CNTR = 1 << 1,
IBV_DEVICE_BAD_QKEY_CNTR = 1 << 2,
IBV_DEVICE_RAW_MULTI = 1 << 3,
IBV_DEVICE_AUTO_PATH_MIG = 1 << 4,
IBV_DEVICE_CHANGE_PHY_PORT = 1 << 5,
IBV_DEVICE_UD_AV_PORT_ENFORCE = 1 << 6,
IBV_DEVICE_CURR_QP_STATE_MOD = 1 << 7,
IBV_DEVICE_SHUTDOWN_PORT = 1 << 8,
IBV_DEVICE_INIT_TYPE = 1 << 9,
IBV_DEVICE_PORT_ACTIVE_EVENT = 1 << 10,
IBV_DEVICE_SYS_IMAGE_GUID = 1 << 11,
IBV_DEVICE_RC_RNR_NAK_GEN = 1 << 12,
IBV_DEVICE_SRQ_RESIZE = 1 << 13,
IBV_DEVICE_N_NOTIFY_CQ = 1 << 14,
IBV_DEVICE_MEM_WINDOW = 1 << 17,
IBV_DEVICE_UD_IP_CSUM = 1 << 18,
IBV_DEVICE_XRC = 1 << 20,
IBV_DEVICE_MEM_MGT_EXTENSIONS = 1 << 21,
IBV_DEVICE_MEM_WINDOW_TYPE_2A = 1 << 23,
IBV_DEVICE_MEM_WINDOW_TYPE_2B = 1 << 24,
IBV_DEVICE_RC_IP_CSUM = 1 << 25,
IBV_DEVICE_RAW_IP_CSUM = 1 << 26,
IBV_DEVICE_MANAGED_FLOW_STEERING = 1 << 29
};
/*
* Can't extended above ibv_device_cap_flags enum as in some systems/compilers
* enum range is limited to 4 bytes.
*/
#define IBV_DEVICE_RAW_SCATTER_FCS (1ULL << 34)
#define IBV_DEVICE_PCI_WRITE_END_PADDING (1ULL << 36)
enum ibv_atomic_cap {
IBV_ATOMIC_NONE,
IBV_ATOMIC_HCA,
IBV_ATOMIC_GLOB
};
struct ibv_alloc_dm_attr {
size_t length;
uint32_t log_align_req;
uint32_t comp_mask;
};
struct ibv_dm {
struct ibv_context *context;
int (*memcpy_to_dm)(struct ibv_dm *dm, uint64_t dm_offset,
const void *host_addr, size_t length);
int (*memcpy_from_dm)(void *host_addr, struct ibv_dm *dm,
uint64_t dm_offset, size_t length);
uint32_t comp_mask;
};
struct ibv_device_attr {
char fw_ver[64];
__be64 node_guid;
__be64 sys_image_guid;
uint64_t max_mr_size;
uint64_t page_size_cap;
uint32_t vendor_id;
uint32_t vendor_part_id;
uint32_t hw_ver;
int max_qp;
int max_qp_wr;
unsigned int device_cap_flags;
int max_sge;
int max_sge_rd;
int max_cq;
int max_cqe;
int max_mr;
int max_pd;
int max_qp_rd_atom;
int max_ee_rd_atom;
int max_res_rd_atom;
int max_qp_init_rd_atom;
int max_ee_init_rd_atom;
enum ibv_atomic_cap atomic_cap;
int max_ee;
int max_rdd;
int max_mw;
int max_raw_ipv6_qp;
int max_raw_ethy_qp;
int max_mcast_grp;
int max_mcast_qp_attach;
int max_total_mcast_qp_attach;
int max_ah;
int max_fmr;
int max_map_per_fmr;
int max_srq;
int max_srq_wr;
int max_srq_sge;
uint16_t max_pkeys;
uint8_t local_ca_ack_delay;
uint8_t phys_port_cnt;
};
/* An extensible input struct for possible future extensions of the
* ibv_query_device_ex verb. */
struct ibv_query_device_ex_input {
uint32_t comp_mask;
};
enum ibv_odp_transport_cap_bits {
IBV_ODP_SUPPORT_SEND = 1 << 0,
IBV_ODP_SUPPORT_RECV = 1 << 1,
IBV_ODP_SUPPORT_WRITE = 1 << 2,
IBV_ODP_SUPPORT_READ = 1 << 3,
IBV_ODP_SUPPORT_ATOMIC = 1 << 4,
IBV_ODP_SUPPORT_SRQ_RECV = 1 << 5,
};
struct ibv_odp_caps {
uint64_t general_caps;
struct {
uint32_t rc_odp_caps;
uint32_t uc_odp_caps;
uint32_t ud_odp_caps;
} per_transport_caps;
};
enum ibv_odp_general_caps {
IBV_ODP_SUPPORT = 1 << 0,
IBV_ODP_SUPPORT_IMPLICIT = 1 << 1,
};
struct ibv_tso_caps {
uint32_t max_tso;
uint32_t supported_qpts;
};
/* RX Hash function flags */
enum ibv_rx_hash_function_flags {
IBV_RX_HASH_FUNC_TOEPLITZ = 1 << 0,
};
/*
* RX Hash fields enable to set which incoming packet's field should
* participates in RX Hash. Each flag represent certain packet's field,
* when the flag is set the field that is represented by the flag will
* participate in RX Hash calculation.
* Note: *IPV4 and *IPV6 flags can't be enabled together on the same QP
* and *TCP and *UDP flags can't be enabled together on the same QP.
*/
enum ibv_rx_hash_fields {
IBV_RX_HASH_SRC_IPV4 = 1 << 0,
IBV_RX_HASH_DST_IPV4 = 1 << 1,
IBV_RX_HASH_SRC_IPV6 = 1 << 2,
IBV_RX_HASH_DST_IPV6 = 1 << 3,
IBV_RX_HASH_SRC_PORT_TCP = 1 << 4,
IBV_RX_HASH_DST_PORT_TCP = 1 << 5,
IBV_RX_HASH_SRC_PORT_UDP = 1 << 6,
IBV_RX_HASH_DST_PORT_UDP = 1 << 7,
IBV_RX_HASH_IPSEC_SPI = 1 << 8,
IBV_RX_HASH_INNER = (1UL << 31),
};
struct ibv_rss_caps {
uint32_t supported_qpts;
uint32_t max_rwq_indirection_tables;
uint32_t max_rwq_indirection_table_size;
uint64_t rx_hash_fields_mask; /* enum ibv_rx_hash_fields */
uint8_t rx_hash_function; /* enum ibv_rx_hash_function_flags */
};
struct ibv_packet_pacing_caps {
uint32_t qp_rate_limit_min;
uint32_t qp_rate_limit_max; /* In kbps */
uint32_t supported_qpts;
};
enum ibv_raw_packet_caps {
IBV_RAW_PACKET_CAP_CVLAN_STRIPPING = 1 << 0,
IBV_RAW_PACKET_CAP_SCATTER_FCS = 1 << 1,
IBV_RAW_PACKET_CAP_IP_CSUM = 1 << 2,
IBV_RAW_PACKET_CAP_DELAY_DROP = 1 << 3,
};
enum ibv_tm_cap_flags {
IBV_TM_CAP_RC = 1 << 0,
};
struct ibv_tm_caps {
/* Max size of rendezvous request header */
uint32_t max_rndv_hdr_size;
/* Max number of tagged buffers in a TM-SRQ matching list */
uint32_t max_num_tags;
/* From enum ibv_tm_cap_flags */
uint32_t flags;
/* Max number of outstanding list operations */
uint32_t max_ops;
/* Max number of SGEs in a tagged buffer */
uint32_t max_sge;
};
struct ibv_cq_moderation_caps {
uint16_t max_cq_count;
uint16_t max_cq_period; /* in micro seconds */
};
enum ibv_pci_atomic_op_size {
IBV_PCI_ATOMIC_OPERATION_4_BYTE_SIZE_SUP = 1 << 0,
IBV_PCI_ATOMIC_OPERATION_8_BYTE_SIZE_SUP = 1 << 1,
IBV_PCI_ATOMIC_OPERATION_16_BYTE_SIZE_SUP = 1 << 2,
};
/*
* Bitmask for supported operation sizes
* Use enum ibv_pci_atomic_op_size
*/
struct ibv_pci_atomic_caps {
uint16_t fetch_add;
uint16_t swap;
uint16_t compare_swap;
};
struct ibv_device_attr_ex {
struct ibv_device_attr orig_attr;
uint32_t comp_mask;
struct ibv_odp_caps odp_caps;
uint64_t completion_timestamp_mask;
uint64_t hca_core_clock;
uint64_t device_cap_flags_ex;
struct ibv_tso_caps tso_caps;
struct ibv_rss_caps rss_caps;
uint32_t max_wq_type_rq;
struct ibv_packet_pacing_caps packet_pacing_caps;
uint32_t raw_packet_caps; /* Use ibv_raw_packet_caps */
struct ibv_tm_caps tm_caps;
struct ibv_cq_moderation_caps cq_mod_caps;
uint64_t max_dm_size;
struct ibv_pci_atomic_caps pci_atomic_caps;
uint32_t xrc_odp_caps;
};
enum ibv_mtu {
IBV_MTU_256 = 1,
IBV_MTU_512 = 2,
IBV_MTU_1024 = 3,
IBV_MTU_2048 = 4,
IBV_MTU_4096 = 5
};
enum ibv_port_state {
IBV_PORT_NOP = 0,
IBV_PORT_DOWN = 1,
IBV_PORT_INIT = 2,
IBV_PORT_ARMED = 3,
IBV_PORT_ACTIVE = 4,
IBV_PORT_ACTIVE_DEFER = 5
};
enum {
IBV_LINK_LAYER_UNSPECIFIED,
IBV_LINK_LAYER_INFINIBAND,
IBV_LINK_LAYER_ETHERNET,
};
enum ibv_port_cap_flags {
IBV_PORT_SM = 1 << 1,
IBV_PORT_NOTICE_SUP = 1 << 2,
IBV_PORT_TRAP_SUP = 1 << 3,
IBV_PORT_OPT_IPD_SUP = 1 << 4,
IBV_PORT_AUTO_MIGR_SUP = 1 << 5,
IBV_PORT_SL_MAP_SUP = 1 << 6,
IBV_PORT_MKEY_NVRAM = 1 << 7,
IBV_PORT_PKEY_NVRAM = 1 << 8,
IBV_PORT_LED_INFO_SUP = 1 << 9,
IBV_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
IBV_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
IBV_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
IBV_PORT_CAP_MASK2_SUP = 1 << 15,
IBV_PORT_CM_SUP = 1 << 16,
IBV_PORT_SNMP_TUNNEL_SUP = 1 << 17,
IBV_PORT_REINIT_SUP = 1 << 18,
IBV_PORT_DEVICE_MGMT_SUP = 1 << 19,
IBV_PORT_VENDOR_CLASS_SUP = 1 << 20,
IBV_PORT_DR_NOTICE_SUP = 1 << 21,
IBV_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
IBV_PORT_BOOT_MGMT_SUP = 1 << 23,
IBV_PORT_LINK_LATENCY_SUP = 1 << 24,
IBV_PORT_CLIENT_REG_SUP = 1 << 25,
IBV_PORT_IP_BASED_GIDS = 1 << 26
};
enum ibv_port_cap_flags2 {
IBV_PORT_SET_NODE_DESC_SUP = 1 << 0,
IBV_PORT_INFO_EXT_SUP = 1 << 1,
IBV_PORT_VIRT_SUP = 1 << 2,
IBV_PORT_SWITCH_PORT_STATE_TABLE_SUP = 1 << 3,
IBV_PORT_LINK_WIDTH_2X_SUP = 1 << 4,
IBV_PORT_LINK_SPEED_HDR_SUP = 1 << 5,
};
struct ibv_port_attr {
enum ibv_port_state state;
enum ibv_mtu max_mtu;
enum ibv_mtu active_mtu;
int gid_tbl_len;
uint32_t port_cap_flags;
uint32_t max_msg_sz;
uint32_t bad_pkey_cntr;
uint32_t qkey_viol_cntr;
uint16_t pkey_tbl_len;
uint16_t lid;
uint16_t sm_lid;
uint8_t lmc;
uint8_t max_vl_num;
uint8_t sm_sl;
uint8_t subnet_timeout;
uint8_t init_type_reply;
uint8_t active_width;
uint8_t active_speed;
uint8_t phys_state;
uint8_t link_layer;
uint8_t flags;
uint16_t port_cap_flags2;
};
enum ibv_event_type {
IBV_EVENT_CQ_ERR,
IBV_EVENT_QP_FATAL,
IBV_EVENT_QP_REQ_ERR,
IBV_EVENT_QP_ACCESS_ERR,
IBV_EVENT_COMM_EST,
IBV_EVENT_SQ_DRAINED,
IBV_EVENT_PATH_MIG,
IBV_EVENT_PATH_MIG_ERR,
IBV_EVENT_DEVICE_FATAL,
IBV_EVENT_PORT_ACTIVE,
IBV_EVENT_PORT_ERR,
IBV_EVENT_LID_CHANGE,
IBV_EVENT_PKEY_CHANGE,
IBV_EVENT_SM_CHANGE,
IBV_EVENT_SRQ_ERR,
IBV_EVENT_SRQ_LIMIT_REACHED,
IBV_EVENT_QP_LAST_WQE_REACHED,
IBV_EVENT_CLIENT_REREGISTER,
IBV_EVENT_GID_CHANGE,
IBV_EVENT_WQ_FATAL,
};
struct ibv_async_event {
union {
struct ibv_cq *cq;
struct ibv_qp *qp;
struct ibv_srq *srq;
struct ibv_wq *wq;
int port_num;
} element;
enum ibv_event_type event_type;
};
enum ibv_wc_status {
IBV_WC_SUCCESS,
IBV_WC_LOC_LEN_ERR,
IBV_WC_LOC_QP_OP_ERR,
IBV_WC_LOC_EEC_OP_ERR,
IBV_WC_LOC_PROT_ERR,
IBV_WC_WR_FLUSH_ERR,
IBV_WC_MW_BIND_ERR,
IBV_WC_BAD_RESP_ERR,
IBV_WC_LOC_ACCESS_ERR,
IBV_WC_REM_INV_REQ_ERR,
IBV_WC_REM_ACCESS_ERR,
IBV_WC_REM_OP_ERR,
IBV_WC_RETRY_EXC_ERR,
IBV_WC_RNR_RETRY_EXC_ERR,
IBV_WC_LOC_RDD_VIOL_ERR,
IBV_WC_REM_INV_RD_REQ_ERR,
IBV_WC_REM_ABORT_ERR,
IBV_WC_INV_EECN_ERR,
IBV_WC_INV_EEC_STATE_ERR,
IBV_WC_FATAL_ERR,
IBV_WC_RESP_TIMEOUT_ERR,
IBV_WC_GENERAL_ERR,
IBV_WC_TM_ERR,
IBV_WC_TM_RNDV_INCOMPLETE,
};
const char *ibv_wc_status_str(enum ibv_wc_status status);
enum ibv_wc_opcode {
IBV_WC_SEND,
IBV_WC_RDMA_WRITE,
IBV_WC_RDMA_READ,
IBV_WC_COMP_SWAP,
IBV_WC_FETCH_ADD,
IBV_WC_BIND_MW,
IBV_WC_LOCAL_INV,
IBV_WC_TSO,
/*
* Set value of IBV_WC_RECV so consumers can test if a completion is a
* receive by testing (opcode & IBV_WC_RECV).
*/
IBV_WC_RECV = 1 << 7,
IBV_WC_RECV_RDMA_WITH_IMM,
IBV_WC_TM_ADD,
IBV_WC_TM_DEL,
IBV_WC_TM_SYNC,
IBV_WC_TM_RECV,
IBV_WC_TM_NO_TAG,
IBV_WC_DRIVER1,
};
enum {
IBV_WC_IP_CSUM_OK_SHIFT = 2
};
enum ibv_create_cq_wc_flags {
IBV_WC_EX_WITH_BYTE_LEN = 1 << 0,
IBV_WC_EX_WITH_IMM = 1 << 1,
IBV_WC_EX_WITH_QP_NUM = 1 << 2,
IBV_WC_EX_WITH_SRC_QP = 1 << 3,
IBV_WC_EX_WITH_SLID = 1 << 4,
IBV_WC_EX_WITH_SL = 1 << 5,
IBV_WC_EX_WITH_DLID_PATH_BITS = 1 << 6,
IBV_WC_EX_WITH_COMPLETION_TIMESTAMP = 1 << 7,
IBV_WC_EX_WITH_CVLAN = 1 << 8,
IBV_WC_EX_WITH_FLOW_TAG = 1 << 9,
IBV_WC_EX_WITH_TM_INFO = 1 << 10,
IBV_WC_EX_WITH_COMPLETION_TIMESTAMP_WALLCLOCK = 1 << 11,
};
enum {
IBV_WC_STANDARD_FLAGS = IBV_WC_EX_WITH_BYTE_LEN |
IBV_WC_EX_WITH_IMM |
IBV_WC_EX_WITH_QP_NUM |
IBV_WC_EX_WITH_SRC_QP |
IBV_WC_EX_WITH_SLID |
IBV_WC_EX_WITH_SL |
IBV_WC_EX_WITH_DLID_PATH_BITS
};
enum {
IBV_CREATE_CQ_SUP_WC_FLAGS = IBV_WC_STANDARD_FLAGS |
IBV_WC_EX_WITH_COMPLETION_TIMESTAMP |
IBV_WC_EX_WITH_CVLAN |
IBV_WC_EX_WITH_FLOW_TAG |
IBV_WC_EX_WITH_TM_INFO |
IBV_WC_EX_WITH_COMPLETION_TIMESTAMP_WALLCLOCK
};
enum ibv_wc_flags {
IBV_WC_GRH = 1 << 0,
IBV_WC_WITH_IMM = 1 << 1,
IBV_WC_IP_CSUM_OK = 1 << IBV_WC_IP_CSUM_OK_SHIFT,
IBV_WC_WITH_INV = 1 << 3,
IBV_WC_TM_SYNC_REQ = 1 << 4,
IBV_WC_TM_MATCH = 1 << 5,
IBV_WC_TM_DATA_VALID = 1 << 6,
};
struct ibv_wc {
uint64_t wr_id;
enum ibv_wc_status status;
enum ibv_wc_opcode opcode;
uint32_t vendor_err;
uint32_t byte_len;
/* When (wc_flags & IBV_WC_WITH_IMM): Immediate data in network byte order.
* When (wc_flags & IBV_WC_WITH_INV): Stores the invalidated rkey.
*/
union {
__be32 imm_data;
uint32_t invalidated_rkey;
};
uint32_t qp_num;
uint32_t src_qp;
unsigned int wc_flags;
uint16_t pkey_index;
uint16_t slid;
uint8_t sl;
uint8_t dlid_path_bits;
};
enum ibv_access_flags {
IBV_ACCESS_LOCAL_WRITE = 1,
IBV_ACCESS_REMOTE_WRITE = (1<<1),
IBV_ACCESS_REMOTE_READ = (1<<2),
IBV_ACCESS_REMOTE_ATOMIC = (1<<3),
IBV_ACCESS_MW_BIND = (1<<4),
IBV_ACCESS_ZERO_BASED = (1<<5),
IBV_ACCESS_ON_DEMAND = (1<<6),
IBV_ACCESS_HUGETLB = (1<<7),
IBV_ACCESS_RELAXED_ORDERING = IBV_ACCESS_OPTIONAL_FIRST,
};
struct ibv_mw_bind_info {
struct ibv_mr *mr;
uint64_t addr;
uint64_t length;
unsigned int mw_access_flags; /* use ibv_access_flags */
};
struct ibv_pd {
struct ibv_context *context;
uint32_t handle;
};
struct ibv_td_init_attr {
uint32_t comp_mask;
};
struct ibv_td {
struct ibv_context *context;
};
enum ibv_xrcd_init_attr_mask {
IBV_XRCD_INIT_ATTR_FD = 1 << 0,
IBV_XRCD_INIT_ATTR_OFLAGS = 1 << 1,
IBV_XRCD_INIT_ATTR_RESERVED = 1 << 2
};
struct ibv_xrcd_init_attr {
uint32_t comp_mask;
int fd;
int oflags;
};
struct ibv_xrcd {
struct ibv_context *context;
};
enum ibv_rereg_mr_flags {
IBV_REREG_MR_CHANGE_TRANSLATION = (1 << 0),
IBV_REREG_MR_CHANGE_PD = (1 << 1),
IBV_REREG_MR_CHANGE_ACCESS = (1 << 2),
IBV_REREG_MR_KEEP_VALID = (1 << 3),
IBV_REREG_MR_FLAGS_SUPPORTED = ((IBV_REREG_MR_KEEP_VALID << 1) - 1)
};
struct ibv_mr {
struct ibv_context *context;
struct ibv_pd *pd;
void *addr;
size_t length;
uint32_t handle;
uint32_t lkey;
uint32_t rkey;
};
enum ibv_mw_type {
IBV_MW_TYPE_1 = 1,
IBV_MW_TYPE_2 = 2
};
struct ibv_mw {
struct ibv_context *context;
struct ibv_pd *pd;
uint32_t rkey;
uint32_t handle;
enum ibv_mw_type type;
};
struct ibv_global_route {
union ibv_gid dgid;
uint32_t flow_label;
uint8_t sgid_index;
uint8_t hop_limit;
uint8_t traffic_class;
};
struct ibv_grh {
__be32 version_tclass_flow;
__be16 paylen;
uint8_t next_hdr;
uint8_t hop_limit;
union ibv_gid sgid;
union ibv_gid dgid;
};
enum ibv_rate {
IBV_RATE_MAX = 0,
IBV_RATE_2_5_GBPS = 2,
IBV_RATE_5_GBPS = 5,
IBV_RATE_10_GBPS = 3,
IBV_RATE_20_GBPS = 6,
IBV_RATE_30_GBPS = 4,
IBV_RATE_40_GBPS = 7,
IBV_RATE_60_GBPS = 8,
IBV_RATE_80_GBPS = 9,
IBV_RATE_120_GBPS = 10,
IBV_RATE_14_GBPS = 11,
IBV_RATE_56_GBPS = 12,
IBV_RATE_112_GBPS = 13,
IBV_RATE_168_GBPS = 14,
IBV_RATE_25_GBPS = 15,
IBV_RATE_100_GBPS = 16,
IBV_RATE_200_GBPS = 17,
IBV_RATE_300_GBPS = 18,
IBV_RATE_28_GBPS = 19,
IBV_RATE_50_GBPS = 20,
IBV_RATE_400_GBPS = 21,
IBV_RATE_600_GBPS = 22,
};
/**
* ibv_rate_to_mult - Convert the IB rate enum to a multiple of the
* base rate of 2.5 Gbit/sec. For example, IBV_RATE_5_GBPS will be
* converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
* @rate: rate to convert.
*/
int __attribute_const ibv_rate_to_mult(enum ibv_rate rate);
/**
* mult_to_ibv_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate enum.
* @mult: multiple to convert.
*/
enum ibv_rate __attribute_const mult_to_ibv_rate(int mult);
/**
* ibv_rate_to_mbps - Convert the IB rate enum to Mbit/sec.
* For example, IBV_RATE_5_GBPS will return the value 5000.
* @rate: rate to convert.
*/
int __attribute_const ibv_rate_to_mbps(enum ibv_rate rate);
/**
* mbps_to_ibv_rate - Convert a Mbit/sec value to an IB rate enum.
* @mbps: value to convert.
*/
enum ibv_rate __attribute_const mbps_to_ibv_rate(int mbps) __attribute_const;
struct ibv_ah_attr {
struct ibv_global_route grh;
uint16_t dlid;
uint8_t sl;
uint8_t src_path_bits;
uint8_t static_rate;
uint8_t is_global;
uint8_t port_num;
};
enum ibv_srq_attr_mask {
IBV_SRQ_MAX_WR = 1 << 0,
IBV_SRQ_LIMIT = 1 << 1
};
struct ibv_srq_attr {
uint32_t max_wr;
uint32_t max_sge;
uint32_t srq_limit;
};
struct ibv_srq_init_attr {
void *srq_context;
struct ibv_srq_attr attr;
};
enum ibv_srq_type {
IBV_SRQT_BASIC,
IBV_SRQT_XRC,
IBV_SRQT_TM,
};
enum ibv_srq_init_attr_mask {
IBV_SRQ_INIT_ATTR_TYPE = 1 << 0,
IBV_SRQ_INIT_ATTR_PD = 1 << 1,
IBV_SRQ_INIT_ATTR_XRCD = 1 << 2,
IBV_SRQ_INIT_ATTR_CQ = 1 << 3,
IBV_SRQ_INIT_ATTR_TM = 1 << 4,
IBV_SRQ_INIT_ATTR_RESERVED = 1 << 5,
};
struct ibv_tm_cap {
uint32_t max_num_tags;
uint32_t max_ops;
};
struct ibv_srq_init_attr_ex {
void *srq_context;
struct ibv_srq_attr attr;
uint32_t comp_mask;
enum ibv_srq_type srq_type;
struct ibv_pd *pd;
struct ibv_xrcd *xrcd;
struct ibv_cq *cq;
struct ibv_tm_cap tm_cap;
};
enum ibv_wq_type {
IBV_WQT_RQ
};
enum ibv_wq_init_attr_mask {
IBV_WQ_INIT_ATTR_FLAGS = 1 << 0,
IBV_WQ_INIT_ATTR_RESERVED = 1 << 1,
};
enum ibv_wq_flags {
IBV_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0,
IBV_WQ_FLAGS_SCATTER_FCS = 1 << 1,
IBV_WQ_FLAGS_DELAY_DROP = 1 << 2,
IBV_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3,
IBV_WQ_FLAGS_RESERVED = 1 << 4,
};
struct ibv_wq_init_attr {
void *wq_context;
enum ibv_wq_type wq_type;
uint32_t max_wr;
uint32_t max_sge;
struct ibv_pd *pd;
struct ibv_cq *cq;
uint32_t comp_mask; /* Use ibv_wq_init_attr_mask */
uint32_t create_flags; /* use ibv_wq_flags */
};
enum ibv_wq_state {
IBV_WQS_RESET,
IBV_WQS_RDY,
IBV_WQS_ERR,
IBV_WQS_UNKNOWN
};
enum ibv_wq_attr_mask {
IBV_WQ_ATTR_STATE = 1 << 0,
IBV_WQ_ATTR_CURR_STATE = 1 << 1,
IBV_WQ_ATTR_FLAGS = 1 << 2,
IBV_WQ_ATTR_RESERVED = 1 << 3,
};
struct ibv_wq_attr {
/* enum ibv_wq_attr_mask */
uint32_t attr_mask;
/* Move the WQ to this state */
enum ibv_wq_state wq_state;
/* Assume this is the current WQ state */
enum ibv_wq_state curr_wq_state;
uint32_t flags; /* Use ibv_wq_flags */
uint32_t flags_mask; /* Use ibv_wq_flags */
};
/*
* Receive Work Queue Indirection Table.
* It's used in order to distribute incoming packets between different
* Receive Work Queues. Associating Receive WQs with different CPU cores
* allows one to workload the traffic between different CPU cores.
* The Indirection Table can contain only WQs of type IBV_WQT_RQ.
*/
struct ibv_rwq_ind_table {
struct ibv_context *context;
int ind_tbl_handle;
int ind_tbl_num;
uint32_t comp_mask;
};
enum ibv_ind_table_init_attr_mask {
IBV_CREATE_IND_TABLE_RESERVED = (1 << 0)
};
/*
* Receive Work Queue Indirection Table attributes
*/
struct ibv_rwq_ind_table_init_attr {
uint32_t log_ind_tbl_size;
/* Each entry is a pointer to a Receive Work Queue */
struct ibv_wq **ind_tbl;
uint32_t comp_mask;
};
enum ibv_qp_type {
IBV_QPT_RC = 2,
IBV_QPT_UC,
IBV_QPT_UD,
IBV_QPT_RAW_PACKET = 8,
IBV_QPT_XRC_SEND = 9,
IBV_QPT_XRC_RECV,
IBV_QPT_DRIVER = 0xff,
};
struct ibv_qp_cap {
uint32_t max_send_wr;
uint32_t max_recv_wr;
uint32_t max_send_sge;
uint32_t max_recv_sge;
uint32_t max_inline_data;
};
struct ibv_qp_init_attr {
void *qp_context;
struct ibv_cq *send_cq;
struct ibv_cq *recv_cq;
struct ibv_srq *srq;
struct ibv_qp_cap cap;
enum ibv_qp_type qp_type;
int sq_sig_all;
};
enum ibv_qp_init_attr_mask {
IBV_QP_INIT_ATTR_PD = 1 << 0,
IBV_QP_INIT_ATTR_XRCD = 1 << 1,
IBV_QP_INIT_ATTR_CREATE_FLAGS = 1 << 2,
IBV_QP_INIT_ATTR_MAX_TSO_HEADER = 1 << 3,
IBV_QP_INIT_ATTR_IND_TABLE = 1 << 4,
IBV_QP_INIT_ATTR_RX_HASH = 1 << 5,
IBV_QP_INIT_ATTR_SEND_OPS_FLAGS = 1 << 6,
};
enum ibv_qp_create_flags {
IBV_QP_CREATE_BLOCK_SELF_MCAST_LB = 1 << 1,
IBV_QP_CREATE_SCATTER_FCS = 1 << 8,
IBV_QP_CREATE_CVLAN_STRIPPING = 1 << 9,
IBV_QP_CREATE_SOURCE_QPN = 1 << 10,
IBV_QP_CREATE_PCI_WRITE_END_PADDING = 1 << 11,
};
enum ibv_qp_create_send_ops_flags {
IBV_QP_EX_WITH_RDMA_WRITE = 1 << 0,
IBV_QP_EX_WITH_RDMA_WRITE_WITH_IMM = 1 << 1,
IBV_QP_EX_WITH_SEND = 1 << 2,
IBV_QP_EX_WITH_SEND_WITH_IMM = 1 << 3,
IBV_QP_EX_WITH_RDMA_READ = 1 << 4,
IBV_QP_EX_WITH_ATOMIC_CMP_AND_SWP = 1 << 5,
IBV_QP_EX_WITH_ATOMIC_FETCH_AND_ADD = 1 << 6,
IBV_QP_EX_WITH_LOCAL_INV = 1 << 7,
IBV_QP_EX_WITH_BIND_MW = 1 << 8,
IBV_QP_EX_WITH_SEND_WITH_INV = 1 << 9,
IBV_QP_EX_WITH_TSO = 1 << 10,
};
struct ibv_rx_hash_conf {
/* enum ibv_rx_hash_function_flags */
uint8_t rx_hash_function;
uint8_t rx_hash_key_len;
uint8_t *rx_hash_key;
/* enum ibv_rx_hash_fields */
uint64_t rx_hash_fields_mask;
};
struct ibv_qp_init_attr_ex {
void *qp_context;
struct ibv_cq *send_cq;
struct ibv_cq *recv_cq;
struct ibv_srq *srq;
struct ibv_qp_cap cap;
enum ibv_qp_type qp_type;
int sq_sig_all;
uint32_t comp_mask;
struct ibv_pd *pd;
struct ibv_xrcd *xrcd;
uint32_t create_flags;
uint16_t max_tso_header;
struct ibv_rwq_ind_table *rwq_ind_tbl;
struct ibv_rx_hash_conf rx_hash_conf;
uint32_t source_qpn;
/* See enum ibv_qp_create_send_ops_flags */
uint64_t send_ops_flags;
};
enum ibv_qp_open_attr_mask {
IBV_QP_OPEN_ATTR_NUM = 1 << 0,
IBV_QP_OPEN_ATTR_XRCD = 1 << 1,
IBV_QP_OPEN_ATTR_CONTEXT = 1 << 2,
IBV_QP_OPEN_ATTR_TYPE = 1 << 3,
IBV_QP_OPEN_ATTR_RESERVED = 1 << 4
};
struct ibv_qp_open_attr {
uint32_t comp_mask;
uint32_t qp_num;
struct ibv_xrcd *xrcd;
void *qp_context;
enum ibv_qp_type qp_type;
};
enum ibv_qp_attr_mask {
IBV_QP_STATE = 1 << 0,
IBV_QP_CUR_STATE = 1 << 1,
IBV_QP_EN_SQD_ASYNC_NOTIFY = 1 << 2,
IBV_QP_ACCESS_FLAGS = 1 << 3,
IBV_QP_PKEY_INDEX = 1 << 4,
IBV_QP_PORT = 1 << 5,
IBV_QP_QKEY = 1 << 6,
IBV_QP_AV = 1 << 7,
IBV_QP_PATH_MTU = 1 << 8,
IBV_QP_TIMEOUT = 1 << 9,
IBV_QP_RETRY_CNT = 1 << 10,
IBV_QP_RNR_RETRY = 1 << 11,
IBV_QP_RQ_PSN = 1 << 12,
IBV_QP_MAX_QP_RD_ATOMIC = 1 << 13,
IBV_QP_ALT_PATH = 1 << 14,
IBV_QP_MIN_RNR_TIMER = 1 << 15,
IBV_QP_SQ_PSN = 1 << 16,
IBV_QP_MAX_DEST_RD_ATOMIC = 1 << 17,
IBV_QP_PATH_MIG_STATE = 1 << 18,
IBV_QP_CAP = 1 << 19,
IBV_QP_DEST_QPN = 1 << 20,
/* These bits were supported on older kernels, but never exposed from
libibverbs:
_IBV_QP_SMAC = 1 << 21,
_IBV_QP_ALT_SMAC = 1 << 22,
_IBV_QP_VID = 1 << 23,
_IBV_QP_ALT_VID = 1 << 24,
*/
IBV_QP_RATE_LIMIT = 1 << 25,
};
enum ibv_qp_state {
IBV_QPS_RESET,
IBV_QPS_INIT,
IBV_QPS_RTR,
IBV_QPS_RTS,
IBV_QPS_SQD,
IBV_QPS_SQE,
IBV_QPS_ERR,
IBV_QPS_UNKNOWN
};
enum ibv_mig_state {
IBV_MIG_MIGRATED,
IBV_MIG_REARM,
IBV_MIG_ARMED
};
struct ibv_qp_attr {
enum ibv_qp_state qp_state;
enum ibv_qp_state cur_qp_state;
enum ibv_mtu path_mtu;
enum ibv_mig_state path_mig_state;
uint32_t qkey;
uint32_t rq_psn;
uint32_t sq_psn;
uint32_t dest_qp_num;
unsigned int qp_access_flags;
struct ibv_qp_cap cap;
struct ibv_ah_attr ah_attr;
struct ibv_ah_attr alt_ah_attr;
uint16_t pkey_index;
uint16_t alt_pkey_index;
uint8_t en_sqd_async_notify;
uint8_t sq_draining;
uint8_t max_rd_atomic;
uint8_t max_dest_rd_atomic;
uint8_t min_rnr_timer;
uint8_t port_num;
uint8_t timeout;
uint8_t retry_cnt;
uint8_t rnr_retry;
uint8_t alt_port_num;
uint8_t alt_timeout;
uint32_t rate_limit;
};
struct ibv_qp_rate_limit_attr {
uint32_t rate_limit; /* in kbps */
uint32_t max_burst_sz; /* total burst size in bytes */
uint16_t typical_pkt_sz; /* typical send packet size in bytes */
uint32_t comp_mask;
};
enum ibv_wr_opcode {
IBV_WR_RDMA_WRITE,
IBV_WR_RDMA_WRITE_WITH_IMM,
IBV_WR_SEND,
IBV_WR_SEND_WITH_IMM,
IBV_WR_RDMA_READ,
IBV_WR_ATOMIC_CMP_AND_SWP,
IBV_WR_ATOMIC_FETCH_AND_ADD,
IBV_WR_LOCAL_INV,
IBV_WR_BIND_MW,
IBV_WR_SEND_WITH_INV,
IBV_WR_TSO,
IBV_WR_DRIVER1,
};
enum ibv_send_flags {
IBV_SEND_FENCE = 1 << 0,
IBV_SEND_SIGNALED = 1 << 1,
IBV_SEND_SOLICITED = 1 << 2,
IBV_SEND_INLINE = 1 << 3,
IBV_SEND_IP_CSUM = 1 << 4
};
struct ibv_data_buf {
void *addr;
size_t length;
};
struct ibv_sge {
uint64_t addr;
uint32_t length;
uint32_t lkey;
};
struct ibv_send_wr {
uint64_t wr_id;
struct ibv_send_wr *next;
struct ibv_sge *sg_list;
int num_sge;
enum ibv_wr_opcode opcode;
unsigned int send_flags;
/* When opcode is *_WITH_IMM: Immediate data in network byte order.
* When opcode is *_INV: Stores the rkey to invalidate
*/
union {
__be32 imm_data;
uint32_t invalidate_rkey;
};
union {
struct {
uint64_t remote_addr;
uint32_t rkey;
} rdma;
struct {
uint64_t remote_addr;
uint64_t compare_add;
uint64_t swap;
uint32_t rkey;
} atomic;
struct {
struct ibv_ah *ah;
uint32_t remote_qpn;
uint32_t remote_qkey;
} ud;
} wr;
union {
struct {
uint32_t remote_srqn;
} xrc;
} qp_type;
union {
struct {
struct ibv_mw *mw;
uint32_t rkey;
struct ibv_mw_bind_info bind_info;
} bind_mw;
struct {
void *hdr;
uint16_t hdr_sz;
uint16_t mss;
} tso;
};
};
struct ibv_recv_wr {
uint64_t wr_id;
struct ibv_recv_wr *next;
struct ibv_sge *sg_list;
int num_sge;
};
enum ibv_ops_wr_opcode {
IBV_WR_TAG_ADD,
IBV_WR_TAG_DEL,
IBV_WR_TAG_SYNC,
};
enum ibv_ops_flags {
IBV_OPS_SIGNALED = 1 << 0,
IBV_OPS_TM_SYNC = 1 << 1,
};
struct ibv_ops_wr {
uint64_t wr_id;
struct ibv_ops_wr *next;
enum ibv_ops_wr_opcode opcode;
int flags;
struct {
uint32_t unexpected_cnt;
uint32_t handle;
struct {
uint64_t recv_wr_id;
struct ibv_sge *sg_list;
int num_sge;
uint64_t tag;
uint64_t mask;
} add;
} tm;
};
struct ibv_mw_bind {
uint64_t wr_id;
unsigned int send_flags;
struct ibv_mw_bind_info bind_info;
};
struct ibv_srq {
struct ibv_context *context;
void *srq_context;
struct ibv_pd *pd;
uint32_t handle;
pthread_mutex_t mutex;
pthread_cond_t cond;
uint32_t events_completed;
};
/*
* Work Queue. QP can be created without internal WQs "packaged" inside it,
* this QP can be configured to use "external" WQ object as its
* receive/send queue.
* WQ associated (many to one) with Completion Queue it owns WQ properties
* (PD, WQ size etc).
* WQ of type IBV_WQT_RQ:
* - Contains receive WQEs, in this case its PD serves as scatter as well.
* - Exposes post receive function to be used to post a list of work
* requests (WRs) to its receive queue.
*/
struct ibv_wq {
struct ibv_context *context;
void *wq_context;
struct ibv_pd *pd;
struct ibv_cq *cq;
uint32_t wq_num;
uint32_t handle;
enum ibv_wq_state state;
enum ibv_wq_type wq_type;
int (*post_recv)(struct ibv_wq *current,
struct ibv_recv_wr *recv_wr,
struct ibv_recv_wr **bad_recv_wr);
pthread_mutex_t mutex;
pthread_cond_t cond;
uint32_t events_completed;
uint32_t comp_mask;
};
struct ibv_qp {
struct ibv_context *context;
void *qp_context;
struct ibv_pd *pd;
struct ibv_cq *send_cq;
struct ibv_cq *recv_cq;
struct ibv_srq *srq;
uint32_t handle;
uint32_t qp_num;
enum ibv_qp_state state;
enum ibv_qp_type qp_type;
pthread_mutex_t mutex;
pthread_cond_t cond;
uint32_t events_completed;
};
struct ibv_qp_ex {
struct ibv_qp qp_base;
uint64_t comp_mask;
uint64_t wr_id;
/* bitmask from enum ibv_send_flags */
unsigned int wr_flags;
void (*wr_atomic_cmp_swp)(struct ibv_qp_ex *qp, uint32_t rkey,
uint64_t remote_addr, uint64_t compare,
uint64_t swap);
void (*wr_atomic_fetch_add)(struct ibv_qp_ex *qp, uint32_t rkey,
uint64_t remote_addr, uint64_t add);
void (*wr_bind_mw)(struct ibv_qp_ex *qp, struct ibv_mw *mw,
uint32_t rkey,
const struct ibv_mw_bind_info *bind_info);
void (*wr_local_inv)(struct ibv_qp_ex *qp, uint32_t invalidate_rkey);
void (*wr_rdma_read)(struct ibv_qp_ex *qp, uint32_t rkey,
uint64_t remote_addr);
void (*wr_rdma_write)(struct ibv_qp_ex *qp, uint32_t rkey,
uint64_t remote_addr);
void (*wr_rdma_write_imm)(struct ibv_qp_ex *qp, uint32_t rkey,
uint64_t remote_addr, __be32 imm_data);
void (*wr_send)(struct ibv_qp_ex *qp);
void (*wr_send_imm)(struct ibv_qp_ex *qp, __be32 imm_data);
void (*wr_send_inv)(struct ibv_qp_ex *qp, uint32_t invalidate_rkey);
void (*wr_send_tso)(struct ibv_qp_ex *qp, void *hdr, uint16_t hdr_sz,
uint16_t mss);
void (*wr_set_ud_addr)(struct ibv_qp_ex *qp, struct ibv_ah *ah,
uint32_t remote_qpn, uint32_t remote_qkey);
void (*wr_set_xrc_srqn)(struct ibv_qp_ex *qp, uint32_t remote_srqn);
void (*wr_set_inline_data)(struct ibv_qp_ex *qp, void *addr,
size_t length);
void (*wr_set_inline_data_list)(struct ibv_qp_ex *qp, size_t num_buf,
const struct ibv_data_buf *buf_list);
void (*wr_set_sge)(struct ibv_qp_ex *qp, uint32_t lkey, uint64_t addr,
uint32_t length);
void (*wr_set_sge_list)(struct ibv_qp_ex *qp, size_t num_sge,
const struct ibv_sge *sg_list);
void (*wr_start)(struct ibv_qp_ex *qp);
int (*wr_complete)(struct ibv_qp_ex *qp);
void (*wr_abort)(struct ibv_qp_ex *qp);
};
struct ibv_qp_ex *ibv_qp_to_qp_ex(struct ibv_qp *qp);
static inline void ibv_wr_atomic_cmp_swp(struct ibv_qp_ex *qp, uint32_t rkey,
uint64_t remote_addr, uint64_t compare,
uint64_t swap)
{
qp->wr_atomic_cmp_swp(qp, rkey, remote_addr, compare, swap);
}
static inline void ibv_wr_atomic_fetch_add(struct ibv_qp_ex *qp, uint32_t rkey,
uint64_t remote_addr, uint64_t add)
{
qp->wr_atomic_fetch_add(qp, rkey, remote_addr, add);
}
static inline void ibv_wr_bind_mw(struct ibv_qp_ex *qp, struct ibv_mw *mw,
uint32_t rkey,
const struct ibv_mw_bind_info *bind_info)
{
qp->wr_bind_mw(qp, mw, rkey, bind_info);
}
static inline void ibv_wr_local_inv(struct ibv_qp_ex *qp,
uint32_t invalidate_rkey)
{
qp->wr_local_inv(qp, invalidate_rkey);
}
static inline void ibv_wr_rdma_read(struct ibv_qp_ex *qp, uint32_t rkey,
uint64_t remote_addr)
{
qp->wr_rdma_read(qp, rkey, remote_addr);
}
static inline void ibv_wr_rdma_write(struct ibv_qp_ex *qp, uint32_t rkey,
uint64_t remote_addr)
{
qp->wr_rdma_write(qp, rkey, remote_addr);
}
static inline void ibv_wr_rdma_write_imm(struct ibv_qp_ex *qp, uint32_t rkey,
uint64_t remote_addr, __be32 imm_data)
{
qp->wr_rdma_write_imm(qp, rkey, remote_addr, imm_data);
}
static inline void ibv_wr_send(struct ibv_qp_ex *qp)
{
qp->wr_send(qp);
}
static inline void ibv_wr_send_imm(struct ibv_qp_ex *qp, __be32 imm_data)
{
qp->wr_send_imm(qp, imm_data);
}
static inline void ibv_wr_send_inv(struct ibv_qp_ex *qp,
uint32_t invalidate_rkey)
{
qp->wr_send_inv(qp, invalidate_rkey);
}
static inline void ibv_wr_send_tso(struct ibv_qp_ex *qp, void *hdr,
uint16_t hdr_sz, uint16_t mss)
{
qp->wr_send_tso(qp, hdr, hdr_sz, mss);
}
static inline void ibv_wr_set_ud_addr(struct ibv_qp_ex *qp, struct ibv_ah *ah,
uint32_t remote_qpn, uint32_t remote_qkey)
{
qp->wr_set_ud_addr(qp, ah, remote_qpn, remote_qkey);
}
static inline void ibv_wr_set_xrc_srqn(struct ibv_qp_ex *qp,
uint32_t remote_srqn)
{
qp->wr_set_xrc_srqn(qp, remote_srqn);
}
static inline void ibv_wr_set_inline_data(struct ibv_qp_ex *qp, void *addr,
size_t length)
{
qp->wr_set_inline_data(qp, addr, length);
}
static inline void ibv_wr_set_inline_data_list(struct ibv_qp_ex *qp,
size_t num_buf,
const struct ibv_data_buf *buf_list)
{
qp->wr_set_inline_data_list(qp, num_buf, buf_list);
}
static inline void ibv_wr_set_sge(struct ibv_qp_ex *qp, uint32_t lkey,
uint64_t addr, uint32_t length)
{
qp->wr_set_sge(qp, lkey, addr, length);
}
static inline void ibv_wr_set_sge_list(struct ibv_qp_ex *qp, size_t num_sge,
const struct ibv_sge *sg_list)
{
qp->wr_set_sge_list(qp, num_sge, sg_list);
}
static inline void ibv_wr_start(struct ibv_qp_ex *qp)
{
qp->wr_start(qp);
}
static inline int ibv_wr_complete(struct ibv_qp_ex *qp)
{
return qp->wr_complete(qp);
}
static inline void ibv_wr_abort(struct ibv_qp_ex *qp)
{
qp->wr_abort(qp);
}
struct ibv_comp_channel {
struct ibv_context *context;
int fd;
int refcnt;
};
struct ibv_cq {
struct ibv_context *context;
struct ibv_comp_channel *channel;
void *cq_context;
uint32_t handle;
int cqe;
pthread_mutex_t mutex;
pthread_cond_t cond;
uint32_t comp_events_completed;
uint32_t async_events_completed;
};
struct ibv_poll_cq_attr {
uint32_t comp_mask;
};
struct ibv_wc_tm_info {
uint64_t tag; /* tag from TMH */
uint32_t priv; /* opaque user data from TMH */
};
struct ibv_cq_ex {
struct ibv_context *context;
struct ibv_comp_channel *channel;
void *cq_context;
uint32_t handle;
int cqe;
pthread_mutex_t mutex;
pthread_cond_t cond;
uint32_t comp_events_completed;
uint32_t async_events_completed;
uint32_t comp_mask;
enum ibv_wc_status status;
uint64_t wr_id;
int (*start_poll)(struct ibv_cq_ex *current,
struct ibv_poll_cq_attr *attr);
int (*next_poll)(struct ibv_cq_ex *current);
void (*end_poll)(struct ibv_cq_ex *current);
enum ibv_wc_opcode (*read_opcode)(struct ibv_cq_ex *current);
uint32_t (*read_vendor_err)(struct ibv_cq_ex *current);
uint32_t (*read_byte_len)(struct ibv_cq_ex *current);
__be32 (*read_imm_data)(struct ibv_cq_ex *current);
uint32_t (*read_qp_num)(struct ibv_cq_ex *current);
uint32_t (*read_src_qp)(struct ibv_cq_ex *current);
unsigned int (*read_wc_flags)(struct ibv_cq_ex *current);
uint32_t (*read_slid)(struct ibv_cq_ex *current);
uint8_t (*read_sl)(struct ibv_cq_ex *current);
uint8_t (*read_dlid_path_bits)(struct ibv_cq_ex *current);
uint64_t (*read_completion_ts)(struct ibv_cq_ex *current);
uint16_t (*read_cvlan)(struct ibv_cq_ex *current);
uint32_t (*read_flow_tag)(struct ibv_cq_ex *current);
void (*read_tm_info)(struct ibv_cq_ex *current,
struct ibv_wc_tm_info *tm_info);
uint64_t (*read_completion_wallclock_ns)(struct ibv_cq_ex *current);
};
static inline struct ibv_cq *ibv_cq_ex_to_cq(struct ibv_cq_ex *cq)
{
return (struct ibv_cq *)cq;
}
enum ibv_cq_attr_mask {
IBV_CQ_ATTR_MODERATE = 1 << 0,
IBV_CQ_ATTR_RESERVED = 1 << 1,
};
struct ibv_moderate_cq {
uint16_t cq_count;
uint16_t cq_period; /* in micro seconds */
};
struct ibv_modify_cq_attr {
uint32_t attr_mask;
struct ibv_moderate_cq moderate;
};
static inline int ibv_start_poll(struct ibv_cq_ex *cq,
struct ibv_poll_cq_attr *attr)
{
return cq->start_poll(cq, attr);
}
static inline int ibv_next_poll(struct ibv_cq_ex *cq)
{
return cq->next_poll(cq);
}
static inline void ibv_end_poll(struct ibv_cq_ex *cq)
{
cq->end_poll(cq);
}
static inline enum ibv_wc_opcode ibv_wc_read_opcode(struct ibv_cq_ex *cq)
{
return cq->read_opcode(cq);
}
static inline uint32_t ibv_wc_read_vendor_err(struct ibv_cq_ex *cq)
{
return cq->read_vendor_err(cq);
}
static inline uint32_t ibv_wc_read_byte_len(struct ibv_cq_ex *cq)
{
return cq->read_byte_len(cq);
}
static inline __be32 ibv_wc_read_imm_data(struct ibv_cq_ex *cq)
{
return cq->read_imm_data(cq);
}
static inline uint32_t ibv_wc_read_invalidated_rkey(struct ibv_cq_ex *cq)
{
#ifdef __CHECKER__
return (__attribute__((force)) uint32_t)cq->read_imm_data(cq);
#else
return cq->read_imm_data(cq);
#endif
}
static inline uint32_t ibv_wc_read_qp_num(struct ibv_cq_ex *cq)
{
return cq->read_qp_num(cq);
}
static inline uint32_t ibv_wc_read_src_qp(struct ibv_cq_ex *cq)
{
return cq->read_src_qp(cq);
}
static inline unsigned int ibv_wc_read_wc_flags(struct ibv_cq_ex *cq)
{
return cq->read_wc_flags(cq);
}
static inline uint32_t ibv_wc_read_slid(struct ibv_cq_ex *cq)
{
return cq->read_slid(cq);
}
static inline uint8_t ibv_wc_read_sl(struct ibv_cq_ex *cq)
{
return cq->read_sl(cq);
}
static inline uint8_t ibv_wc_read_dlid_path_bits(struct ibv_cq_ex *cq)
{
return cq->read_dlid_path_bits(cq);
}
static inline uint64_t ibv_wc_read_completion_ts(struct ibv_cq_ex *cq)
{
return cq->read_completion_ts(cq);
}
static inline uint64_t ibv_wc_read_completion_wallclock_ns(struct ibv_cq_ex *cq)
{
return cq->read_completion_wallclock_ns(cq);
}
static inline uint16_t ibv_wc_read_cvlan(struct ibv_cq_ex *cq)
{
return cq->read_cvlan(cq);
}
static inline uint32_t ibv_wc_read_flow_tag(struct ibv_cq_ex *cq)
{
return cq->read_flow_tag(cq);
}
static inline void ibv_wc_read_tm_info(struct ibv_cq_ex *cq,
struct ibv_wc_tm_info *tm_info)
{
cq->read_tm_info(cq, tm_info);
}
static inline int ibv_post_wq_recv(struct ibv_wq *wq,
struct ibv_recv_wr *recv_wr,
struct ibv_recv_wr **bad_recv_wr)
{
return wq->post_recv(wq, recv_wr, bad_recv_wr);
}
struct ibv_ah {
struct ibv_context *context;
struct ibv_pd *pd;
uint32_t handle;
};
enum ibv_flow_flags {
/* First bit is deprecated and can't be used */
IBV_FLOW_ATTR_FLAGS_DONT_TRAP = 1 << 1,
IBV_FLOW_ATTR_FLAGS_EGRESS = 1 << 2,
};
enum ibv_flow_attr_type {
/* steering according to rule specifications */
IBV_FLOW_ATTR_NORMAL = 0x0,
/* default unicast and multicast rule -
* receive all Eth traffic which isn't steered to any QP
*/
IBV_FLOW_ATTR_ALL_DEFAULT = 0x1,
/* default multicast rule -
* receive all Eth multicast traffic which isn't steered to any QP
*/
IBV_FLOW_ATTR_MC_DEFAULT = 0x2,
/* sniffer rule - receive all port traffic */
IBV_FLOW_ATTR_SNIFFER = 0x3,
};
enum ibv_flow_spec_type {
IBV_FLOW_SPEC_ETH = 0x20,
IBV_FLOW_SPEC_IPV4 = 0x30,
IBV_FLOW_SPEC_IPV6 = 0x31,
IBV_FLOW_SPEC_IPV4_EXT = 0x32,
IBV_FLOW_SPEC_ESP = 0x34,
IBV_FLOW_SPEC_TCP = 0x40,
IBV_FLOW_SPEC_UDP = 0x41,
IBV_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
IBV_FLOW_SPEC_GRE = 0x51,
IBV_FLOW_SPEC_MPLS = 0x60,
IBV_FLOW_SPEC_INNER = 0x100,
IBV_FLOW_SPEC_ACTION_TAG = 0x1000,
IBV_FLOW_SPEC_ACTION_DROP = 0x1001,
IBV_FLOW_SPEC_ACTION_HANDLE = 0x1002,
IBV_FLOW_SPEC_ACTION_COUNT = 0x1003,
};
struct ibv_flow_eth_filter {
uint8_t dst_mac[6];
uint8_t src_mac[6];
uint16_t ether_type;
/*
* same layout as 802.1q: prio 3, cfi 1, vlan id 12
*/
uint16_t vlan_tag;
};
struct ibv_flow_spec_eth {
enum ibv_flow_spec_type type;
uint16_t size;
struct ibv_flow_eth_filter val;
struct ibv_flow_eth_filter mask;
};
struct ibv_flow_ipv4_filter {
uint32_t src_ip;
uint32_t dst_ip;
};
struct ibv_flow_spec_ipv4 {
enum ibv_flow_spec_type type;
uint16_t size;
struct ibv_flow_ipv4_filter val;
struct ibv_flow_ipv4_filter mask;
};
struct ibv_flow_ipv4_ext_filter {
uint32_t src_ip;
uint32_t dst_ip;
uint8_t proto;
uint8_t tos;
uint8_t ttl;
uint8_t flags;
};
struct ibv_flow_spec_ipv4_ext {
enum ibv_flow_spec_type type;
uint16_t size;
struct ibv_flow_ipv4_ext_filter val;
struct ibv_flow_ipv4_ext_filter mask;
};
struct ibv_flow_ipv6_filter {
uint8_t src_ip[16];
uint8_t dst_ip[16];
uint32_t flow_label;
uint8_t next_hdr;
uint8_t traffic_class;
uint8_t hop_limit;
};
struct ibv_flow_spec_ipv6 {
enum ibv_flow_spec_type type;
uint16_t size;
struct ibv_flow_ipv6_filter val;
struct ibv_flow_ipv6_filter mask;
};
struct ibv_flow_esp_filter {
uint32_t spi;
uint32_t seq;
};
struct ibv_flow_spec_esp {
enum ibv_flow_spec_type type;
uint16_t size;
struct ibv_flow_esp_filter val;
struct ibv_flow_esp_filter mask;
};
struct ibv_flow_tcp_udp_filter {
uint16_t dst_port;
uint16_t src_port;
};
struct ibv_flow_spec_tcp_udp {
enum ibv_flow_spec_type type;
uint16_t size;
struct ibv_flow_tcp_udp_filter val;
struct ibv_flow_tcp_udp_filter mask;
};
struct ibv_flow_gre_filter {
/* c_ks_res0_ver field is bits 0-15 in offset 0 of a standard GRE header:
* bit 0 - checksum present bit.
* bit 1 - reserved. set to 0.
* bit 2 - key present bit.
* bit 3 - sequence number present bit.
* bits 4:12 - reserved. set to 0.
* bits 13:15 - GRE version.
*/
uint16_t c_ks_res0_ver;
uint16_t protocol;
uint32_t key;
};
struct ibv_flow_spec_gre {
enum ibv_flow_spec_type type;
uint16_t size;
struct ibv_flow_gre_filter val;
struct ibv_flow_gre_filter mask;
};
struct ibv_flow_mpls_filter {
/* The field includes the entire MPLS label:
* bits 0:19 - label value field.
* bits 20:22 - traffic class field.
* bits 23 - bottom of stack bit.
* bits 24:31 - ttl field.
*/
uint32_t label;
};
struct ibv_flow_spec_mpls {
enum ibv_flow_spec_type type;
uint16_t size;
struct ibv_flow_mpls_filter val;
struct ibv_flow_mpls_filter mask;
};
struct ibv_flow_tunnel_filter {
uint32_t tunnel_id;
};
struct ibv_flow_spec_tunnel {
enum ibv_flow_spec_type type;
uint16_t size;
struct ibv_flow_tunnel_filter val;
struct ibv_flow_tunnel_filter mask;
};
struct ibv_flow_spec_action_tag {
enum ibv_flow_spec_type type;
uint16_t size;
uint32_t tag_id;
};
struct ibv_flow_spec_action_drop {
enum ibv_flow_spec_type type;
uint16_t size;
};
struct ibv_flow_spec_action_handle {
enum ibv_flow_spec_type type;
uint16_t size;
const struct ibv_flow_action *action;
};
struct ibv_flow_spec_counter_action {
enum ibv_flow_spec_type type;
uint16_t size;
struct ibv_counters *counters;
};
struct ibv_flow_spec {
union {
struct {
enum ibv_flow_spec_type type;
uint16_t size;
} hdr;
struct ibv_flow_spec_eth eth;
struct ibv_flow_spec_ipv4 ipv4;
struct ibv_flow_spec_tcp_udp tcp_udp;
struct ibv_flow_spec_ipv4_ext ipv4_ext;
struct ibv_flow_spec_ipv6 ipv6;
struct ibv_flow_spec_esp esp;
struct ibv_flow_spec_tunnel tunnel;
struct ibv_flow_spec_gre gre;
struct ibv_flow_spec_mpls mpls;
struct ibv_flow_spec_action_tag flow_tag;
struct ibv_flow_spec_action_drop drop;
struct ibv_flow_spec_action_handle handle;
struct ibv_flow_spec_counter_action flow_count;
};
};
struct ibv_flow_attr {
uint32_t comp_mask;
enum ibv_flow_attr_type type;
uint16_t size;
uint16_t priority;
uint8_t num_of_specs;
uint8_t port;
uint32_t flags;
/* Following are the optional layers according to user request
* struct ibv_flow_spec_xxx [L2]
* struct ibv_flow_spec_yyy [L3/L4]
*/
};
struct ibv_flow {
uint32_t comp_mask;
struct ibv_context *context;
uint32_t handle;
};
struct ibv_flow_action {
struct ibv_context *context;
};
enum ibv_flow_action_esp_mask {
IBV_FLOW_ACTION_ESP_MASK_ESN = 1UL << 0,
};
struct ibv_flow_action_esp_attr {
struct ibv_flow_action_esp *esp_attr;
enum ibv_flow_action_esp_keymat keymat_proto;
uint16_t keymat_len;
void *keymat_ptr;
enum ibv_flow_action_esp_replay replay_proto;
uint16_t replay_len;
void *replay_ptr;
struct ibv_flow_action_esp_encap *esp_encap;
uint32_t comp_mask; /* Use enum ibv_flow_action_esp_mask */
uint32_t esn;
};
struct ibv_device;
struct ibv_context;
/* Obsolete, never used, do not touch */
struct _ibv_device_ops {
struct ibv_context * (*_dummy1)(struct ibv_device *device, int cmd_fd);
void (*_dummy2)(struct ibv_context *context);
};
enum {
IBV_SYSFS_NAME_MAX = 64,
IBV_SYSFS_PATH_MAX = 256
};
struct ibv_device {
struct _ibv_device_ops _ops;
enum ibv_node_type node_type;
enum ibv_transport_type transport_type;
/* Name of underlying kernel IB device, eg "mthca0" */
char name[IBV_SYSFS_NAME_MAX];
/* Name of uverbs device, eg "uverbs0" */
char dev_name[IBV_SYSFS_NAME_MAX];
/* Path to infiniband_verbs class device in sysfs */
char dev_path[IBV_SYSFS_PATH_MAX];
/* Path to infiniband class device in sysfs */
char ibdev_path[IBV_SYSFS_PATH_MAX];
};
struct _compat_ibv_port_attr;
struct ibv_context_ops {
void *(*_compat_query_device)(void);
int (*_compat_query_port)(struct ibv_context *context,
uint8_t port_num,
struct _compat_ibv_port_attr *port_attr);
void *(*_compat_alloc_pd)(void);
void *(*_compat_dealloc_pd)(void);
void *(*_compat_reg_mr)(void);
void *(*_compat_rereg_mr)(void);
void *(*_compat_dereg_mr)(void);
struct ibv_mw * (*alloc_mw)(struct ibv_pd *pd, enum ibv_mw_type type);
int (*bind_mw)(struct ibv_qp *qp, struct ibv_mw *mw,
struct ibv_mw_bind *mw_bind);
int (*dealloc_mw)(struct ibv_mw *mw);
void *(*_compat_create_cq)(void);
int (*poll_cq)(struct ibv_cq *cq, int num_entries, struct ibv_wc *wc);
int (*req_notify_cq)(struct ibv_cq *cq, int solicited_only);
void *(*_compat_cq_event)(void);
void *(*_compat_resize_cq)(void);
void *(*_compat_destroy_cq)(void);
void *(*_compat_create_srq)(void);
void *(*_compat_modify_srq)(void);
void *(*_compat_query_srq)(void);
void *(*_compat_destroy_srq)(void);
int (*post_srq_recv)(struct ibv_srq *srq,
struct ibv_recv_wr *recv_wr,
struct ibv_recv_wr **bad_recv_wr);
void *(*_compat_create_qp)(void);
void *(*_compat_query_qp)(void);
void *(*_compat_modify_qp)(void);
void *(*_compat_destroy_qp)(void);
int (*post_send)(struct ibv_qp *qp, struct ibv_send_wr *wr,
struct ibv_send_wr **bad_wr);
int (*post_recv)(struct ibv_qp *qp, struct ibv_recv_wr *wr,
struct ibv_recv_wr **bad_wr);
void *(*_compat_create_ah)(void);
void *(*_compat_destroy_ah)(void);
void *(*_compat_attach_mcast)(void);
void *(*_compat_detach_mcast)(void);
void *(*_compat_async_event)(void);
};
struct ibv_context {
struct ibv_device *device;
struct ibv_context_ops ops;
int cmd_fd;
int async_fd;
int num_comp_vectors;
pthread_mutex_t mutex;
void *abi_compat;
};
enum ibv_cq_init_attr_mask {
IBV_CQ_INIT_ATTR_MASK_FLAGS = 1 << 0,
IBV_CQ_INIT_ATTR_MASK_PD = 1 << 1,
};
enum ibv_create_cq_attr_flags {
IBV_CREATE_CQ_ATTR_SINGLE_THREADED = 1 << 0,
IBV_CREATE_CQ_ATTR_IGNORE_OVERRUN = 1 << 1,
};
struct ibv_cq_init_attr_ex {
/* Minimum number of entries required for CQ */
uint32_t cqe;
/* Consumer-supplied context returned for completion events */
void *cq_context;
/* Completion channel where completion events will be queued.
* May be NULL if completion events will not be used.
*/
struct ibv_comp_channel *channel;
/* Completion vector used to signal completion events.
* Must be < context->num_comp_vectors.
*/
uint32_t comp_vector;
/* Or'ed bit of enum ibv_create_cq_wc_flags. */
uint64_t wc_flags;
/* compatibility mask (extended verb). Or'd flags of
* enum ibv_cq_init_attr_mask
*/
uint32_t comp_mask;
/* create cq attr flags - one or more flags from
* enum ibv_create_cq_attr_flags
*/
uint32_t flags;
struct ibv_pd *parent_domain;
};
enum ibv_parent_domain_init_attr_mask {
IBV_PARENT_DOMAIN_INIT_ATTR_ALLOCATORS = 1 << 0,
IBV_PARENT_DOMAIN_INIT_ATTR_PD_CONTEXT = 1 << 1,
};
#define IBV_ALLOCATOR_USE_DEFAULT ((void *)-1)
struct ibv_parent_domain_init_attr {
struct ibv_pd *pd; /* referance to a protection domain object, can't be NULL */
struct ibv_td *td; /* referance to a thread domain object, or NULL */
uint32_t comp_mask;
void *(*alloc)(struct ibv_pd *pd, void *pd_context, size_t size,
size_t alignment, uint64_t resource_type);
void (*free)(struct ibv_pd *pd, void *pd_context, void *ptr,
uint64_t resource_type);
void *pd_context;
};
struct ibv_counters_init_attr {
uint32_t comp_mask;
};
struct ibv_counters {
struct ibv_context *context;
};
enum ibv_counter_description {
IBV_COUNTER_PACKETS,
IBV_COUNTER_BYTES,
};
struct ibv_counter_attach_attr {
enum ibv_counter_description counter_desc;
uint32_t index; /* Desired location index of the counter at the counters object */
uint32_t comp_mask;
};
enum ibv_read_counters_flags {
IBV_READ_COUNTERS_ATTR_PREFER_CACHED = 1 << 0,
};
enum ibv_values_mask {
IBV_VALUES_MASK_RAW_CLOCK = 1 << 0,
IBV_VALUES_MASK_RESERVED = 1 << 1
};
struct ibv_values_ex {
uint32_t comp_mask;
struct timespec raw_clock;
};
struct verbs_context {
/* "grows up" - new fields go here */
int (*query_port)(struct ibv_context *context, uint8_t port_num,
struct ibv_port_attr *port_attr,
size_t port_attr_len);
int (*advise_mr)(struct ibv_pd *pd,
enum ibv_advise_mr_advice advice,
uint32_t flags,
struct ibv_sge *sg_list,
uint32_t num_sges);
struct ibv_mr *(*alloc_null_mr)(struct ibv_pd *pd);
int (*read_counters)(struct ibv_counters *counters,
uint64_t *counters_value,
uint32_t ncounters,
uint32_t flags);
int (*attach_counters_point_flow)(struct ibv_counters *counters,
struct ibv_counter_attach_attr *attr,
struct ibv_flow *flow);
struct ibv_counters *(*create_counters)(struct ibv_context *context,
struct ibv_counters_init_attr *init_attr);
int (*destroy_counters)(struct ibv_counters *counters);
struct ibv_mr *(*reg_dm_mr)(struct ibv_pd *pd, struct ibv_dm *dm,
uint64_t dm_offset, size_t length,
unsigned int access);
struct ibv_dm *(*alloc_dm)(struct ibv_context *context,
struct ibv_alloc_dm_attr *attr);
int (*free_dm)(struct ibv_dm *dm);
int (*modify_flow_action_esp)(struct ibv_flow_action *action,
struct ibv_flow_action_esp_attr *attr);
int (*destroy_flow_action)(struct ibv_flow_action *action);
struct ibv_flow_action *(*create_flow_action_esp)(struct ibv_context *context,
struct ibv_flow_action_esp_attr *attr);
int (*modify_qp_rate_limit)(struct ibv_qp *qp,
struct ibv_qp_rate_limit_attr *attr);
struct ibv_pd *(*alloc_parent_domain)(struct ibv_context *context,
struct ibv_parent_domain_init_attr *attr);
int (*dealloc_td)(struct ibv_td *td);
struct ibv_td *(*alloc_td)(struct ibv_context *context, struct ibv_td_init_attr *init_attr);
int (*modify_cq)(struct ibv_cq *cq, struct ibv_modify_cq_attr *attr);
int (*post_srq_ops)(struct ibv_srq *srq,
struct ibv_ops_wr *op,
struct ibv_ops_wr **bad_op);
int (*destroy_rwq_ind_table)(struct ibv_rwq_ind_table *rwq_ind_table);
struct ibv_rwq_ind_table *(*create_rwq_ind_table)(struct ibv_context *context,
struct ibv_rwq_ind_table_init_attr *init_attr);
int (*destroy_wq)(struct ibv_wq *wq);
int (*modify_wq)(struct ibv_wq *wq, struct ibv_wq_attr *wq_attr);
struct ibv_wq * (*create_wq)(struct ibv_context *context,
struct ibv_wq_init_attr *wq_init_attr);
int (*query_rt_values)(struct ibv_context *context,
struct ibv_values_ex *values);
struct ibv_cq_ex *(*create_cq_ex)(struct ibv_context *context,
struct ibv_cq_init_attr_ex *init_attr);
struct verbs_ex_private *priv;
int (*query_device_ex)(struct ibv_context *context,
const struct ibv_query_device_ex_input *input,
struct ibv_device_attr_ex *attr,
size_t attr_size);
int (*ibv_destroy_flow) (struct ibv_flow *flow);
void (*ABI_placeholder2) (void); /* DO NOT COPY THIS GARBAGE */
struct ibv_flow * (*ibv_create_flow) (struct ibv_qp *qp,
struct ibv_flow_attr *flow_attr);
void (*ABI_placeholder1) (void); /* DO NOT COPY THIS GARBAGE */
struct ibv_qp *(*open_qp)(struct ibv_context *context,
struct ibv_qp_open_attr *attr);
struct ibv_qp *(*create_qp_ex)(struct ibv_context *context,
struct ibv_qp_init_attr_ex *qp_init_attr_ex);
int (*get_srq_num)(struct ibv_srq *srq, uint32_t *srq_num);
struct ibv_srq * (*create_srq_ex)(struct ibv_context *context,
struct ibv_srq_init_attr_ex *srq_init_attr_ex);
struct ibv_xrcd * (*open_xrcd)(struct ibv_context *context,
struct ibv_xrcd_init_attr *xrcd_init_attr);
int (*close_xrcd)(struct ibv_xrcd *xrcd);
uint64_t _ABI_placeholder3;
size_t sz; /* Must be immediately before struct ibv_context */
struct ibv_context context; /* Must be last field in the struct */
};
static inline struct verbs_context *verbs_get_ctx(struct ibv_context *ctx)
{
if (ctx->abi_compat != __VERBS_ABI_IS_EXTENDED)
return NULL;
/* open code container_of to not pollute the global namespace */
return (struct verbs_context *)(((uint8_t *)ctx) -
offsetof(struct verbs_context,
context));
}
#define verbs_get_ctx_op(ctx, op) ({ \
struct verbs_context *__vctx = verbs_get_ctx(ctx); \
(!__vctx || (__vctx->sz < sizeof(*__vctx) - offsetof(struct verbs_context, op)) || \
!__vctx->op) ? NULL : __vctx; })
/**
* ibv_get_device_list - Get list of IB devices currently available
* @num_devices: optional. if non-NULL, set to the number of devices
* returned in the array.
*
* Return a NULL-terminated array of IB devices. The array can be
* released with ibv_free_device_list().
*/
struct ibv_device **ibv_get_device_list(int *num_devices);
/*
* When statically linking the user can set RDMA_STATIC_PROVIDERS to a comma
* separated list of provider names to include in the static link, and this
* machinery will cause those providers to be included statically.
*
* Linking will fail if this is set for dynamic linking.
*/
#ifdef RDMA_STATIC_PROVIDERS
#define _RDMA_STATIC_PREFIX_(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, \
_12, _13, _14, _15, _16, _17, ...) \
&verbs_provider_##_1, &verbs_provider_##_2, &verbs_provider_##_3, \
&verbs_provider_##_4, &verbs_provider_##_5, \
&verbs_provider_##_6, &verbs_provider_##_7, \
&verbs_provider_##_8, &verbs_provider_##_9, \
&verbs_provider_##_10, &verbs_provider_##_11, \
&verbs_provider_##_12, &verbs_provider_##_13, \
&verbs_provider_##_14, &verbs_provider_##_15, \
&verbs_provider_##_16, &verbs_provider_##_17
#define _RDMA_STATIC_PREFIX(arg) \
_RDMA_STATIC_PREFIX_(arg, none, none, none, none, none, none, none, \
none, none, none, none, none, none, none, none, \
none)
struct verbs_devices_ops;
extern const struct verbs_device_ops verbs_provider_bnxt_re;
extern const struct verbs_device_ops verbs_provider_cxgb4;
extern const struct verbs_device_ops verbs_provider_efa;
extern const struct verbs_device_ops verbs_provider_hfi1verbs;
extern const struct verbs_device_ops verbs_provider_hns;
extern const struct verbs_device_ops verbs_provider_i40iw;
extern const struct verbs_device_ops verbs_provider_ipathverbs;
extern const struct verbs_device_ops verbs_provider_mlx4;
extern const struct verbs_device_ops verbs_provider_mlx5;
extern const struct verbs_device_ops verbs_provider_mthca;
extern const struct verbs_device_ops verbs_provider_ocrdma;
extern const struct verbs_device_ops verbs_provider_qedr;
extern const struct verbs_device_ops verbs_provider_rxe;
extern const struct verbs_device_ops verbs_provider_siw;
extern const struct verbs_device_ops verbs_provider_vmw_pvrdma;
extern const struct verbs_device_ops verbs_provider_all;
extern const struct verbs_device_ops verbs_provider_none;
void ibv_static_providers(void *unused, ...);
static inline struct ibv_device **__ibv_get_device_list(int *num_devices)
{
ibv_static_providers(NULL, _RDMA_STATIC_PREFIX(RDMA_STATIC_PROVIDERS),
NULL);
return ibv_get_device_list(num_devices);
}
#define ibv_get_device_list(num_devices) __ibv_get_device_list(num_devices)
#endif
/**
* ibv_free_device_list - Free list from ibv_get_device_list()
*
* Free an array of devices returned from ibv_get_device_list(). Once
* the array is freed, pointers to devices that were not opened with
* ibv_open_device() are no longer valid. Client code must open all
* devices it intends to use before calling ibv_free_device_list().
*/
void ibv_free_device_list(struct ibv_device **list);
/**
* ibv_get_device_name - Return kernel device name
*/
const char *ibv_get_device_name(struct ibv_device *device);
/**
* ibv_get_device_guid - Return device's node GUID
*/
__be64 ibv_get_device_guid(struct ibv_device *device);
/**
* ibv_open_device - Initialize device for use
*/
struct ibv_context *ibv_open_device(struct ibv_device *device);
/**
* ibv_close_device - Release device
*/
int ibv_close_device(struct ibv_context *context);
/**
* ibv_get_async_event - Get next async event
* @event: Pointer to use to return async event
*
* All async events returned by ibv_get_async_event() must eventually
* be acknowledged with ibv_ack_async_event().
*/
int ibv_get_async_event(struct ibv_context *context,
struct ibv_async_event *event);
/**
* ibv_ack_async_event - Acknowledge an async event
* @event: Event to be acknowledged.
*
* All async events which are returned by ibv_get_async_event() must
* be acknowledged. To avoid races, destroying an object (CQ, SRQ or
* QP) will wait for all affiliated events to be acknowledged, so
* there should be a one-to-one correspondence between acks and
* successful gets.
*/
void ibv_ack_async_event(struct ibv_async_event *event);
/**
* ibv_query_device - Get device properties
*/
int ibv_query_device(struct ibv_context *context,
struct ibv_device_attr *device_attr);
/**
* ibv_query_port - Get port properties
*/
int ibv_query_port(struct ibv_context *context, uint8_t port_num,
struct _compat_ibv_port_attr *port_attr);
static inline int ___ibv_query_port(struct ibv_context *context,
uint8_t port_num,
struct ibv_port_attr *port_attr)
{
struct verbs_context *vctx = verbs_get_ctx_op(context, query_port);
if (!vctx) {
int rc;
memset(port_attr, 0, sizeof(*port_attr));
rc = ibv_query_port(context, port_num,
(struct _compat_ibv_port_attr *)port_attr);
return rc;
}
return vctx->query_port(context, port_num, port_attr,
sizeof(*port_attr));
}
#define ibv_query_port(context, port_num, port_attr) \
___ibv_query_port(context, port_num, port_attr)
/**
* ibv_query_gid - Get a GID table entry
*/
int ibv_query_gid(struct ibv_context *context, uint8_t port_num,
int index, union ibv_gid *gid);
/**
* ibv_query_pkey - Get a P_Key table entry
*/
int ibv_query_pkey(struct ibv_context *context, uint8_t port_num,
int index, __be16 *pkey);
/**
* ibv_get_pkey_index - Translate a P_Key into a P_Key index
*/
int ibv_get_pkey_index(struct ibv_context *context, uint8_t port_num,
__be16 pkey);
/**
* ibv_alloc_pd - Allocate a protection domain
*/
struct ibv_pd *ibv_alloc_pd(struct ibv_context *context);
/**
* ibv_dealloc_pd - Free a protection domain
*/
int ibv_dealloc_pd(struct ibv_pd *pd);
static inline struct ibv_flow *ibv_create_flow(struct ibv_qp *qp,
struct ibv_flow_attr *flow)
{
struct verbs_context *vctx = verbs_get_ctx_op(qp->context,
ibv_create_flow);
if (!vctx) {
errno = EOPNOTSUPP;
return NULL;
}
return vctx->ibv_create_flow(qp, flow);
}
static inline int ibv_destroy_flow(struct ibv_flow *flow_id)
{
struct verbs_context *vctx = verbs_get_ctx_op(flow_id->context,
ibv_destroy_flow);
if (!vctx)
return -EOPNOTSUPP;
return vctx->ibv_destroy_flow(flow_id);
}
static inline struct ibv_flow_action *
ibv_create_flow_action_esp(struct ibv_context *ctx,
struct ibv_flow_action_esp_attr *esp)
{
struct verbs_context *vctx = verbs_get_ctx_op(ctx,
create_flow_action_esp);
if (!vctx) {
errno = EOPNOTSUPP;
return NULL;
}
return vctx->create_flow_action_esp(ctx, esp);
}
static inline int
ibv_modify_flow_action_esp(struct ibv_flow_action *action,
struct ibv_flow_action_esp_attr *esp)
{
struct verbs_context *vctx = verbs_get_ctx_op(action->context,
modify_flow_action_esp);
if (!vctx)
return EOPNOTSUPP;
return vctx->modify_flow_action_esp(action, esp);
}
static inline int ibv_destroy_flow_action(struct ibv_flow_action *action)
{
struct verbs_context *vctx = verbs_get_ctx_op(action->context,
destroy_flow_action);
if (!vctx)
return EOPNOTSUPP;
return vctx->destroy_flow_action(action);
}
/**
* ibv_open_xrcd - Open an extended connection domain
*/
static inline struct ibv_xrcd *
ibv_open_xrcd(struct ibv_context *context, struct ibv_xrcd_init_attr *xrcd_init_attr)
{
struct verbs_context *vctx = verbs_get_ctx_op(context, open_xrcd);
if (!vctx) {
errno = EOPNOTSUPP;
return NULL;
}
return vctx->open_xrcd(context, xrcd_init_attr);
}
/**
* ibv_close_xrcd - Close an extended connection domain
*/
static inline int ibv_close_xrcd(struct ibv_xrcd *xrcd)
{
struct verbs_context *vctx = verbs_get_ctx(xrcd->context);
return vctx->close_xrcd(xrcd);
}
/**
* ibv_reg_mr_iova2 - Register memory region with a virtual offset address
*
* This version will be called if ibv_reg_mr or ibv_reg_mr_iova were called
* with at least one potential access flag from the IBV_OPTIONAL_ACCESS_RANGE
* flags range The optional access flags will be masked if running over kernel
* that does not support passing them.
*/
struct ibv_mr *ibv_reg_mr_iova2(struct ibv_pd *pd, void *addr, size_t length,
uint64_t iova, unsigned int access);
/**
* ibv_reg_mr - Register a memory region
*/
struct ibv_mr *ibv_reg_mr(struct ibv_pd *pd, void *addr, size_t length,
int access);
/* use new ibv_reg_mr version only if access flags that require it are used */
__attribute__((__always_inline__)) static inline struct ibv_mr *
__ibv_reg_mr(struct ibv_pd *pd, void *addr, size_t length, unsigned int access,
int is_access_const)
{
if (is_access_const && (access & IBV_ACCESS_OPTIONAL_RANGE) == 0)
return ibv_reg_mr(pd, addr, length, access);
else
return ibv_reg_mr_iova2(pd, addr, length, (uintptr_t)addr,
access);
}
#define ibv_reg_mr(pd, addr, length, access) \
__ibv_reg_mr(pd, addr, length, access, \
__builtin_constant_p( \
((access) & IBV_ACCESS_OPTIONAL_RANGE) == 0))
/**
* ibv_reg_mr_iova - Register a memory region with a virtual offset
* address
*/
struct ibv_mr *ibv_reg_mr_iova(struct ibv_pd *pd, void *addr, size_t length,
uint64_t iova, int access);
/* use new ibv_reg_mr version only if access flags that require it are used */
__attribute__((__always_inline__)) static inline struct ibv_mr *
__ibv_reg_mr_iova(struct ibv_pd *pd, void *addr, size_t length, uint64_t iova,
unsigned int access, int is_access_const)
{
if (is_access_const && (access & IBV_ACCESS_OPTIONAL_RANGE) == 0)
return ibv_reg_mr_iova(pd, addr, length, iova, access);
else
return ibv_reg_mr_iova2(pd, addr, length, iova, access);
}
#define ibv_reg_mr_iova(pd, addr, length, iova, access) \
__ibv_reg_mr_iova(pd, addr, length, iova, access, \
__builtin_constant_p( \
((access) & IBV_ACCESS_OPTIONAL_RANGE) == 0))
enum ibv_rereg_mr_err_code {
/* Old MR is valid, invalid input */
IBV_REREG_MR_ERR_INPUT = -1,
/* Old MR is valid, failed via don't fork on new address range */
IBV_REREG_MR_ERR_DONT_FORK_NEW = -2,
/* New MR is valid, failed via do fork on old address range */
IBV_REREG_MR_ERR_DO_FORK_OLD = -3,
/* MR shouldn't be used, command error */
IBV_REREG_MR_ERR_CMD = -4,
/* MR shouldn't be used, command error, invalid fork state on new address range */
IBV_REREG_MR_ERR_CMD_AND_DO_FORK_NEW = -5,
};
/**
* ibv_rereg_mr - Re-Register a memory region
*/
int ibv_rereg_mr(struct ibv_mr *mr, int flags,
struct ibv_pd *pd, void *addr,
size_t length, int access);
/**
* ibv_dereg_mr - Deregister a memory region
*/
int ibv_dereg_mr(struct ibv_mr *mr);
/**
* ibv_alloc_mw - Allocate a memory window
*/
static inline struct ibv_mw *ibv_alloc_mw(struct ibv_pd *pd,
enum ibv_mw_type type)
{
struct ibv_mw *mw;
if (!pd->context->ops.alloc_mw) {
errno = EOPNOTSUPP;
return NULL;
}
mw = pd->context->ops.alloc_mw(pd, type);
return mw;
}
/**
* ibv_dealloc_mw - Free a memory window
*/
static inline int ibv_dealloc_mw(struct ibv_mw *mw)
{
return mw->context->ops.dealloc_mw(mw);
}
/**
* ibv_inc_rkey - Increase the 8 lsb in the given rkey
*/
static inline uint32_t ibv_inc_rkey(uint32_t rkey)
{
const uint32_t mask = 0x000000ff;
uint8_t newtag = (uint8_t)((rkey + 1) & mask);
return (rkey & ~mask) | newtag;
}
/**
* ibv_bind_mw - Bind a memory window to a region
*/
static inline int ibv_bind_mw(struct ibv_qp *qp, struct ibv_mw *mw,
struct ibv_mw_bind *mw_bind)
{
if (mw->type != IBV_MW_TYPE_1)
return EINVAL;
return mw->context->ops.bind_mw(qp, mw, mw_bind);
}
/**
* ibv_create_comp_channel - Create a completion event channel
*/
struct ibv_comp_channel *ibv_create_comp_channel(struct ibv_context *context);
/**
* ibv_destroy_comp_channel - Destroy a completion event channel
*/
int ibv_destroy_comp_channel(struct ibv_comp_channel *channel);
/**
* ibv_advise_mr - Gives advice about an address range in MRs
* @pd - protection domain of all MRs for which the advice is for
* @advice - type of advice
* @flags - advice modifiers
* @sg_list - an array of memory ranges
* @num_sge - number of elements in the array
*/
static inline int ibv_advise_mr(struct ibv_pd *pd,
enum ibv_advise_mr_advice advice,
uint32_t flags,
struct ibv_sge *sg_list,
uint32_t num_sge)
{
struct verbs_context *vctx;
vctx = verbs_get_ctx_op(pd->context, advise_mr);
if (!vctx)
return EOPNOTSUPP;
return vctx->advise_mr(pd, advice, flags, sg_list, num_sge);
}
/**
* ibv_alloc_dm - Allocate device memory
* @context - Context DM will be attached to
* @attr - Attributes to allocate the DM with
*/
static inline
struct ibv_dm *ibv_alloc_dm(struct ibv_context *context,
struct ibv_alloc_dm_attr *attr)
{
struct verbs_context *vctx = verbs_get_ctx_op(context, alloc_dm);
if (!vctx) {
errno = EOPNOTSUPP;
return NULL;
}
return vctx->alloc_dm(context, attr);
}
/**
* ibv_free_dm - Free device allocated memory
* @dm - The DM to free
*/
static inline
int ibv_free_dm(struct ibv_dm *dm)
{
struct verbs_context *vctx = verbs_get_ctx_op(dm->context, free_dm);
if (!vctx)
return EOPNOTSUPP;
return vctx->free_dm(dm);
}
/**
* ibv_memcpy_to/from_dm - copy to/from device allocated memory
* @dm - The DM to copy to/from
* @dm_offset - Offset in bytes from beginning of DM to start copy to/form
* @host_addr - Host memory address to copy to/from
* @length - Number of bytes to copy
*/
static inline
int ibv_memcpy_to_dm(struct ibv_dm *dm, uint64_t dm_offset,
const void *host_addr, size_t length)
{
return dm->memcpy_to_dm(dm, dm_offset, host_addr, length);
}
static inline
int ibv_memcpy_from_dm(void *host_addr, struct ibv_dm *dm,
uint64_t dm_offset, size_t length)
{
return dm->memcpy_from_dm(host_addr, dm, dm_offset, length);
}
/*
* ibv_alloc_null_mr - Allocate a null memory region.
* @pd - The protection domain associated with the MR.
*/
static inline
struct ibv_mr *ibv_alloc_null_mr(struct ibv_pd *pd)
{
struct verbs_context *vctx;
vctx = verbs_get_ctx_op(pd->context, alloc_null_mr);
if (!vctx) {
errno = EOPNOTSUPP;
return NULL;
}
return vctx->alloc_null_mr(pd);
}
/**
* ibv_reg_dm_mr - Register device memory as a memory region
* @pd - The PD to associated this MR with
* @dm - The DM to register
* @dm_offset - Offset in bytes from beginning of DM to start registration from
* @length - Number of bytes to register
* @access - memory region access flags
*/
static inline
struct ibv_mr *ibv_reg_dm_mr(struct ibv_pd *pd, struct ibv_dm *dm,
uint64_t dm_offset,
size_t length, unsigned int access)
{
struct verbs_context *vctx = verbs_get_ctx_op(pd->context, reg_dm_mr);
if (!vctx) {
errno = EOPNOTSUPP;
return NULL;
}
return vctx->reg_dm_mr(pd, dm, dm_offset, length, access);
}
/**
* ibv_create_cq - Create a completion queue
* @context - Context CQ will be attached to
* @cqe - Minimum number of entries required for CQ
* @cq_context - Consumer-supplied context returned for completion events
* @channel - Completion channel where completion events will be queued.
* May be NULL if completion events will not be used.
* @comp_vector - Completion vector used to signal completion events.
* Must be >= 0 and < context->num_comp_vectors.
*/
struct ibv_cq *ibv_create_cq(struct ibv_context *context, int cqe,
void *cq_context,
struct ibv_comp_channel *channel,
int comp_vector);
/**
* ibv_create_cq_ex - Create a completion queue
* @context - Context CQ will be attached to
* @cq_attr - Attributes to create the CQ with
*/
static inline
struct ibv_cq_ex *ibv_create_cq_ex(struct ibv_context *context,
struct ibv_cq_init_attr_ex *cq_attr)
{
struct verbs_context *vctx = verbs_get_ctx_op(context, create_cq_ex);
if (!vctx) {
errno = EOPNOTSUPP;
return NULL;
}
return vctx->create_cq_ex(context, cq_attr);
}
/**
* ibv_resize_cq - Modifies the capacity of the CQ.
* @cq: The CQ to resize.
* @cqe: The minimum size of the CQ.
*
* Users can examine the cq structure to determine the actual CQ size.
*/
int ibv_resize_cq(struct ibv_cq *cq, int cqe);
/**
* ibv_destroy_cq - Destroy a completion queue
*/
int ibv_destroy_cq(struct ibv_cq *cq);
/**
* ibv_get_cq_event - Read next CQ event
* @channel: Channel to get next event from.
* @cq: Used to return pointer to CQ.
* @cq_context: Used to return consumer-supplied CQ context.
*
* All completion events returned by ibv_get_cq_event() must
* eventually be acknowledged with ibv_ack_cq_events().
*/
int ibv_get_cq_event(struct ibv_comp_channel *channel,
struct ibv_cq **cq, void **cq_context);
/**
* ibv_ack_cq_events - Acknowledge CQ completion events
* @cq: CQ to acknowledge events for
* @nevents: Number of events to acknowledge.
*
* All completion events which are returned by ibv_get_cq_event() must
* be acknowledged. To avoid races, ibv_destroy_cq() will wait for
* all completion events to be acknowledged, so there should be a
* one-to-one correspondence between acks and successful gets. An
* application may accumulate multiple completion events and
* acknowledge them in a single call to ibv_ack_cq_events() by passing
* the number of events to ack in @nevents.
*/
void ibv_ack_cq_events(struct ibv_cq *cq, unsigned int nevents);
/**
* ibv_poll_cq - Poll a CQ for work completions
* @cq:the CQ being polled
* @num_entries:maximum number of completions to return
* @wc:array of at least @num_entries of &struct ibv_wc where completions
* will be returned
*
* Poll a CQ for (possibly multiple) completions. If the return value
* is < 0, an error occurred. If the return value is >= 0, it is the
* number of completions returned. If the return value is
* non-negative and strictly less than num_entries, then the CQ was
* emptied.
*/
static inline int ibv_poll_cq(struct ibv_cq *cq, int num_entries, struct ibv_wc *wc)
{
return cq->context->ops.poll_cq(cq, num_entries, wc);
}
/**
* ibv_req_notify_cq - Request completion notification on a CQ. An
* event will be added to the completion channel associated with the
* CQ when an entry is added to the CQ.
* @cq: The completion queue to request notification for.
* @solicited_only: If non-zero, an event will be generated only for
* the next solicited CQ entry. If zero, any CQ entry, solicited or
* not, will generate an event.
*/
static inline int ibv_req_notify_cq(struct ibv_cq *cq, int solicited_only)
{
return cq->context->ops.req_notify_cq(cq, solicited_only);
}
static inline int ibv_modify_cq(struct ibv_cq *cq, struct ibv_modify_cq_attr *attr)
{
struct verbs_context *vctx = verbs_get_ctx_op(cq->context, modify_cq);
if (!vctx)
return EOPNOTSUPP;
return vctx->modify_cq(cq, attr);
}
/**
* ibv_create_srq - Creates a SRQ associated with the specified protection
* domain.
* @pd: The protection domain associated with the SRQ.
* @srq_init_attr: A list of initial attributes required to create the SRQ.
*
* srq_attr->max_wr and srq_attr->max_sge are read the determine the
* requested size of the SRQ, and set to the actual values allocated
* on return. If ibv_create_srq() succeeds, then max_wr and max_sge
* will always be at least as large as the requested values.
*/
struct ibv_srq *ibv_create_srq(struct ibv_pd *pd,
struct ibv_srq_init_attr *srq_init_attr);
static inline struct ibv_srq *
ibv_create_srq_ex(struct ibv_context *context,
struct ibv_srq_init_attr_ex *srq_init_attr_ex)
{
struct verbs_context *vctx;
uint32_t mask = srq_init_attr_ex->comp_mask;
if (!(mask & ~(IBV_SRQ_INIT_ATTR_PD | IBV_SRQ_INIT_ATTR_TYPE)) &&
(mask & IBV_SRQ_INIT_ATTR_PD) &&
(!(mask & IBV_SRQ_INIT_ATTR_TYPE) ||
(srq_init_attr_ex->srq_type == IBV_SRQT_BASIC)))
return ibv_create_srq(srq_init_attr_ex->pd,
(struct ibv_srq_init_attr *)srq_init_attr_ex);
vctx = verbs_get_ctx_op(context, create_srq_ex);
if (!vctx) {
errno = EOPNOTSUPP;
return NULL;
}
return vctx->create_srq_ex(context, srq_init_attr_ex);
}
/**
* ibv_modify_srq - Modifies the attributes for the specified SRQ.
* @srq: The SRQ to modify.
* @srq_attr: On input, specifies the SRQ attributes to modify. On output,
* the current values of selected SRQ attributes are returned.
* @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
* are being modified.
*
* The mask may contain IBV_SRQ_MAX_WR to resize the SRQ and/or
* IBV_SRQ_LIMIT to set the SRQ's limit and request notification when
* the number of receives queued drops below the limit.
*/
int ibv_modify_srq(struct ibv_srq *srq,
struct ibv_srq_attr *srq_attr,
int srq_attr_mask);
/**
* ibv_query_srq - Returns the attribute list and current values for the
* specified SRQ.
* @srq: The SRQ to query.
* @srq_attr: The attributes of the specified SRQ.
*/
int ibv_query_srq(struct ibv_srq *srq, struct ibv_srq_attr *srq_attr);
static inline int ibv_get_srq_num(struct ibv_srq *srq, uint32_t *srq_num)
{
struct verbs_context *vctx = verbs_get_ctx_op(srq->context, get_srq_num);
if (!vctx)
return EOPNOTSUPP;
return vctx->get_srq_num(srq, srq_num);
}
/**
* ibv_destroy_srq - Destroys the specified SRQ.
* @srq: The SRQ to destroy.
*/
int ibv_destroy_srq(struct ibv_srq *srq);
/**
* ibv_post_srq_recv - Posts a list of work requests to the specified SRQ.
* @srq: The SRQ to post the work request on.
* @recv_wr: A list of work requests to post on the receive queue.
* @bad_recv_wr: On an immediate failure, this parameter will reference
* the work request that failed to be posted on the QP.
*/
static inline int ibv_post_srq_recv(struct ibv_srq *srq,
struct ibv_recv_wr *recv_wr,
struct ibv_recv_wr **bad_recv_wr)
{
return srq->context->ops.post_srq_recv(srq, recv_wr, bad_recv_wr);
}
static inline int ibv_post_srq_ops(struct ibv_srq *srq,
struct ibv_ops_wr *op,
struct ibv_ops_wr **bad_op)
{
struct verbs_context *vctx;
vctx = verbs_get_ctx_op(srq->context, post_srq_ops);
if (!vctx) {
*bad_op = op;
return EOPNOTSUPP;
}
return vctx->post_srq_ops(srq, op, bad_op);
}
/**
* ibv_create_qp - Create a queue pair.
*/
struct ibv_qp *ibv_create_qp(struct ibv_pd *pd,
struct ibv_qp_init_attr *qp_init_attr);
static inline struct ibv_qp *
ibv_create_qp_ex(struct ibv_context *context, struct ibv_qp_init_attr_ex *qp_init_attr_ex)
{
struct verbs_context *vctx;
uint32_t mask = qp_init_attr_ex->comp_mask;
if (mask == IBV_QP_INIT_ATTR_PD)
return ibv_create_qp(qp_init_attr_ex->pd,
(struct ibv_qp_init_attr *)qp_init_attr_ex);
vctx = verbs_get_ctx_op(context, create_qp_ex);
if (!vctx) {
errno = EOPNOTSUPP;
return NULL;
}
return vctx->create_qp_ex(context, qp_init_attr_ex);
}
/**
* ibv_alloc_td - Allocate a thread domain
*/
static inline struct ibv_td *ibv_alloc_td(struct ibv_context *context,
struct ibv_td_init_attr *init_attr)
{
struct verbs_context *vctx;
vctx = verbs_get_ctx_op(context, alloc_td);
if (!vctx) {
errno = EOPNOTSUPP;
return NULL;
}
return vctx->alloc_td(context, init_attr);
}
/**
* ibv_dealloc_td - Free a thread domain
*/
static inline int ibv_dealloc_td(struct ibv_td *td)
{
struct verbs_context *vctx;
vctx = verbs_get_ctx_op(td->context, dealloc_td);
if (!vctx)
return EOPNOTSUPP;
return vctx->dealloc_td(td);
}
/**
* ibv_alloc_parent_domain - Allocate a parent domain
*/
static inline struct ibv_pd *
ibv_alloc_parent_domain(struct ibv_context *context,
struct ibv_parent_domain_init_attr *attr)
{
struct verbs_context *vctx;
vctx = verbs_get_ctx_op(context, alloc_parent_domain);
if (!vctx) {
errno = EOPNOTSUPP;
return NULL;
}
return vctx->alloc_parent_domain(context, attr);
}
/**
* ibv_query_rt_values_ex - Get current real time @values of a device.
* @values - in/out - defines the attributes we need to query/queried.
* (Or's bits of enum ibv_values_mask on values->comp_mask field)
*/
static inline int
ibv_query_rt_values_ex(struct ibv_context *context,
struct ibv_values_ex *values)
{
struct verbs_context *vctx;
vctx = verbs_get_ctx_op(context, query_rt_values);
if (!vctx)
return EOPNOTSUPP;
return vctx->query_rt_values(context, values);
}
/**
* ibv_query_device_ex - Get extended device properties
*/
static inline int
ibv_query_device_ex(struct ibv_context *context,
const struct ibv_query_device_ex_input *input,
struct ibv_device_attr_ex *attr)
{
struct verbs_context *vctx;
int ret;
if (input && input->comp_mask)
return EINVAL;
vctx = verbs_get_ctx_op(context, query_device_ex);
if (!vctx)
goto legacy;
ret = vctx->query_device_ex(context, input, attr, sizeof(*attr));
if (ret == EOPNOTSUPP || ret == ENOSYS)
goto legacy;
return ret;
legacy:
memset(attr, 0, sizeof(*attr));
ret = ibv_query_device(context, &attr->orig_attr);
return ret;
}
/**
* ibv_open_qp - Open a shareable queue pair.
*/
static inline struct ibv_qp *
ibv_open_qp(struct ibv_context *context, struct ibv_qp_open_attr *qp_open_attr)
{
struct verbs_context *vctx = verbs_get_ctx_op(context, open_qp);
if (!vctx) {
errno = EOPNOTSUPP;
return NULL;
}
return vctx->open_qp(context, qp_open_attr);
}
/**
* ibv_modify_qp - Modify a queue pair.
*/
int ibv_modify_qp(struct ibv_qp *qp, struct ibv_qp_attr *attr,
int attr_mask);
/**
* ibv_modify_qp_rate_limit - Modify a queue pair rate limit values
* @qp - QP object to modify
* @attr - Attributes to configure the rate limiting values of the QP
*/
static inline int
ibv_modify_qp_rate_limit(struct ibv_qp *qp,
struct ibv_qp_rate_limit_attr *attr)
{
struct verbs_context *vctx;
vctx = verbs_get_ctx_op(qp->context, modify_qp_rate_limit);
if (!vctx)
return EOPNOTSUPP;
return vctx->modify_qp_rate_limit(qp, attr);
}
/**
* ibv_query_qp - Returns the attribute list and current values for the
* specified QP.
* @qp: The QP to query.
* @attr: The attributes of the specified QP.
* @attr_mask: A bit-mask used to select specific attributes to query.
* @init_attr: Additional attributes of the selected QP.
*
* The qp_attr_mask may be used to limit the query to gathering only the
* selected attributes.
*/
int ibv_query_qp(struct ibv_qp *qp, struct ibv_qp_attr *attr,
int attr_mask,
struct ibv_qp_init_attr *init_attr);
/**
* ibv_destroy_qp - Destroy a queue pair.
*/
int ibv_destroy_qp(struct ibv_qp *qp);
/*
* ibv_create_wq - Creates a WQ associated with the specified protection
* domain.
* @context: ibv_context.
* @wq_init_attr: A list of initial attributes required to create the
* WQ. If WQ creation succeeds, then the attributes are updated to
* the actual capabilities of the created WQ.
*
* wq_init_attr->max_wr and wq_init_attr->max_sge determine
* the requested size of the WQ, and set to the actual values allocated
* on return.
* If ibv_create_wq() succeeds, then max_wr and max_sge will always be
* at least as large as the requested values.
*
* Return Value
* ibv_create_wq() returns a pointer to the created WQ, or NULL if the request
* fails.
*/
static inline struct ibv_wq *ibv_create_wq(struct ibv_context *context,
struct ibv_wq_init_attr *wq_init_attr)
{
struct verbs_context *vctx = verbs_get_ctx_op(context, create_wq);
struct ibv_wq *wq;
if (!vctx) {
errno = EOPNOTSUPP;
return NULL;
}
wq = vctx->create_wq(context, wq_init_attr);
if (wq) {
wq->wq_context = wq_init_attr->wq_context;
wq->events_completed = 0;
pthread_mutex_init(&wq->mutex, NULL);
pthread_cond_init(&wq->cond, NULL);
}
return wq;
}
/*
* ibv_modify_wq - Modifies the attributes for the specified WQ.
* @wq: The WQ to modify.
* @wq_attr: On input, specifies the WQ attributes to modify.
* wq_attr->attr_mask: A bit-mask used to specify which attributes of the WQ
* are being modified.
* On output, the current values of selected WQ attributes are returned.
*
* Return Value
* ibv_modify_wq() returns 0 on success, or the value of errno
* on failure (which indicates the failure reason).
*
*/
static inline int ibv_modify_wq(struct ibv_wq *wq, struct ibv_wq_attr *wq_attr)
{
struct verbs_context *vctx = verbs_get_ctx_op(wq->context, modify_wq);
if (!vctx)
return EOPNOTSUPP;
return vctx->modify_wq(wq, wq_attr);
}
/*
* ibv_destroy_wq - Destroys the specified WQ.
* @ibv_wq: The WQ to destroy.
* Return Value
* ibv_destroy_wq() returns 0 on success, or the value of errno
* on failure (which indicates the failure reason).
*/
static inline int ibv_destroy_wq(struct ibv_wq *wq)
{
struct verbs_context *vctx;
vctx = verbs_get_ctx_op(wq->context, destroy_wq);
if (!vctx)
return EOPNOTSUPP;
return vctx->destroy_wq(wq);
}
/*
* ibv_create_rwq_ind_table - Creates a receive work queue Indirection Table
* @context: ibv_context.
* @init_attr: A list of initial attributes required to create the Indirection Table.
* Return Value
* ibv_create_rwq_ind_table returns a pointer to the created
* Indirection Table, or NULL if the request fails.
*/
static inline struct ibv_rwq_ind_table *ibv_create_rwq_ind_table(struct ibv_context *context,
struct ibv_rwq_ind_table_init_attr *init_attr)
{
struct verbs_context *vctx;
vctx = verbs_get_ctx_op(context, create_rwq_ind_table);
if (!vctx) {
errno = EOPNOTSUPP;
return NULL;
}
return vctx->create_rwq_ind_table(context, init_attr);
}
/*
* ibv_destroy_rwq_ind_table - Destroys the specified Indirection Table.
* @rwq_ind_table: The Indirection Table to destroy.
* Return Value
* ibv_destroy_rwq_ind_table() returns 0 on success, or the value of errno
* on failure (which indicates the failure reason).
*/
static inline int ibv_destroy_rwq_ind_table(struct ibv_rwq_ind_table *rwq_ind_table)
{
struct verbs_context *vctx;
vctx = verbs_get_ctx_op(rwq_ind_table->context, destroy_rwq_ind_table);
if (!vctx)
return EOPNOTSUPP;
return vctx->destroy_rwq_ind_table(rwq_ind_table);
}
/**
* ibv_post_send - Post a list of work requests to a send queue.
*
* If IBV_SEND_INLINE flag is set, the data buffers can be reused
* immediately after the call returns.
*/
static inline int ibv_post_send(struct ibv_qp *qp, struct ibv_send_wr *wr,
struct ibv_send_wr **bad_wr)
{
return qp->context->ops.post_send(qp, wr, bad_wr);
}
/**
* ibv_post_recv - Post a list of work requests to a receive queue.
*/
static inline int ibv_post_recv(struct ibv_qp *qp, struct ibv_recv_wr *wr,
struct ibv_recv_wr **bad_wr)
{
return qp->context->ops.post_recv(qp, wr, bad_wr);
}
/**
* ibv_create_ah - Create an address handle.
*/
struct ibv_ah *ibv_create_ah(struct ibv_pd *pd, struct ibv_ah_attr *attr);
/**
* ibv_init_ah_from_wc - Initializes address handle attributes from a
* work completion.
* @context: Device context on which the received message arrived.
* @port_num: Port on which the received message arrived.
* @wc: Work completion associated with the received message.
* @grh: References the received global route header. This parameter is
* ignored unless the work completion indicates that the GRH is valid.
* @ah_attr: Returned attributes that can be used when creating an address
* handle for replying to the message.
*/
int ibv_init_ah_from_wc(struct ibv_context *context, uint8_t port_num,
struct ibv_wc *wc, struct ibv_grh *grh,
struct ibv_ah_attr *ah_attr);
/**
* ibv_create_ah_from_wc - Creates an address handle associated with the
* sender of the specified work completion.
* @pd: The protection domain associated with the address handle.
* @wc: Work completion information associated with a received message.
* @grh: References the received global route header. This parameter is
* ignored unless the work completion indicates that the GRH is valid.
* @port_num: The outbound port number to associate with the address.
*
* The address handle is used to reference a local or global destination
* in all UD QP post sends.
*/
struct ibv_ah *ibv_create_ah_from_wc(struct ibv_pd *pd, struct ibv_wc *wc,
struct ibv_grh *grh, uint8_t port_num);
/**
* ibv_destroy_ah - Destroy an address handle.
*/
int ibv_destroy_ah(struct ibv_ah *ah);
/**
* ibv_attach_mcast - Attaches the specified QP to a multicast group.
* @qp: QP to attach to the multicast group. The QP must be a UD QP.
* @gid: Multicast group GID.
* @lid: Multicast group LID in host byte order.
*
* In order to route multicast packets correctly, subnet
* administration must have created the multicast group and configured
* the fabric appropriately. The port associated with the specified
* QP must also be a member of the multicast group.
*/
int ibv_attach_mcast(struct ibv_qp *qp, const union ibv_gid *gid, uint16_t lid);
/**
* ibv_detach_mcast - Detaches the specified QP from a multicast group.
* @qp: QP to detach from the multicast group.
* @gid: Multicast group GID.
* @lid: Multicast group LID in host byte order.
*/
int ibv_detach_mcast(struct ibv_qp *qp, const union ibv_gid *gid, uint16_t lid);
/**
* ibv_fork_init - Prepare data structures so that fork() may be used
* safely. If this function is not called or returns a non-zero
* status, then libibverbs data structures are not fork()-safe and the
* effect of an application calling fork() is undefined.
*/
int ibv_fork_init(void);
/**
* ibv_node_type_str - Return string describing node_type enum value
*/
const char *ibv_node_type_str(enum ibv_node_type node_type);
/**
* ibv_port_state_str - Return string describing port_state enum value
*/
const char *ibv_port_state_str(enum ibv_port_state port_state);
/**
* ibv_event_type_str - Return string describing event_type enum value
*/
const char *ibv_event_type_str(enum ibv_event_type event);
#define ETHERNET_LL_SIZE 6
int ibv_resolve_eth_l2_from_gid(struct ibv_context *context,
struct ibv_ah_attr *attr,
uint8_t eth_mac[ETHERNET_LL_SIZE],
uint16_t *vid);
static inline int ibv_is_qpt_supported(uint32_t caps, enum ibv_qp_type qpt)
{
return !!(caps & (1 << qpt));
}
static inline struct ibv_counters *ibv_create_counters(struct ibv_context *context,
struct ibv_counters_init_attr *init_attr)
{
struct verbs_context *vctx;
vctx = verbs_get_ctx_op(context, create_counters);
if (!vctx) {
errno = EOPNOTSUPP;
return NULL;
}
return vctx->create_counters(context, init_attr);
}
static inline int ibv_destroy_counters(struct ibv_counters *counters)
{
struct verbs_context *vctx;
vctx = verbs_get_ctx_op(counters->context, destroy_counters);
if (!vctx)
return EOPNOTSUPP;
return vctx->destroy_counters(counters);
}
static inline int ibv_attach_counters_point_flow(struct ibv_counters *counters,
struct ibv_counter_attach_attr *attr,
struct ibv_flow *flow)
{
struct verbs_context *vctx;
vctx = verbs_get_ctx_op(counters->context, attach_counters_point_flow);
if (!vctx)
return EOPNOTSUPP;
return vctx->attach_counters_point_flow(counters, attr, flow);
}
static inline int ibv_read_counters(struct ibv_counters *counters,
uint64_t *counters_value,
uint32_t ncounters,
uint32_t flags)
{
struct verbs_context *vctx;
vctx = verbs_get_ctx_op(counters->context, read_counters);
if (!vctx)
return EOPNOTSUPP;
return vctx->read_counters(counters, counters_value, ncounters, flags);
}
#define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000)
#define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF)
#define IB_GRH_FLOWLABEL_MASK (0x000FFFFF)
static inline uint16_t ibv_flow_label_to_udp_sport(uint32_t fl)
{
uint32_t fl_low = fl & 0x03FFF, fl_high = fl & 0xFC000;
fl_low ^= fl_high >> 14;
return (uint16_t)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN);
}
#ifdef __cplusplus
}
#endif
# undef __attribute_const
#endif /* INFINIBAND_VERBS_H */