Blob Blame History Raw
/*
* Copyright (C) 2017 Alexander Larsson <alexl@redhat.com>.
*
* SPDX-License-Identifier: LGPL-2.0+
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*
* Author: Alexander Larsson <alexl@redhat.com>.
*/
#include "config.h"
#include "ot-variant-builder.h"
#include "libglnx/libglnx.h"
/*****************************************************************************************
* This code is copied from gvariant in glib. With the following copyright:
*
* SPDX-License-Identifier: LGPL-2.0+
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*
* Copyright © 2007, 2008 Ryan Lortie
* Copyright © 2010 Codethink Limited
*****************************************************************************************/
typedef struct _GVariantTypeInfo GVariantTypeInfo;
#define G_VARIANT_TYPE_INFO_CHAR_MAYBE 'm'
#define G_VARIANT_TYPE_INFO_CHAR_ARRAY 'a'
#define G_VARIANT_TYPE_INFO_CHAR_TUPLE '('
#define G_VARIANT_TYPE_INFO_CHAR_DICT_ENTRY '{'
#define G_VARIANT_TYPE_INFO_CHAR_VARIANT 'v'
#define g_variant_type_info_get_type_char(info) \
(g_variant_type_info_get_type_string(info)[0])
struct _GVariantTypeInfo
{
gsize fixed_size;
guchar alignment;
guchar container_class;
};
typedef struct
{
GVariantTypeInfo *type_info;
gsize i, a;
gint8 b, c;
guint8 ending_type;
} GVariantMemberInfo;
#define G_VARIANT_MEMBER_ENDING_FIXED 0
#define G_VARIANT_MEMBER_ENDING_LAST 1
#define G_VARIANT_MEMBER_ENDING_OFFSET 2
typedef struct
{
GVariantTypeInfo info;
gchar *type_string;
gint ref_count;
} ContainerInfo;
typedef struct
{
ContainerInfo container;
GVariantTypeInfo *element;
} ArrayInfo;
typedef struct
{
ContainerInfo container;
GVariantMemberInfo *members;
gsize n_members;
} TupleInfo;
/* Hard-code the base types in a constant array */
static const GVariantTypeInfo g_variant_type_info_basic_table[24] = {
#define fixed_aligned(x) x, x - 1
#define not_a_type 0,
#define unaligned 0, 0
#define aligned(x) 0, x - 1
/* 'b' */ { fixed_aligned(1) }, /* boolean */
/* 'c' */ { not_a_type },
/* 'd' */ { fixed_aligned(8) }, /* double */
/* 'e' */ { not_a_type },
/* 'f' */ { not_a_type },
/* 'g' */ { unaligned }, /* signature string */
/* 'h' */ { fixed_aligned(4) }, /* file handle (int32) */
/* 'i' */ { fixed_aligned(4) }, /* int32 */
/* 'j' */ { not_a_type },
/* 'k' */ { not_a_type },
/* 'l' */ { not_a_type },
/* 'm' */ { not_a_type },
/* 'n' */ { fixed_aligned(2) }, /* int16 */
/* 'o' */ { unaligned }, /* object path string */
/* 'p' */ { not_a_type },
/* 'q' */ { fixed_aligned(2) }, /* uint16 */
/* 'r' */ { not_a_type },
/* 's' */ { unaligned }, /* string */
/* 't' */ { fixed_aligned(8) }, /* uint64 */
/* 'u' */ { fixed_aligned(4) }, /* uint32 */
/* 'v' */ { aligned(8) }, /* variant */
/* 'w' */ { not_a_type },
/* 'x' */ { fixed_aligned(8) }, /* int64 */
/* 'y' */ { fixed_aligned(1) }, /* byte */
#undef fixed_aligned
#undef not_a_type
#undef unaligned
#undef aligned
};
static GRecMutex g_variant_type_info_lock;
static GHashTable *g_variant_type_info_table;
static GVariantTypeInfo * g_variant_type_info_ref (GVariantTypeInfo *info);
static void g_variant_type_info_unref (GVariantTypeInfo *info);
static GVariantTypeInfo * g_variant_type_info_get (const GVariantType *type);
#define GV_ARRAY_INFO_CLASS 'a'
static ArrayInfo *
GV_ARRAY_INFO (GVariantTypeInfo *info)
{
return (ArrayInfo *) info;
}
static void
array_info_free (GVariantTypeInfo *info)
{
ArrayInfo *array_info;
g_assert (info->container_class == GV_ARRAY_INFO_CLASS);
array_info = (ArrayInfo *) info;
g_variant_type_info_unref (array_info->element);
g_slice_free (ArrayInfo, array_info);
}
static ContainerInfo *
array_info_new (const GVariantType *type)
{
ArrayInfo *info;
info = g_slice_new (ArrayInfo);
info->container.info.container_class = GV_ARRAY_INFO_CLASS;
info->element = g_variant_type_info_get (g_variant_type_element (type));
info->container.info.alignment = info->element->alignment;
info->container.info.fixed_size = 0;
return (ContainerInfo *) info;
}
/* == tuple == */
#define GV_TUPLE_INFO_CLASS 'r'
static TupleInfo *
GV_TUPLE_INFO (GVariantTypeInfo *info)
{
return (TupleInfo *) info;
}
static void
tuple_info_free (GVariantTypeInfo *info)
{
TupleInfo *tuple_info;
gint i;
g_assert (info->container_class == GV_TUPLE_INFO_CLASS);
tuple_info = (TupleInfo *) info;
for (i = 0; i < tuple_info->n_members; i++)
g_variant_type_info_unref (tuple_info->members[i].type_info);
g_slice_free1 (sizeof (GVariantMemberInfo) * tuple_info->n_members,
tuple_info->members);
g_slice_free (TupleInfo, tuple_info);
}
static void
tuple_allocate_members (const GVariantType *type,
GVariantMemberInfo **members,
gsize *n_members)
{
const GVariantType *item_type;
gsize i = 0;
*n_members = g_variant_type_n_items (type);
*members = g_slice_alloc (sizeof (GVariantMemberInfo) * *n_members);
item_type = g_variant_type_first (type);
while (item_type)
{
GVariantMemberInfo *member = &(*members)[i++];
member->type_info = g_variant_type_info_get (item_type);
item_type = g_variant_type_next (item_type);
if (member->type_info->fixed_size)
member->ending_type = G_VARIANT_MEMBER_ENDING_FIXED;
else if (item_type == NULL)
member->ending_type = G_VARIANT_MEMBER_ENDING_LAST;
else
member->ending_type = G_VARIANT_MEMBER_ENDING_OFFSET;
}
g_assert (i == *n_members);
}
/* this is g_variant_type_info_query for a given member of the tuple.
* before the access is done, it is ensured that the item is within
* range and %FALSE is returned if not.
*/
static gboolean
tuple_get_item (TupleInfo *info,
GVariantMemberInfo *item,
gsize *d,
gsize *e)
{
if (&info->members[info->n_members] == item)
return FALSE;
*d = item->type_info->alignment;
*e = item->type_info->fixed_size;
return TRUE;
}
/* Read the documentation for #GVariantMemberInfo in gvarianttype.h
* before attempting to understand this.
*
* This function adds one set of "magic constant" values (for one item
* in the tuple) to the table.
*
* The algorithm in tuple_generate_table() calculates values of 'a', 'b'
* and 'c' for each item, such that the procedure for finding the item
* is to start at the end of the previous variable-sized item, add 'a',
* then round up to the nearest multiple of 'b', then add 'c'.
* Note that 'b' is stored in the usual "one less than" form. ie:
*
* start = ROUND_UP(prev_end + a, (b + 1)) + c;
*
* We tweak these values a little to allow for a slightly easier
* computation and more compact storage.
*/
static void
tuple_table_append (GVariantMemberInfo **items,
gsize i,
gsize a,
gsize b,
gsize c)
{
GVariantMemberInfo *item = (*items)++;
/* We can shift multiples of the alignment size from 'c' into 'a'.
* As long as we're shifting whole multiples, it won't affect the
* result. This means that we can take the "aligned" portion off of
* 'c' and add it into 'a'.
*
* Imagine (for sake of clarity) that ROUND_10 rounds up to the
* nearest 10. It is clear that:
*
* ROUND_10(a) + c == ROUND_10(a + 10*(c / 10)) + (c % 10)
*
* ie: remove the 10s portion of 'c' and add it onto 'a'.
*
* To put some numbers on it, imagine we start with a = 34 and c = 27:
*
* ROUND_10(34) + 27 = 40 + 27 = 67
*
* but also, we can split 27 up into 20 and 7 and do this:
*
* ROUND_10(34 + 20) + 7 = ROUND_10(54) + 7 = 60 + 7 = 67
* ^^ ^
* without affecting the result. We do that here.
*
* This reduction in the size of 'c' means that we can store it in a
* gchar instead of a gsize. Due to how the structure is packed, this
* ends up saving us 'two pointer sizes' per item in each tuple when
* allocating using GSlice.
*/
a += ~b & c; /* take the "aligned" part of 'c' and add to 'a' */
c &= b; /* chop 'c' to contain only the unaligned part */
/* Finally, we made one last adjustment. Recall:
*
* start = ROUND_UP(prev_end + a, (b + 1)) + c;
*
* Forgetting the '+ c' for the moment:
*
* ROUND_UP(prev_end + a, (b + 1));
*
* we can do a "round up" operation by adding 1 less than the amount
* to round up to, then rounding down. ie:
*
* #define ROUND_UP(x, y) ROUND_DOWN(x + (y-1), y)
*
* Of course, for rounding down to a power of two, we can just mask
* out the appropriate number of low order bits:
*
* #define ROUND_DOWN(x, y) (x & ~(y - 1))
*
* Which gives us
*
* #define ROUND_UP(x, y) (x + (y - 1) & ~(y - 1))
*
* but recall that our alignment value 'b' is already "one less".
* This means that to round 'prev_end + a' up to 'b' we can just do:
*
* ((prev_end + a) + b) & ~b
*
* Associativity, and putting the 'c' back on:
*
* (prev_end + (a + b)) & ~b + c
*
* Now, since (a + b) is constant, we can just add 'b' to 'a' now and
* store that as the number to add to prev_end. Then we use ~b as the
* number to take a bitwise 'and' with. Finally, 'c' is added on.
*
* Note, however, that all the low order bits of the 'aligned' value
* are masked out and that all of the high order bits of 'c' have been
* "moved" to 'a' (in the previous step). This means that there are
* no overlapping bits in the addition -- so we can do a bitwise 'or'
* equivalently.
*
* This means that we can now compute the start address of a given
* item in the tuple using the algorithm given in the documentation
* for #GVariantMemberInfo:
*
* item_start = ((prev_end + a) & b) | c;
*/
item->i = i;
item->a = a + b;
item->b = ~b;
item->c = c;
}
static gsize
tuple_align (gsize offset,
guint alignment)
{
return offset + ((-offset) & alignment);
}
/* This function is the heart of the algorithm for calculating 'i', 'a',
* 'b' and 'c' for each item in the tuple.
*
* Imagine we want to find the start of the "i" in the type "(su(qx)ni)".
* That's a string followed by a uint32, then a tuple containing a
* uint16 and a int64, then an int16, then our "i". In order to get to
* our "i" we:
*
* Start at the end of the string, align to 4 (for the uint32), add 4.
* Align to 8, add 16 (for the tuple). Align to 2, add 2 (for the
* int16). Then we're there. It turns out that, given 3 simple rules,
* we can flatten this iteration into one addition, one alignment, then
* one more addition.
*
* The loop below plays through each item in the tuple, querying its
* alignment and fixed_size into 'd' and 'e', respectively. At all
* times the variables 'a', 'b', and 'c' are maintained such that in
* order to get to the current point, you add 'a', align to 'b' then add
* 'c'. 'b' is kept in "one less than" form. For each item, the proper
* alignment is applied to find the values of 'a', 'b' and 'c' to get to
* the start of that item. Those values are recorded into the table.
* The fixed size of the item (if applicable) is then added on.
*
* These 3 rules are how 'a', 'b' and 'c' are modified for alignment and
* addition of fixed size. They have been proven correct but are
* presented here, without proof:
*
* 1) in order to "align to 'd'" where 'd' is less than or equal to the
* largest level of alignment seen so far ('b'), you align 'c' to
* 'd'.
* 2) in order to "align to 'd'" where 'd' is greater than the largest
* level of alignment seen so far, you add 'c' aligned to 'b' to the
* value of 'a', set 'b' to 'd' (ie: increase the 'largest alignment
* seen') and reset 'c' to 0.
* 3) in order to "add 'e'", just add 'e' to 'c'.
*/
static void
tuple_generate_table (TupleInfo *info)
{
GVariantMemberInfo *items = info->members;
gsize i = -1, a = 0, b = 0, c = 0, d, e;
/* iterate over each item in the tuple.
* 'd' will be the alignment of the item (in one-less form)
* 'e' will be the fixed size (or 0 for variable-size items)
*/
while (tuple_get_item (info, items, &d, &e))
{
/* align to 'd' */
if (d <= b)
c = tuple_align (c, d); /* rule 1 */
else
a += tuple_align (c, b), b = d, c = 0; /* rule 2 */
/* the start of the item is at this point (ie: right after we
* have aligned for it). store this information in the table.
*/
tuple_table_append (&items, i, a, b, c);
/* "move past" the item by adding in its size. */
if (e == 0)
/* variable size:
*
* we'll have an offset stored to mark the end of this item, so
* just bump the offset index to give us a new starting point
* and reset all the counters.
*/
i++, a = b = c = 0;
else
/* fixed size */
c += e; /* rule 3 */
}
}
static void
tuple_set_base_info (TupleInfo *info)
{
GVariantTypeInfo *base = &info->container.info;
if (info->n_members > 0)
{
GVariantMemberInfo *m;
/* the alignment requirement of the tuple is the alignment
* requirement of its largest item.
*/
base->alignment = 0;
for (m = info->members; m < &info->members[info->n_members]; m++)
/* can find the max of a list of "one less than" powers of two
* by 'or'ing them
*/
base->alignment |= m->type_info->alignment;
m--; /* take 'm' back to the last item */
/* the structure only has a fixed size if no variable-size
* offsets are stored and the last item is fixed-sized too (since
* an offset is never stored for the last item).
*/
if (m->i == -1 && m->type_info->fixed_size)
/* in that case, the fixed size can be found by finding the
* start of the last item (in the usual way) and adding its
* fixed size.
*
* if a tuple has a fixed size then it is always a multiple of
* the alignment requirement (to make packing into arrays
* easier) so we round up to that here.
*/
base->fixed_size =
tuple_align (((m->a & m->b) | m->c) + m->type_info->fixed_size,
base->alignment);
else
/* else, the tuple is not fixed size */
base->fixed_size = 0;
}
else
{
/* the empty tuple: '()'.
*
* has a size of 1 and an no alignment requirement.
*
* It has a size of 1 (not 0) for two practical reasons:
*
* 1) So we can determine how many of them are in an array
* without dividing by zero or without other tricks.
*
* 2) Even if we had some trick to know the number of items in
* the array (as GVariant did at one time) this would open a
* potential denial of service attack: an attacker could send
* you an extremely small array (in terms of number of bytes)
* containing trillions of zero-sized items. If you iterated
* over this array you would effectively infinite-loop your
* program. By forcing a size of at least one, we bound the
* amount of computation done in response to a message to a
* reasonable function of the size of that message.
*/
base->alignment = 0;
base->fixed_size = 1;
}
}
static ContainerInfo *
tuple_info_new (const GVariantType *type)
{
TupleInfo *info;
info = g_slice_new (TupleInfo);
info->container.info.container_class = GV_TUPLE_INFO_CLASS;
tuple_allocate_members (type, &info->members, &info->n_members);
tuple_generate_table (info);
tuple_set_base_info (info);
return (ContainerInfo *) info;
}
static const GVariantMemberInfo *
g_variant_type_info_member_info (GVariantTypeInfo *info,
gsize index)
{
TupleInfo *tuple_info = GV_TUPLE_INFO (info);
if (index < tuple_info->n_members)
return &tuple_info->members[index];
return NULL;
}
static GVariantTypeInfo *
g_variant_type_info_element (GVariantTypeInfo *info)
{
return GV_ARRAY_INFO (info)->element;
}
static GVariantTypeInfo *
g_variant_type_info_ref (GVariantTypeInfo *info)
{
if (info->container_class)
{
ContainerInfo *container = (ContainerInfo *) info;
g_assert_cmpint (container->ref_count, >, 0);
g_atomic_int_inc (&container->ref_count);
}
return info;
}
static void
g_variant_type_info_unref (GVariantTypeInfo *info)
{
if (info->container_class)
{
ContainerInfo *container = (ContainerInfo *) info;
g_rec_mutex_lock (&g_variant_type_info_lock);
if (g_atomic_int_dec_and_test (&container->ref_count))
{
g_hash_table_remove (g_variant_type_info_table,
container->type_string);
if (g_hash_table_size (g_variant_type_info_table) == 0)
{
g_hash_table_unref (g_variant_type_info_table);
g_variant_type_info_table = NULL;
}
g_rec_mutex_unlock (&g_variant_type_info_lock);
g_free (container->type_string);
if (info->container_class == GV_ARRAY_INFO_CLASS)
array_info_free (info);
else if (info->container_class == GV_TUPLE_INFO_CLASS)
tuple_info_free (info);
else
g_assert_not_reached ();
}
else
g_rec_mutex_unlock (&g_variant_type_info_lock);
}
}
static GVariantTypeInfo *
g_variant_type_info_get (const GVariantType *type)
{
char type_char;
type_char = g_variant_type_peek_string (type)[0];
if (type_char == G_VARIANT_TYPE_INFO_CHAR_MAYBE ||
type_char == G_VARIANT_TYPE_INFO_CHAR_ARRAY ||
type_char == G_VARIANT_TYPE_INFO_CHAR_TUPLE ||
type_char == G_VARIANT_TYPE_INFO_CHAR_DICT_ENTRY)
{
GVariantTypeInfo *info;
gchar *type_string;
type_string = g_variant_type_dup_string (type);
g_rec_mutex_lock (&g_variant_type_info_lock);
if (g_variant_type_info_table == NULL)
g_variant_type_info_table = g_hash_table_new (g_str_hash,
g_str_equal);
info = g_hash_table_lookup (g_variant_type_info_table, type_string);
if (info == NULL)
{
ContainerInfo *container;
if (type_char == G_VARIANT_TYPE_INFO_CHAR_MAYBE ||
type_char == G_VARIANT_TYPE_INFO_CHAR_ARRAY)
{
container = array_info_new (type);
}
else /* tuple or dict entry */
{
container = tuple_info_new (type);
}
info = (GVariantTypeInfo *) container;
container->type_string = type_string;
container->ref_count = 1;
g_hash_table_insert (g_variant_type_info_table, type_string, info);
type_string = NULL;
}
else
g_variant_type_info_ref (info);
g_rec_mutex_unlock (&g_variant_type_info_lock);
g_free (type_string);
return info;
}
else
{
const GVariantTypeInfo *info;
int index;
index = type_char - 'b';
g_assert (G_N_ELEMENTS (g_variant_type_info_basic_table) == 24);
g_assert_cmpint (0, <=, index);
g_assert_cmpint (index, <, 24);
info = g_variant_type_info_basic_table + index;
return (GVariantTypeInfo *) info;
}
}
static inline void
gvs_write_unaligned_le (guchar *bytes,
gsize value,
guint size)
{
union
{
guchar bytes[GLIB_SIZEOF_SIZE_T];
gsize integer;
} tmpvalue;
tmpvalue.integer = GSIZE_TO_LE (value);
memcpy (bytes, &tmpvalue.bytes, size);
}
static guint
gvs_get_offset_size (gsize size)
{
if (size > G_MAXUINT32)
return 8;
else if (size > G_MAXUINT16)
return 4;
else if (size > G_MAXUINT8)
return 2;
else if (size > 0)
return 1;
return 0;
}
static gsize
gvs_calculate_total_size (gsize body_size,
gsize offsets)
{
if (body_size + 1 * offsets <= G_MAXUINT8)
return body_size + 1 * offsets;
if (body_size + 2 * offsets <= G_MAXUINT16)
return body_size + 2 * offsets;
if (body_size + 4 * offsets <= G_MAXUINT32)
return body_size + 4 * offsets;
return body_size + 8 * offsets;
}
/*****************************************************************************************
* End of glib code
*****************************************************************************************/
typedef struct _OtVariantBuilderInfo OtVariantBuilderInfo;
struct _OtVariantBuilderInfo {
OtVariantBuilderInfo *parent;
OtVariantBuilder *builder;
GVariantType *type;
GVariantTypeInfo *type_info;
guint64 offset;
int n_children;
GArray *child_ends;
/* type constraint explicitly specified by 'type'.
* for tuple types, this moves along as we add more items.
*/
const GVariantType *expected_type;
/* type constraint implied by previous array item.
*/
const GVariantType *prev_item_type;
GVariantType *prev_item_type_base;
/* constraints on the number of children. max = -1 for unlimited. */
gsize min_items;
gsize max_items;
/* set to '1' if all items in the container will have the same type
* (ie: maybe, array, variant) '0' if not (ie: tuple, dict entry)
*/
guint uniform_item_types : 1;
} ;
struct _OtVariantBuilder {
gint ref_count;
int fd;
/* This is only useful for the topmost builder and points to the top
* of the builder stack. Public APIs take the topmost builder reference
* and use this to find the currently active builder */
OtVariantBuilderInfo *head;
};
static OtVariantBuilderInfo *
ot_variant_builder_info_new (OtVariantBuilder *builder, const GVariantType *type)
{
OtVariantBuilderInfo *info;
info = (OtVariantBuilderInfo *) g_slice_new0 (OtVariantBuilderInfo);
g_return_val_if_fail (g_variant_type_is_container (type), NULL);
info->builder = builder;
info->type = g_variant_type_copy (type);
info->type_info = g_variant_type_info_get (type);
info->offset = 0;
info->n_children = 0;
info->child_ends = g_array_new (FALSE, TRUE, sizeof (guint64));
switch (*(const gchar *) type)
{
case G_VARIANT_CLASS_VARIANT:
info->uniform_item_types = TRUE;
info->expected_type = NULL;
info->min_items = 1;
info->max_items = 1;
break;
case G_VARIANT_CLASS_ARRAY:
info->uniform_item_types = TRUE;
info->expected_type =
g_variant_type_element (info->type);
info->min_items = 0;
info->max_items = -1;
break;
case G_VARIANT_CLASS_MAYBE:
info->uniform_item_types = TRUE;
info->expected_type =
g_variant_type_element (info->type);
info->min_items = 0;
info->max_items = 1;
break;
case G_VARIANT_CLASS_DICT_ENTRY:
info->uniform_item_types = FALSE;
info->expected_type =
g_variant_type_key (info->type);
info->min_items = 2;
info->max_items = 2;
break;
case 'r': /* G_VARIANT_TYPE_TUPLE was given */
info->uniform_item_types = FALSE;
info->expected_type = NULL;
info->min_items = 0;
info->max_items = -1;
break;
case G_VARIANT_CLASS_TUPLE: /* a definite tuple type was given */
info->expected_type =
g_variant_type_first (info->type);
info->min_items = g_variant_type_n_items (type);
info->max_items = info->min_items;
info->uniform_item_types = FALSE;
break;
default:
g_assert_not_reached ();
}
return info;
}
static void
ot_variant_builder_info_free (OtVariantBuilderInfo *info)
{
if (info->parent)
ot_variant_builder_info_free (info);
g_variant_type_free (info->type);
g_array_unref (info->child_ends);
g_free (info->prev_item_type_base);
g_slice_free (OtVariantBuilderInfo, info);
}
OtVariantBuilder *
ot_variant_builder_new (const GVariantType *type,
int fd)
{
OtVariantBuilder *builder;
builder = (OtVariantBuilder *) g_slice_new0 (OtVariantBuilder);
g_return_val_if_fail (g_variant_type_is_container (type), NULL);
builder->head = ot_variant_builder_info_new (builder, type);
builder->ref_count = 1;
builder->fd = fd;
return builder;
}
void
ot_variant_builder_unref (OtVariantBuilder *builder)
{
if (--builder->ref_count)
return;
ot_variant_builder_info_free (builder->head);
g_slice_free (OtVariantBuilder, builder);
}
OtVariantBuilder *
ot_variant_builder_ref (OtVariantBuilder *builder)
{
builder->ref_count++;
return builder;
}
/* This is called before adding a child to the container. It updates
the internal state and does the needed alignment */
static gboolean
ot_variant_builder_pre_add (OtVariantBuilderInfo *info,
const GVariantType *type,
GError **error)
{
guint alignment = 0;
if (!info->uniform_item_types)
{
/* advance our expected type pointers */
if (info->expected_type)
info->expected_type =
g_variant_type_next (info->expected_type);
if (info->prev_item_type)
info->prev_item_type =
g_variant_type_next (info->prev_item_type);
}
else
{
g_free (info->prev_item_type_base);
info->prev_item_type_base = (GVariantType *)g_strdup ((char *)type);
info->prev_item_type = info->prev_item_type_base;
}
if (g_variant_type_is_tuple (info->type) ||
g_variant_type_is_dict_entry (info->type))
{
const GVariantMemberInfo *member_info;
member_info = g_variant_type_info_member_info (info->type_info, info->n_children);
alignment = member_info->type_info->alignment;
}
else if (g_variant_type_is_array (info->type))
{
GVariantTypeInfo *element_info = g_variant_type_info_element (info->type_info);
alignment = element_info->alignment;
}
else if (g_variant_type_is_variant (info->type))
{
alignment = info->type_info->alignment;
}
else
return glnx_throw (error, "adding to type %s not supported", (char *)info->type);
while (info->offset & alignment)
{
if (glnx_loop_write (info->builder->fd, "\0", 1) < 0)
return glnx_throw_errno (error);
info->offset++;
}
return TRUE;
}
static void
ot_variant_builder_add_child_end (OtVariantBuilderInfo *info)
{
guint64 v = info->offset;
g_array_append_val (info->child_ends, v);
}
/* This is called after adding a child to the container. It
updates offset, n_children and keeps track of an offset
table if needed */
static gboolean
ot_variant_builder_post_add (OtVariantBuilderInfo *info,
const GVariantType *type,
guint64 bytes_added,
GError **error)
{
info->offset += bytes_added;
if (g_variant_type_is_tuple (info->type) ||
g_variant_type_is_dict_entry (info->type))
{
const GVariantMemberInfo *member_info;
member_info = g_variant_type_info_member_info (info->type_info, info->n_children);
if (member_info->ending_type == G_VARIANT_MEMBER_ENDING_OFFSET)
ot_variant_builder_add_child_end (info);
}
else if (g_variant_type_is_array (info->type))
{
GVariantTypeInfo *element_info = g_variant_type_info_element (info->type_info);
if (!element_info->fixed_size)
ot_variant_builder_add_child_end (info);
}
else if (g_variant_type_is_variant (info->type))
{
/* Zero separate */
if (glnx_loop_write (info->builder->fd, "\0", 1) < 0)
return glnx_throw_errno (error);
if (glnx_loop_write (info->builder->fd, (char *)type, strlen ((char *)type)) < 0)
return glnx_throw_errno (error);
info->offset += 1 + strlen ((char *)type);
}
else
return glnx_throw (error, "adding to type %s not supported", (char *)info->type);
info->n_children++;
return TRUE;
}
gboolean
ot_variant_builder_add_from_fd (OtVariantBuilder *builder,
const GVariantType *type,
int fd,
guint64 size,
GError **error)
{
OtVariantBuilderInfo *info = builder->head;
g_return_val_if_fail (info->n_children < info->max_items,
FALSE);
g_return_val_if_fail (!info->expected_type ||
g_variant_type_is_subtype_of (type,
info->expected_type),
FALSE);
g_return_val_if_fail (!info->prev_item_type ||
g_variant_type_is_subtype_of (info->prev_item_type,
type),
FALSE);
if (!ot_variant_builder_pre_add (info, type, error))
return FALSE;
if (glnx_regfile_copy_bytes (fd, builder->fd, size) < 0)
return glnx_throw_errno (error);
if (!ot_variant_builder_post_add (info, type, size, error))
return FALSE;
return TRUE;
}
gboolean
ot_variant_builder_add_value (OtVariantBuilder *builder,
GVariant *value,
GError **error)
{
OtVariantBuilderInfo *info = builder->head;
gconstpointer data;
gsize data_size;
/* We ref-sink value, just like g_variant_builder_add_value does */
g_autoptr(GVariant) keep_around_until_return G_GNUC_UNUSED = g_variant_ref_sink (value);
g_return_val_if_fail (info->n_children < info->max_items,
FALSE);
g_return_val_if_fail (!info->expected_type ||
g_variant_is_of_type (value,
info->expected_type),
FALSE);
g_return_val_if_fail (!info->prev_item_type ||
g_variant_is_of_type (value,
info->prev_item_type),
FALSE);
if (!ot_variant_builder_pre_add (info, g_variant_get_type (value), error))
return FALSE;
data = g_variant_get_data (value);
data_size = g_variant_get_size (value);
if (data)
{
if (glnx_loop_write (builder->fd, data, data_size) < 0)
return glnx_throw_errno (error);
}
if (!ot_variant_builder_post_add (info, g_variant_get_type (value), data_size, error))
return FALSE;
return TRUE;
}
gboolean
ot_variant_builder_add (OtVariantBuilder *builder,
GError **error,
const gchar *format_string,
...)
{
GVariant *variant;
va_list ap;
va_start (ap, format_string);
variant = g_variant_new_va (format_string, NULL, &ap);
va_end (ap);
return ot_variant_builder_add_value (builder, variant, error);
}
gboolean
ot_variant_builder_open (OtVariantBuilder *builder,
const GVariantType *type,
GError **error)
{
OtVariantBuilderInfo *info = builder->head;
OtVariantBuilderInfo *new_info;
g_return_val_if_fail (info->n_children < info->max_items,
FALSE);
g_return_val_if_fail (!info->expected_type ||
g_variant_type_is_subtype_of (type,
info->expected_type),
FALSE);
g_return_val_if_fail (!info->prev_item_type ||
g_variant_type_is_subtype_of (info->prev_item_type,
type),
FALSE);
if (!ot_variant_builder_pre_add (info, type, error))
return FALSE;
new_info = ot_variant_builder_info_new (builder, type);
new_info->parent = info;
/* push the prev_item_type down into the subcontainer */
if (info->prev_item_type)
{
if (!new_info->uniform_item_types)
/* tuples and dict entries */
new_info->prev_item_type =
g_variant_type_first (info->prev_item_type);
else if (!g_variant_type_is_variant (new_info->type))
/* maybes and arrays */
new_info->prev_item_type =
g_variant_type_element (info->prev_item_type);
}
builder->head = new_info;
return TRUE;
}
gboolean
ot_variant_builder_close (OtVariantBuilder *builder,
GError **error)
{
OtVariantBuilderInfo *info = builder->head;
OtVariantBuilderInfo *parent;
g_return_val_if_fail (info->parent != NULL, FALSE);
if (!ot_variant_builder_end (builder, error))
return FALSE;
parent = info->parent;
if (!ot_variant_builder_post_add (parent, info->type, info->offset, error))
return FALSE;
builder->head = parent;
info->parent = NULL;
ot_variant_builder_info_free (info);
return TRUE;
}
gboolean
ot_variant_builder_end (OtVariantBuilder *builder,
GError **error)
{
OtVariantBuilderInfo *info = builder->head;
gboolean add_offset_table = FALSE;
gboolean reverse_offset_table = FALSE;
g_return_val_if_fail (info->n_children >= info->min_items,
FALSE);
g_return_val_if_fail (!info->uniform_item_types ||
info->prev_item_type != NULL ||
g_variant_type_is_definite (info->type),
FALSE);
if (g_variant_type_is_tuple (info->type) ||
g_variant_type_is_dict_entry (info->type))
{
add_offset_table = TRUE;
reverse_offset_table = TRUE;
}
else if (g_variant_type_is_array (info->type))
{
GVariantTypeInfo *element_info = g_variant_type_info_element (info->type_info);
if (!element_info->fixed_size)
add_offset_table = TRUE;
}
else if (g_variant_type_is_variant (info->type))
{
/* noop */
}
else
return glnx_throw (error, "closing type %s not supported", (char *)info->type);
if (add_offset_table)
{
const gsize total_size = gvs_calculate_total_size (info->offset, info->child_ends->len);
const gsize offset_size = gvs_get_offset_size (total_size);
const gsize offset_table_size = total_size - info->offset;
g_autofree guchar *offset_table = g_malloc (offset_table_size);
guchar *p = offset_table;
if (reverse_offset_table)
{
for (int i = info->child_ends->len - 1; i >= 0; i--)
{
gvs_write_unaligned_le (p, g_array_index (info->child_ends, guint64, i), offset_size);
p += offset_size;
}
}
else
{
for (int i = 0; i < info->child_ends->len; i++)
{
gvs_write_unaligned_le (p, g_array_index (info->child_ends, guint64, i), offset_size);
p += offset_size;
}
}
if (glnx_loop_write (builder->fd, offset_table, offset_table_size) < 0)
return glnx_throw_errno (error);
info->offset += offset_table_size;
}
else
g_assert (info->child_ends->len == 0);
return TRUE;
}