Blob Blame History Raw
/*
 * The copyright in this software is being made available under the 2-clauses
 * BSD License, included below. This software may be subject to other third
 * party and contributor rights, including patent rights, and no such rights
 * are granted under this license.
 *
 * Copyright (c) 2001-2003, David Janssens
 * Copyright (c) 2002-2003, Yannick Verschueren
 * Copyright (c) 2003-2005, Francois Devaux and Antonin Descampe
 * Copyright (c) 2005, Herve Drolon, FreeImage Team
 * Copyright (c) 2002-2005, Communications and remote sensing Laboratory, Universite catholique de Louvain, Belgium
 * Copyrigth (c) 2006, Mónica Díez, LPI-UVA, Spain
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

/*
 *  NOTE:
 *  This is a modified version of the openjpeg dwt.c file.
 *  Average speed improvement compared to the original file (measured on
 *  my own machine, a P4 running at 3.0 GHz):
 *  5x3 wavelets about 2 times faster
 *  9x7 wavelets about 3 times faster
 *  for both, encoding and decoding.
 *
 *  The better performance is caused by doing the 1-dimensional DWT
 *  within a temporary buffer where the data can be accessed sequential
 *  for both directions, horizontal and vertical. The 2d vertical DWT was
 *  the major bottleneck in the former version.
 *
 *  I have also removed the "Add Patrick" part because it is not longer
 *  needed.
 *
 *  6/6/2005
 *  -Ive (aka Reiner Wahler)
 *  mail: ive@lilysoft.com
 */

#include "opj_includes.h"

/** @defgroup DWT DWT - Implementation of a discrete wavelet transform */
/*@{*/

/** @name Local static functions */
/*@{*/
/*unsigned int ops;*/
/**
Forward lazy transform (horizontal)
*/
static void dwt_deinterleave_h(int *a, int *b, int dn, int sn, int cas);
/**
Forward lazy transform (vertical)
*/
static void dwt_deinterleave_v(int *a, int *b, int dn, int sn, int x, int cas);
/**
Forward lazy transform (axial)
*/
static void dwt_deinterleave_z(int *a, int *b, int dn, int sn, int xy, int cas);
/**
Inverse lazy transform (horizontal)
*/
static void dwt_interleave_h(int *a, int *b, int dn, int sn, int cas);
/**
Inverse lazy transform (vertical)
*/
static void dwt_interleave_v(int *a, int *b, int dn, int sn, int x, int cas);
/**
Inverse lazy transform (axial)
*/
static void dwt_interleave_z(int *a, int *b, int dn, int sn, int xy, int cas);
/**
Forward 5-3 wavelet transform in 1-D
*/
static void dwt_encode_53(int *a, int dn, int sn, int cas);
static void dwt_encode_97(int *a, int dn, int sn, int cas);
/**
Inverse 5-3 wavelet transform in 1-D
*/
static void dwt_decode_53(int *a, int dn, int sn, int cas);
static void dwt_decode_97(int *a, int dn, int sn, int cas);
/**
Computing of wavelet transform L2 norms for arbitrary transforms
*/
static double dwt_calc_wtnorms(int orient, int level[3], int dwtid[3],
                               opj_wtfilt_t *wtfiltx, opj_wtfilt_t *wtfilty, opj_wtfilt_t *wtfiltz);
/**
Encoding of quantification stepsize
*/
static void dwt_encode_stepsize(int stepsize, int numbps,
                                opj_stepsize_t *bandno_stepsize);
/*@}*/

/*@}*/

#define S(i) a[(i)*2]
#define D(i) a[(1+(i)*2)]
#define S_(i) ((i)<0?S(0):((i)>=sn?S(sn-1):S(i)))
#define D_(i) ((i)<0?D(0):((i)>=dn?D(dn-1):D(i)))
/* new */
#define SS_(i) ((i)<0?S(0):((i)>=dn?S(dn-1):S(i)))
#define DD_(i) ((i)<0?D(0):((i)>=sn?D(sn-1):D(i)))

/* <summary>                                                              */
/* This table contains the norms of the 5-3 wavelets for different bands. */
/* </summary>                                                             */
static double dwt_norm[10][10][10][8];
static int flagnorm[10][10][10][8];

/*static const double dwt_norms[5][8][10] = {
    {//ResZ=1
        {1.000, 1.500, 2.750, 5.375, 10.68, 21.34, 42.67, 85.33, 170.7, 341.3},
        {1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9},
        {1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9},
        {.7186, .9218, 1.586, 3.043, 6.019, 12.01, 24.00, 47.97, 95.93}
    },{//ResZ=2
        {1.000, 1.8371, 2.750, 5.375, 10.68, 21.34, 42.67, 85.33, 170.7, 341.3},
        {1.2717, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9},
        {1.2717, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9},
        {.8803, .9218, 1.586, 3.043, 6.019, 12.01, 24.00, 47.97, 95.93},
        {1.2717},
        {.8803},
        {.8803},
        {.6093},
    },{ //ResZ=3
        {1.000, 1.8371, 4.5604, 5.375, 10.68, 21.34, 42.67, 85.33, 170.7, 341.3},
        {1.2717, 2.6403, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9},
        {1.2717, 2.6403, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9},
        {.8803, 1.5286, 1.586, 3.043, 6.019, 12.01, 24.00, 47.97, 95.93},
        {1.2717, 2.6403},
        {.8803, 1.5286},
        {.8803, 1.5286},
        {.6093, 0.8850},
    },{ //ResZ=4
        {1.000, 1.8371, 4.5604, 12.4614, 10.68, 21.34, 42.67, 85.33, 170.7, 341.3},
        {1.2717, 2.6403, 6.7691 , 5.703, 11.33, 22.64, 45.25, 90.48, 180.9},
        {1.2717, 2.6403, 6.7691 , 5.703, 11.33, 22.64, 45.25, 90.48, 180.9},
        {.8803, 1.5286, 3.6770 , 3.043, 6.019, 12.01, 24.00, 47.97, 95.93},
        {1.2717, 2.6403, 6.7691 },
        {.8803, 1.5286, 3.6770 },
        {.8803, 1.5286, 3.6770 },
        {.6093, 0.8850, 1.9974 },
    },{ //ResZ=5
        {1.000, 1.8371, 4.5604, 12.4614, 34.9025, 21.34, 42.67, 85.33, 170.7, 341.3},
        {1.2717, 2.6403, 6.7691 , 18.6304 , 11.33, 22.64, 45.25, 90.48, 180.9},
        {1.2717, 2.6403, 6.7691 , 18.6304, 11.33, 22.64, 45.25, 90.48, 180.9},
        {.8803, 1.5286, 3.6770 , 9.9446, 6.019, 12.01, 24.00, 47.97, 95.93},
        {1.2717, 2.6403, 6.7691, 18.6304},
        {.8803, 1.5286, 3.6770, 9.9446 },
        {.8803, 1.5286, 3.6770, 9.9446 },
        {.6093, 0.8850, 1.9974, 5.3083 },
    }
};*/

/* <summary>                                                              */
/* This table contains the norms of the 9-7 wavelets for different bands. */
/* </summary>                                                             */
/*static const double dwt_norms_real[5][8][10] = {
    {//ResZ==1
        {1.000, 1.9659, 4.1224, 8.4167, 16.9356, 33.9249, 67.8772, 135.7680, 271.5430, 543.0894},
        {1.0113, 1.9968, 4.1834, 8.5341, 17.1667, 34.3852, 68.7967, 137.6065, 275.2196},
        {1.0113, 1.9968, 4.1834, 8.5341, 17.1667, 34.3852, 68.7967, 137.6065, 275.2196},
        {0.5202, 0.9672, 2.0793, 4.3005, 8.6867, 17.4188, 34.8608, 69.7332, 139.4722}
    }, { //ResZ==2
        {1.000, 2.7564, 4.1224, 8.4167, 16.9356, 33.9249, 67.8772, 135.7680, 271.5430, 543.0894},
        {1.4179, 1.9968, 4.1834, 8.5341, 17.1667, 34.3852, 68.7967, 137.6065, 275.2196},
        {1.4179, 1.9968, 4.1834, 8.5341, 17.1667, 34.3852, 68.7967, 137.6065, 275.2196},
        {0.7294, 0.9672, 2.0793, 4.3005, 8.6867, 17.4188, 34.8608, 69.7332, 139.4722},
        {1.4179},
        {0.7294},
        {0.7294},
        {0.3752} //HHH
    },{ //ResZ==3
        {1.000, 2.7564, 8.3700, 8.4167, 16.9356, 33.9249, 67.8772, 135.7680, 271.5430, 543.0894},
        {1.4179, 4.0543, 4.1834, 8.5341, 17.1667, 34.3852, 68.7967, 137.6065, 275.2196},
        {1.4179, 4.0543, 4.1834, 8.5341, 17.1667, 34.3852, 68.7967, 137.6065, 275.2196},
        {0.7294, 1.9638, 2.0793, 4.3005, 8.6867, 17.4188, 34.8608, 69.7332, 139.4722},
        {1.4179, 4.0543},
        {0.7294, 1.9638},
        {0.7294, 1.9638},
        {0.3752, 0.9512} //HHH
    },{ //ResZ==4
        {1.000, 2.7564, 8.3700, 24.4183, 16.9356, 33.9249, 67.8772, 135.7680, 271.5430, 543.0894},
        {1.4179, 4.0543, 12.1366, 8.5341, 17.1667, 34.3852, 68.7967, 137.6065, 275.2196},
        {1.4179, 4.0543, 12.1366, 8.5341, 17.1667, 34.3852, 68.7967, 137.6065, 275.2196},
        {0.7294, 1.9638, 6.0323, 4.3005, 8.6867, 17.4188, 34.8608, 69.7332, 139.4722},
        {1.4179, 4.0543, 12.1366},
        {0.7294, 1.9638, 6.0323},
        {0.7294, 1.9638, 6.0323},
        {0.3752, 0.9512, 2.9982} //HHH
    },{ //ResZ==5
        {1.000, 2.7564, 8.3700, 24.4183, 69.6947, 33.9249, 67.8772, 135.7680, 271.5430, 543.0894},
        {1.4179, 4.0543, 12.1366, 35.1203, 17.1667, 34.3852, 68.7967, 137.6065, 275.2196},
        {1.4179, 4.0543, 12.1366, 35.1203, 17.1667, 34.3852, 68.7967, 137.6065, 275.2196},
        {0.7294, 1.9638, 6.0323, 17.6977, 8.6867, 17.4188, 34.8608, 69.7332, 139.4722},
        {1.4179, 4.0543, 12.1366, 35.1203},
        {0.7294, 1.9638, 6.0323, 17.6977},
        {0.7294, 1.9638, 6.0323, 17.6977},
        {0.3752, 0.9512, 2.9982, 8.9182} //HHH
    }
};*/

static opj_atk_t atk_info_wt[] = {
    {0, 1, J3D_ATK_WS, J3D_ATK_IRR, 0, J3D_ATK_WS, 1.230174104, 4, {0}, {0}, {0}, {1, 1, 1, 1}, {-1.586134342059924, -0.052980118572961, 0.882911075530934, 0.443506852043971}}, /* WT 9-7 IRR*/
    {1, 0, J3D_ATK_WS, J3D_ATK_REV, 0, J3D_ATK_WS, 0, 2, {0}, {1, 2}, {1, 2}, {1, 1}, {-1, 1}}, /* WT 5-3 REV*/
    {2, 0, J3D_ATK_ARB, J3D_ATK_REV, 0, J3D_ATK_CON, 0, 2, {0, 0}, {0, 1}, {0, 1}, {1, 1}, {{-1}, {1}}}, /* WT 2-2 REV*/
    {3, 0, J3D_ATK_ARB, J3D_ATK_REV, 1, J3D_ATK_CON, 0, 3, {0, 0, -1}, {0, 1, 2}, {0, 1, 2}, {1, 1, 3}, {{-1}, {1}, {1, 0, -1}}}, /* WT 2-6 REV*/
    {4, 0, J3D_ATK_ARB, J3D_ATK_REV, 1, J3D_ATK_CON, 0, 3, {0, 0, -2}, {0, 1, 6}, {0, 1, 32}, {1, 1, 5}, {{-1}, {1}, {-3, 22, 0, -22, 3}}}, /* WT 2-10 REV*/
    {5, 1, J3D_ATK_ARB, J3D_ATK_IRR, 1, J3D_ATK_WS, 1, 7, {0}, {0}, {0}, {1, 1, 2, 1, 2, 1, 3}, {{-1}, {1.58613434206}, {-0.460348209828, 0.460348209828}, {0.25}, {0.374213867768, -0.374213867768}, {-1.33613434206}, {0.29306717103, 0, -0.29306717103}}}, /* WT 6-10 IRR*/
    {
        6, 1, J3D_ATK_ARB, J3D_ATK_IRR, 0, J3D_ATK_WS, 1, 11, {0}, {0}, {0}, {1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 5}, {{-1}, {0, 99715069105}, {-1.00573127827, 1.00573127827}, {-0.27040357631}, {2.20509972343, -2.20509972343}, {0.08059995736},
            {-1.62682532350, 1.62682532350}, {0.52040357631}, {0.60404664250, -0.60404664250}, {-0.82775064841}, {-0.06615812964, 0.29402137720, 0, -0.29402137720, 0.06615812964}
        }
    }, /* WT 10-18 IRR*/
    {7, 1, J3D_ATK_WS, J3D_ATK_IRR, 0, J3D_ATK_WS, 1, 2, {0}, {0}, {0}, {1, 1}, {-0.5, 0.25}},  /* WT 5-3 IRR*/
    {8, 0, J3D_ATK_WS, J3D_ATK_REV, 0, J3D_ATK_WS, 0, 2, {0}, {4, 4}, {8, 8}, {2, 2}, {{-9, 1}, {5, -1}}} /* WT 13-7 REV*/
};
/*
==========================================================
   local functions
==========================================================
*/

/* <summary>                             */
/* Forward lazy transform (horizontal).  */
/* </summary>                            */
static void dwt_deinterleave_h(int *a, int *b, int dn, int sn, int cas)
{
    int i;
    for (i = 0; i < sn; i++) {
        b[i] = a[2 * i + cas];
    }
    for (i = 0; i < dn; i++) {
        b[sn + i] = a[(2 * i + 1 - cas)];
    }
}

/* <summary>                             */
/* Forward lazy transform (vertical).    */
/* </summary>                            */
static void dwt_deinterleave_v(int *a, int *b, int dn, int sn, int x, int cas)
{
    int i;
    for (i = 0; i < sn; i++) {
        b[i * x] = a[2 * i + cas];
    }
    for (i = 0; i < dn; i++) {
        b[(sn + i)*x] = a[(2 * i + 1 - cas)];
    }
}

/* <summary>                             */
/* Forward lazy transform (axial).       */
/* </summary>                            */
static void dwt_deinterleave_z(int *a, int *b, int dn, int sn, int xy, int cas)
{
    int i;
    for (i = 0; i < sn; i++) {
        b[i * xy] = a[2 * i + cas];
    }
    for (i = 0; i < dn; i++) {
        b[(sn + i)*xy] = a[(2 * i + 1 - cas)];
    }
}

/* <summary>                             */
/* Inverse lazy transform (horizontal).  */
/* </summary>                            */
static void dwt_interleave_h(int *a, int *b, int dn, int sn, int cas)
{
    int i;
    int *ai = NULL;
    int *bi = NULL;
    ai = a;
    bi = b + cas;
    for (i = 0; i < sn; i++) {
        *bi = *ai;
        bi += 2;
        ai++;
    }
    ai = a + sn;
    bi = b + 1 - cas;
    for (i = 0; i < dn; i++) {
        *bi = *ai;
        bi += 2;
        ai++;
    }
}

/* <summary>                             */
/* Inverse lazy transform (vertical).    */
/* </summary>                            */
static void dwt_interleave_v(int *a, int *b, int dn, int sn, int x, int cas)
{
    int i;
    int *ai = NULL;
    int *bi = NULL;
    ai = a;
    bi = b + cas;
    for (i = 0; i < sn; i++) {
        *bi = *ai;
        bi += 2;
        ai += x;
    }
    ai = a + (sn * x);
    bi = b + 1 - cas;
    for (i = 0; i < dn; i++) {
        *bi = *ai;
        bi += 2;
        ai += x;
    }
}

/* <summary>                             */
/* Inverse lazy transform (axial).  */
/* </summary>                            */
static void dwt_interleave_z(int *a, int *b, int dn, int sn, int xy, int cas)
{
    int i;
    int *ai = NULL;
    int *bi = NULL;
    ai = a;
    bi = b + cas;
    for (i = 0; i < sn; i++) {
        *bi = *ai;
        bi += 2;
        ai += xy;
    }
    ai = a + (sn * xy);
    bi = b + 1 - cas;
    for (i = 0; i < dn; i++) {
        *bi = *ai;
        bi += 2;
        ai += xy;
    }
}


/* <summary>                            */
/* Forward 5-3 or 9-7 wavelet transform in 1-D. */
/* </summary>                           */
static void dwt_encode_53(int *a, int dn, int sn, int cas)
{
    int i;

    if (!cas) {
        if ((dn > 0) || (sn > 1)) { /* NEW :  CASE ONE ELEMENT */
            /*for (i = 0; i < dn; i++) D(i) -= (S_(i) + S_(i + 1)) >> 1;*/
            /*for (i = 0; i < sn; i++) S(i) += (D_(i - 1) + D_(i) + 2) >> 2;*/
            for (i = 0; i < dn; i++) {
                D(i) -= (S_(i) + S_(i + 1)) >> 1;
                /*ops += 2;*/
            }
            for (i = 0; i < sn; i++) {
                S(i) += (D_(i - 1) + D_(i) + 2) >> 2;
                /*ops += 3;*/
            }
        }
    } else {
        /*if (!sn && dn == 1)
            S(0) *= 2;
        else {
            for (i = 0; i < dn; i++) S(i) -= (DD_(i) + DD_(i - 1)) >> 1;
            for (i = 0; i < sn; i++) D(i) += (SS_(i) + SS_(i + 1) + 2) >> 2;
        }*/
        if (!sn && dn == 1) {
            S(0) *= 2;
            /*ops++;*/
        } else {
            for (i = 0; i < dn; i++) {
                S(i) -= (DD_(i) + DD_(i - 1)) >> 1;
                /*  ops += 2;*/
            }
            for (i = 0; i < sn; i++) {
                D(i) += (SS_(i) + SS_(i + 1) + 2) >> 2;
                /*  ops += 3;*/
            }
        }
    }
}
static void dwt_encode_97(int *a, int dn, int sn, int cas)
{
    int i;

    if (!cas) {
        if ((dn > 0) || (sn > 1)) { /* NEW :  CASE ONE ELEMENT */
            for (i = 0; i < dn; i++) {
                D(i) -= fix_mul(S_(i) + S_(i + 1), 12993);
            }
            for (i = 0; i < sn; i++) {
                S(i) -= fix_mul(D_(i - 1) + D_(i), 434);
            }
            for (i = 0; i < dn; i++) {
                D(i) += fix_mul(S_(i) + S_(i + 1), 7233);
            }
            for (i = 0; i < sn; i++) {
                S(i) += fix_mul(D_(i - 1) + D_(i), 3633);
            }
            for (i = 0; i < dn; i++) {
                D(i) = fix_mul(D(i), 5038);    /*5038 */
            }
            for (i = 0; i < sn; i++) {
                S(i) = fix_mul(S(i), 6659);    /*6660 */
            }
        }
    } else {
        if ((sn > 0) || (dn > 1)) { /* NEW :  CASE ONE ELEMENT */
            for (i = 0; i < dn; i++) {
                S(i) -= fix_mul(DD_(i) + DD_(i - 1), 12993);
            }
            for (i = 0; i < sn; i++) {
                D(i) -= fix_mul(SS_(i) + SS_(i + 1), 434);
            }
            for (i = 0; i < dn; i++) {
                S(i) += fix_mul(DD_(i) + DD_(i - 1), 7233);
            }
            for (i = 0; i < sn; i++) {
                D(i) += fix_mul(SS_(i) + SS_(i + 1), 3633);
            }
            for (i = 0; i < dn; i++) {
                S(i) = fix_mul(S(i), 5038);    /*5038 */
            }
            for (i = 0; i < sn; i++) {
                D(i) = fix_mul(D(i), 6659);    /*6660 */
            }
        }
    }
}
/* <summary>                            */
/* Inverse 5-3 or 9-7 wavelet transform in 1-D. */
/* </summary>                           */
static void dwt_decode_53(int *a, int dn, int sn, int cas)
{
    int i;
    if (!cas) {
        if ((dn > 0) || (sn > 1)) { /* NEW :  CASE ONE ELEMENT */
            for (i = 0; i < sn; i++) {
                S(i) -= (D_(i - 1) + D_(i) + 2) >> 2;
            }
            for (i = 0; i < dn; i++) {
                D(i) += (S_(i) + S_(i + 1)) >> 1;
            }
        }
    } else {
        if (!sn  && dn == 1) {        /* NEW :  CASE ONE ELEMENT */
            S(0) /= 2;
        } else {
            for (i = 0; i < sn; i++) {
                D(i) -= (SS_(i) + SS_(i + 1) + 2) >> 2;
            }
            for (i = 0; i < dn; i++) {
                S(i) += (DD_(i) + DD_(i - 1)) >> 1;
            }
        }
    }
}
static void dwt_decode_97(int *a, int dn, int sn, int cas)
{
    int i;

    if (!cas) {
        if ((dn > 0) || (sn > 1)) { /* NEW :  CASE ONE ELEMENT */
            for (i = 0; i < sn; i++) {
                S(i) = fix_mul(S(i), 10078);    /* 10076 */
            }
            for (i = 0; i < dn; i++) {
                D(i) = fix_mul(D(i), 13318);    /* 13320 */
            }
            for (i = 0; i < sn; i++) {
                S(i) -= fix_mul(D_(i - 1) + D_(i), 3633);
            }
            for (i = 0; i < dn; i++) {
                D(i) -= fix_mul(S_(i) + S_(i + 1), 7233);
            }
            for (i = 0; i < sn; i++) {
                S(i) += fix_mul(D_(i - 1) + D_(i), 434);
            }
            for (i = 0; i < dn; i++) {
                D(i) += fix_mul(S_(i) + S_(i + 1), 12994);    /* 12993 */
            }
        }
    } else {
        if ((sn > 0) || (dn > 1)) { /* NEW :  CASE ONE ELEMENT */
            for (i = 0; i < sn; i++) {
                D(i) = fix_mul(D(i), 10078);    /* 10076 */
            }
            for (i = 0; i < dn; i++) {
                S(i) = fix_mul(S(i), 13318);    /* 13320 */
            }
            for (i = 0; i < sn; i++) {
                D(i) -= fix_mul(SS_(i) + SS_(i + 1), 3633);
            }
            for (i = 0; i < dn; i++) {
                S(i) -= fix_mul(DD_(i) + DD_(i - 1), 7233);
            }
            for (i = 0; i < sn; i++) {
                D(i) += fix_mul(SS_(i) + SS_(i + 1), 434);
            }
            for (i = 0; i < dn; i++) {
                S(i) += fix_mul(DD_(i) + DD_(i - 1), 12994);    /* 12993 */
            }
        }
    }
}


/* <summary>                */
/* Get norm of arbitrary wavelet transform. */
/* </summary>               */
static int upandconv(double *nXPS, double *LPS, int lenXPS, int lenLPS)
{
    /* Perform the convolution of the vectors. */
    int i, j;
    double *tmp = (double *)opj_malloc(2 * lenXPS * sizeof(double));
    /*Upsample*/
    memset(tmp, 0, 2 * lenXPS * sizeof(double));
    for (i = 0; i < lenXPS; i++) {
        *(tmp + 2 * i) = *(nXPS + i);
        *(nXPS + i) = 0;
    }
    /*Convolution*/
    for (i = 0; i < 2 * lenXPS; i++) {
        for (j = 0; j < lenLPS; j++) {
            *(nXPS + i + j) = *(nXPS + i + j) + *(tmp + i) * *(LPS + j);
            /*fprintf(stdout,"*(tmp + %d) * *(LPS + %d) = %f * %f \n",i,j,*(tmp + i),*(LPS + j));*/
        }
    }
    free(tmp);
    return 2 * lenXPS + lenLPS - 1;
}

static double dwt_calc_wtnorms(int orient, int level[3], int dwtid[3],
                               opj_wtfilt_t *wtfiltX,  opj_wtfilt_t *wtfiltY,  opj_wtfilt_t *wtfiltZ)
{
    int i, lenLPS, lenHPS;
    double  Lx = 0, Ly = 0, Hx = 0, Hy = 0, Lz = 0, Hz = 0;
    double *nLPSx, *nHPSx, *nLPSy, *nHPSy, *nLPSz, *nHPSz;
    int levelx, levely, levelz;

    levelx = (orient == 0) ? level[0] - 1 : level[0];
    levely = (orient == 0) ? level[1] - 1 : level[1];
    levelz = (orient == 0) ? level[2] - 1 : level[2];

    /*X axis*/
    lenLPS = wtfiltX->lenLPS;
    lenHPS = wtfiltX->lenHPS;
    for (i = 0; i < levelx; i++) {
        lenLPS *= 2;
        lenHPS *= 2;
        lenLPS += wtfiltX->lenLPS - 1;
        lenHPS += wtfiltX->lenLPS - 1;
    }
    nLPSx = (double *)opj_malloc(lenLPS * sizeof(double));
    nHPSx = (double *)opj_malloc(lenHPS * sizeof(double));

    memcpy(nLPSx, wtfiltX->LPS, wtfiltX->lenLPS * sizeof(double));
    memcpy(nHPSx, wtfiltX->HPS, wtfiltX->lenHPS * sizeof(double));
    lenLPS = wtfiltX->lenLPS;
    lenHPS = wtfiltX->lenHPS;
    for (i = 0; i < levelx; i++) {
        lenLPS = upandconv(nLPSx, wtfiltX->LPS, lenLPS, wtfiltX->lenLPS);
        lenHPS = upandconv(nHPSx, wtfiltX->LPS, lenHPS, wtfiltX->lenLPS);
    }
    for (i = 0; i < lenLPS; i++) {
        Lx += nLPSx[i] * nLPSx[i];
    }
    for (i = 0; i < lenHPS; i++) {
        Hx += nHPSx[i] * nHPSx[i];
    }
    Lx = sqrt(Lx);
    Hx = sqrt(Hx);
    free(nLPSx);
    free(nHPSx);

    /*Y axis*/
    if (dwtid[0] != dwtid[1] || level[0] != level[1]) {
        lenLPS = wtfiltY->lenLPS;
        lenHPS = wtfiltY->lenHPS;
        for (i = 0; i < levely; i++) {
            lenLPS *= 2;
            lenHPS *= 2;
            lenLPS += wtfiltY->lenLPS - 1;
            lenHPS += wtfiltY->lenLPS - 1;
        }
        nLPSy = (double *)opj_malloc(lenLPS * sizeof(double));
        nHPSy = (double *)opj_malloc(lenHPS * sizeof(double));

        memcpy(nLPSy, wtfiltY->LPS, wtfiltY->lenLPS * sizeof(double));
        memcpy(nHPSy, wtfiltY->HPS, wtfiltY->lenHPS * sizeof(double));
        lenLPS = wtfiltY->lenLPS;
        lenHPS = wtfiltY->lenHPS;
        for (i = 0; i < levely; i++) {
            lenLPS = upandconv(nLPSy, wtfiltY->LPS, lenLPS, wtfiltY->lenLPS);
            lenHPS = upandconv(nHPSy, wtfiltY->LPS, lenHPS, wtfiltY->lenLPS);
        }
        for (i = 0; i < lenLPS; i++) {
            Ly += nLPSy[i] * nLPSy[i];
        }
        for (i = 0; i < lenHPS; i++) {
            Hy += nHPSy[i] * nHPSy[i];
        }
        Ly = sqrt(Ly);
        Hy = sqrt(Hy);
        free(nLPSy);
        free(nHPSy);
    } else {
        Ly = Lx;
        Hy = Hx;
    }
    /*Z axis*/
    if (levelz >= 0) {
        lenLPS = wtfiltZ->lenLPS;
        lenHPS = wtfiltZ->lenHPS;
        for (i = 0; i < levelz; i++) {
            lenLPS *= 2;
            lenHPS *= 2;
            lenLPS += wtfiltZ->lenLPS - 1;
            lenHPS += wtfiltZ->lenLPS - 1;
        }
        nLPSz = (double *)opj_malloc(lenLPS * sizeof(double));
        nHPSz = (double *)opj_malloc(lenHPS * sizeof(double));

        memcpy(nLPSz, wtfiltZ->LPS, wtfiltZ->lenLPS * sizeof(double));
        memcpy(nHPSz, wtfiltZ->HPS, wtfiltZ->lenHPS * sizeof(double));
        lenLPS = wtfiltZ->lenLPS;
        lenHPS = wtfiltZ->lenHPS;
        for (i = 0; i < levelz; i++) {
            lenLPS = upandconv(nLPSz, wtfiltZ->LPS, lenLPS, wtfiltZ->lenLPS);
            lenHPS = upandconv(nHPSz, wtfiltZ->LPS, lenHPS, wtfiltZ->lenLPS);
        }
        for (i = 0; i < lenLPS; i++) {
            Lz += nLPSz[i] * nLPSz[i];
        }
        for (i = 0; i < lenHPS; i++) {
            Hz += nHPSz[i] * nHPSz[i];
        }
        Lz = sqrt(Lz);
        Hz = sqrt(Hz);
        free(nLPSz);
        free(nHPSz);
    } else {
        Lz = 1.0;
        Hz = 1.0;
    }
    switch (orient) {
    case 0:
        return Lx * Ly * Lz;
    case 1:
        return Lx * Hy * Lz;
    case 2:
        return Hx * Ly * Lz;
    case 3:
        return Hx * Hy * Lz;
    case 4:
        return Lx * Ly * Hz;
    case 5:
        return Lx * Hy * Hz;
    case 6:
        return Hx * Ly * Hz;
    case 7:
        return Hx * Hy * Hz;
    default:
        return -1;
    }

}
static void dwt_getwtfilters(opj_wtfilt_t *wtfilt, int dwtid)
{
    if (dwtid == 0) { /*DWT 9-7 */
        wtfilt->lenLPS = 7;
        wtfilt->lenHPS = 9;
        wtfilt->LPS = (double *)opj_malloc(wtfilt->lenLPS * sizeof(double));
        wtfilt->HPS = (double *)opj_malloc(wtfilt->lenHPS * sizeof(double));
        wtfilt->LPS[0] = -0.091271763114;
        wtfilt->HPS[0] = 0.026748757411;
        wtfilt->LPS[1] = -0.057543526228;
        wtfilt->HPS[1] = 0.016864118443;
        wtfilt->LPS[2] = 0.591271763114;
        wtfilt->HPS[2] = -0.078223266529;
        wtfilt->LPS[3] = 1.115087052457;
        wtfilt->HPS[3] = -0.266864118443;
        wtfilt->LPS[4] = 0.591271763114;
        wtfilt->HPS[4] = 0.602949018236;
        wtfilt->LPS[5] = -0.057543526228;
        wtfilt->HPS[5] = -0.266864118443;
        wtfilt->LPS[6] = -0.091271763114;
        wtfilt->HPS[6] = -0.078223266529;
        wtfilt->HPS[7] = 0.016864118443;
        wtfilt->HPS[8] = 0.026748757411;
    } else if (dwtid == 1) { /*DWT 5-3 */
        wtfilt->lenLPS = 3;
        wtfilt->lenHPS = 5;
        wtfilt->LPS = (double *)opj_malloc(wtfilt->lenLPS * sizeof(double));
        wtfilt->HPS = (double *)opj_malloc(wtfilt->lenHPS * sizeof(double));
        wtfilt->LPS[0] = 0.5;
        wtfilt->HPS[0] = -0.125;
        wtfilt->LPS[1] = 1;
        wtfilt->HPS[1] = -0.25;
        wtfilt->LPS[2] = 0.5;
        wtfilt->HPS[2] = 0.75;
        wtfilt->HPS[3] = -0.25;
        wtfilt->HPS[4] = -0.125;
    } else {
        fprintf(stdout,
                "[ERROR] Sorry, this wavelet hasn't been implemented so far ... Try another one :-)\n");
        exit(1);
    }
}
/* <summary>                            */
/* Encoding of quantization stepsize for each subband. */
/* </summary>                           */
static void dwt_encode_stepsize(int stepsize, int numbps,
                                opj_stepsize_t *bandno_stepsize)
{
    int p, n;
    p = int_floorlog2(stepsize) - 13;
    n = 11 - int_floorlog2(stepsize);
    bandno_stepsize->mant = (n < 0 ? stepsize >> -n : stepsize << n) & 0x7ff;
    bandno_stepsize->expn = numbps - p;
    /*if J3D_CCP_QNTSTY_NOQNT --> stepsize = 8192.0 --> p = 0, n = -2 --> mant = 0; expn = (prec+gain)*/
    /*else --> bandno_stepsize = (1<<(numbps - expn)) + (1<<(numbps - expn - 11)) * Ub*/
}

/*
==========================================================
   DWT interface
==========================================================
*/
/* <summary>                            */
/* Forward 5-3 wavelet transform in 3-D. */
/* </summary>                           */
void dwt_encode(opj_tcd_tilecomp_t * tilec, int dwtid[3])
{
    int i, j, k;
    int x, y, z;
    int w, h, wh, d;
    int level, levelx, levely, levelz, diff;
    int *a = NULL;
    int *aj = NULL;
    int *bj = NULL;
    int *cj = NULL;

    /*ops = 0;*/

    memset(flagnorm, 0, 8000 * sizeof(int));
    w = tilec->x1 - tilec->x0;
    h = tilec->y1 - tilec->y0;
    d = tilec->z1 - tilec->z0;
    wh = w * h;
    levelx = tilec->numresolution[0] - 1;
    levely = tilec->numresolution[1] - 1;
    levelz = tilec->numresolution[2] - 1;
    level = int_max(levelx, int_max(levely, levelz));
    diff = tilec->numresolution[0] - tilec->numresolution[2];

    a = tilec->data;

    for (x = 0, y = 0, z = 0; (x < levelx) && (y < levely); x++, y++, z++) {
        int rw;         /* width of the resolution level computed                                                           */
        int rh;         /* heigth of the resolution level computed                                                          */
        int rd;         /* depth of the resolution level computed                                                          */
        int rw1;        /* width of the resolution level once lower than computed one                                       */
        int rh1;        /* height of the resolution level once lower than computed one                                      */
        int rd1;        /* depth of the resolution level once lower than computed one                                      */
        int cas_col;    /* 0 = non inversion on horizontal filtering 1 = inversion between low-pass and high-pass filtering */
        int cas_row;    /* 0 = non inversion on vertical filtering 1 = inversion between low-pass and high-pass filtering   */
        int cas_axl;    /* 0 = non inversion on axial filtering 1 = inversion between low-pass and high-pass filtering   */
        int dn, sn;

        rw = tilec->resolutions[level - x].x1 - tilec->resolutions[level - x].x0;
        rh = tilec->resolutions[level - y].y1 - tilec->resolutions[level - y].y0;
        rd = tilec->resolutions[level - z].z1 - tilec->resolutions[level - z].z0;
        rw1 = tilec->resolutions[level - x - 1].x1 - tilec->resolutions[level - x -
                1].x0;
        rh1 = tilec->resolutions[level - y - 1].y1 - tilec->resolutions[level - y -
                1].y0;
        rd1 = tilec->resolutions[level - z - 1].z1 - tilec->resolutions[level - z -
                1].z0;

        cas_col = tilec->resolutions[level - x].x0 %
                  2; /* 0 = non inversion on horizontal filtering 1 = inversion between low-pass and high-pass filtering */
        cas_row = tilec->resolutions[level - y].y0 %
                  2; /* 0 = non inversion on vertical filtering 1 = inversion between low-pass and high-pass filtering   */
        cas_axl = tilec->resolutions[level - z].z0 % 2;

        /*fprintf(stdout," x %d y %d z %d \n",x,y,z);
        fprintf(stdout," levelx %d levely %d levelz %d \n",levelx,levely,levelz);
        fprintf(stdout," z1 %d z0 %d\n",tilec->resolutions[level - z].z1,tilec->resolutions[level - z].z0);
        fprintf(stdout," rw %d rh %d rd %d \n rw1 %d rh1 %d rd1 %d \n",rw,rh,rd,rw1,rh1,rd1);*/

        for (i = 0; i < rd; i++) {

            cj = a + (i * wh);

            /*Horizontal*/
            sn = rw1;
            dn = rw - rw1;
            bj = (int*)opj_malloc(rw * sizeof(int));
            if (dwtid[0] == 0) {
                for (j = 0; j < rh; j++) {
                    aj = cj + j * w;
                    for (k = 0; k < rw; k++) {
                        bj[k] = aj[k];
                    }
                    dwt_encode_97(bj, dn, sn, cas_row);
                    dwt_deinterleave_h(bj, aj, dn, sn, cas_row);
                }
            } else if (dwtid[0] == 1) {
                for (j = 0; j < rh; j++) {
                    aj = cj + j * w;
                    for (k = 0; k < rw; k++) {
                        bj[k] = aj[k];
                    }
                    dwt_encode_53(bj, dn, sn, cas_row);
                    dwt_deinterleave_h(bj, aj, dn, sn, cas_row);
                }
            }
            opj_free(bj);

            /*Vertical*/
            sn = rh1;
            dn = rh - rh1;
            bj = (int*)opj_malloc(rh * sizeof(int));
            if (dwtid[1] == 0) { /*DWT 9-7*/
                for (j = 0; j < rw; j++) {
                    aj = cj + j;
                    for (k = 0; k < rh; k++) {
                        bj[k] = aj[k * w];
                    }
                    dwt_encode_97(bj, dn, sn, cas_col);
                    dwt_deinterleave_v(bj, aj, dn, sn, w, cas_col);
                }
            } else if (dwtid[1] == 1) { /*DWT 5-3*/
                for (j = 0; j < rw; j++) {
                    aj = cj + j;
                    for (k = 0; k < rh; k++) {
                        bj[k] = aj[k * w];
                    }
                    dwt_encode_53(bj, dn, sn, cas_col);
                    dwt_deinterleave_v(bj, aj, dn, sn, w, cas_col);
                }
            }
            opj_free(bj);
        }

        if (z < levelz) {
            /*Axial fprintf(stdout,"Axial DWT Transform %d %d %d\n",z,rd,rd1);*/
            sn = rd1;
            dn = rd - rd1;
            bj = (int*)opj_malloc(rd * sizeof(int));
            if (dwtid[2] == 0) {
                for (j = 0; j < (rw * rh); j++) {
                    aj = a + j;
                    for (k = 0; k < rd; k++) {
                        bj[k] = aj[k * wh];
                    }
                    dwt_encode_97(bj, dn, sn, cas_axl);
                    dwt_deinterleave_z(bj, aj, dn, sn, wh, cas_axl);
                }
            } else if (dwtid[2] == 1) {
                for (j = 0; j < (rw * rh); j++) {
                    aj = a + j;
                    for (k = 0; k < rd; k++) {
                        bj[k] = aj[k * wh];
                    }
                    dwt_encode_53(bj, dn, sn, cas_axl);
                    dwt_deinterleave_z(bj, aj, dn, sn, wh, cas_axl);
                }
            }
            opj_free(bj);
        }
    }

    /*fprintf(stdout,"[INFO] Ops: %d \n",ops);*/
}


/* <summary>                            */
/* Inverse 5-3 wavelet transform in 3-D. */
/* </summary>                           */
void dwt_decode(opj_tcd_tilecomp_t * tilec, int stops[3], int dwtid[3])
{
    int i, j, k;
    int x, y, z;
    int w, h, wh, d;
    int level, levelx, levely, levelz, diff;
    int *a = NULL;
    int *aj = NULL;
    int *bj = NULL;
    int *cj = NULL;

    a = tilec->data;

    w = tilec->x1 - tilec->x0;
    h = tilec->y1 - tilec->y0;
    d = tilec->z1 - tilec->z0;
    wh = w * h;
    levelx = tilec->numresolution[0] - 1;
    levely = tilec->numresolution[1] - 1;
    levelz = tilec->numresolution[2] - 1;
    level = int_max(levelx, int_max(levely, levelz));
    diff = tilec->numresolution[0] - tilec->numresolution[2];

    /* General lifting framework -- DCCS-LIWT */
    for (x = level - 1, y = level - 1, z = level - 1; (x >= stops[0]) &&
            (y >= stops[1]); x--, y--, z--) {
        int rw;         /* width of the resolution level computed                                                           */
        int rh;         /* heigth of the resolution level computed                                                          */
        int rd;         /* depth of the resolution level computed                                                          */
        int rw1;        /* width of the resolution level once lower than computed one                                       */
        int rh1;        /* height of the resolution level once lower than computed one                                      */
        int rd1;        /* depth of the resolution level once lower than computed one                                      */
        int cas_col;    /* 0 = non inversion on horizontal filtering 1 = inversion between low-pass and high-pass filtering */
        int cas_row;    /* 0 = non inversion on vertical filtering 1 = inversion between low-pass and high-pass filtering   */
        int cas_axl;    /* 0 = non inversion on axial filtering 1 = inversion between low-pass and high-pass filtering   */
        int dn, sn;

        rw = tilec->resolutions[level - x].x1 - tilec->resolutions[level - x].x0;
        rh = tilec->resolutions[level - y].y1 - tilec->resolutions[level - y].y0;
        rd = tilec->resolutions[level - z].z1 - tilec->resolutions[level - z].z0;
        rw1 = tilec->resolutions[level - x - 1].x1 - tilec->resolutions[level - x -
                1].x0;
        rh1 = tilec->resolutions[level - y - 1].y1 - tilec->resolutions[level - y -
                1].y0;
        rd1 = tilec->resolutions[level - z - 1].z1 - tilec->resolutions[level - z -
                1].z0;

        cas_col = tilec->resolutions[level - x].x0 %
                  2; /* 0 = non inversion on horizontal filtering 1 = inversion between low-pass and high-pass filtering */
        cas_row = tilec->resolutions[level - y].y0 %
                  2; /* 0 = non inversion on vertical filtering 1 = inversion between low-pass and high-pass filtering   */
        cas_axl = tilec->resolutions[level - z].z0 % 2;

        /*fprintf(stdout," x %d y %d z %d \n",x,y,z);
        fprintf(stdout," levelx %d levely %d levelz %d \n",levelx,levely,levelz);
        fprintf(stdout," dwtid[0] %d [1] %d [2] %d \n",dwtid[0],dwtid[1],dwtid[2]);
        fprintf(stdout," rw %d rh %d rd %d \n rw1 %d rh1 %d rd1 %d \n",rw,rh,rd,rw1,rh1,rd1);
        fprintf(stdout,"IDWT Transform %d %d %d %d\n",level, z, rd,rd1);*/

        if (z >= stops[2] && rd != rd1) {
            /*fprintf(stdout,"Axial Transform %d %d %d %d\n",levelz, z, rd,rd1);*/
            sn = rd1;
            dn = rd - rd1;
            bj = (int*)opj_malloc(rd * sizeof(int));
            if (dwtid[2] == 0) {
                for (j = 0; j < (rw * rh); j++) {
                    aj = a + j;
                    dwt_interleave_z(aj, bj, dn, sn, wh, cas_axl);
                    dwt_decode_97(bj, dn, sn, cas_axl);
                    for (k = 0; k < rd; k++) {
                        aj[k * wh] = bj[k];
                    }
                }
            } else if (dwtid[2] == 1) {
                for (j = 0; j < (rw * rh); j++) {
                    aj = a + j;
                    dwt_interleave_z(aj, bj, dn, sn, wh, cas_axl);
                    dwt_decode_53(bj, dn, sn, cas_axl);
                    for (k = 0; k < rd; k++) {
                        aj[k * wh] = bj[k];
                    }
                }
            }
            opj_free(bj);
        }

        for (i = 0; i < rd; i++) {
            /*Fetch corresponding slice for doing DWT-2D*/
            cj = tilec->data + (i * wh);

            /*Vertical*/
            sn = rh1;
            dn = rh - rh1;
            bj = (int*)opj_malloc(rh * sizeof(int));
            if (dwtid[1] == 0) {
                for (j = 0; j < rw; j++) {
                    aj = cj + j;
                    dwt_interleave_v(aj, bj, dn, sn, w, cas_col);
                    dwt_decode_97(bj, dn, sn, cas_col);
                    for (k = 0; k < rh; k++) {
                        aj[k * w] = bj[k];
                    }
                }
            } else if (dwtid[1] == 1) {
                for (j = 0; j < rw; j++) {
                    aj = cj + j;
                    dwt_interleave_v(aj, bj, dn, sn, w, cas_col);
                    dwt_decode_53(bj, dn, sn, cas_col);
                    for (k = 0; k < rh; k++) {
                        aj[k * w] = bj[k];
                    }
                }
            }
            opj_free(bj);

            /*Horizontal*/
            sn = rw1;
            dn = rw - rw1;
            bj = (int*)opj_malloc(rw * sizeof(int));
            if (dwtid[0] == 0) {
                for (j = 0; j < rh; j++) {
                    aj = cj + j * w;
                    dwt_interleave_h(aj, bj, dn, sn, cas_row);
                    dwt_decode_97(bj, dn, sn, cas_row);
                    for (k = 0; k < rw; k++) {
                        aj[k] = bj[k];
                    }
                }
            } else if (dwtid[0] == 1) {
                for (j = 0; j < rh; j++) {
                    aj = cj + j * w;
                    dwt_interleave_h(aj, bj, dn, sn, cas_row);
                    dwt_decode_53(bj, dn, sn, cas_row);
                    for (k = 0; k < rw; k++) {
                        aj[k] = bj[k];
                    }
                }
            }
            opj_free(bj);

        }

    }

}


/* <summary>                          */
/* Get gain of wavelet transform. */
/* </summary>                         */
int dwt_getgain(int orient, int reversible)
{
    if (reversible == 1) {
        if (orient == 0) {
            return 0;
        } else if (orient == 1 || orient == 2 || orient == 4) {
            return 1;
        } else if (orient == 3 || orient == 5 || orient == 6) {
            return 2;
        } else {
            return 3;
        }
    }
    /*else if (reversible == 0){*/
    return 0;
}

/* <summary>                */
/* Get norm of wavelet transform. */
/* </summary>               */
double dwt_getnorm(int orient, int level[3], int dwtid[3])
{
    int levelx = level[0];
    int levely = level[1];
    int levelz = (level[2] < 0) ? 0 : level[2];
    double norm;

    if (flagnorm[levelx][levely][levelz][orient] == 1) {
        norm = dwt_norm[levelx][levely][levelz][orient];
        /*fprintf(stdout,"[INFO] Level: %d %d %d Orient %d Dwt_norm: %f \n",level[0],level[1],level[2],orient,norm);*/
    } else {
        opj_wtfilt_t *wtfiltx = (opj_wtfilt_t *) opj_malloc(sizeof(opj_wtfilt_t));
        opj_wtfilt_t *wtfilty = (opj_wtfilt_t *) opj_malloc(sizeof(opj_wtfilt_t));
        opj_wtfilt_t *wtfiltz = (opj_wtfilt_t *) opj_malloc(sizeof(opj_wtfilt_t));
        /*Fetch equivalent filters for each dimension*/
        dwt_getwtfilters(wtfiltx, dwtid[0]);
        dwt_getwtfilters(wtfilty, dwtid[1]);
        dwt_getwtfilters(wtfiltz, dwtid[2]);
        /*Calculate the corresponding norm */
        norm = dwt_calc_wtnorms(orient, level, dwtid, wtfiltx, wtfilty, wtfiltz);
        /*Save norm in array (no recalculation)*/
        dwt_norm[levelx][levely][levelz][orient] = norm;
        flagnorm[levelx][levely][levelz][orient] = 1;
        /*Free reserved space*/
        opj_free(wtfiltx->LPS);
        opj_free(wtfilty->LPS);
        opj_free(wtfiltz->LPS);
        opj_free(wtfiltx->HPS);
        opj_free(wtfilty->HPS);
        opj_free(wtfiltz->HPS);
        opj_free(wtfiltx);
        opj_free(wtfilty);
        opj_free(wtfiltz);
        /*fprintf(stdout,"[INFO] Dwtid: %d %d %d Level: %d %d %d Orient %d Norm: %f \n",dwtid[0],dwtid[1],dwtid[2],level[0],level[1],level[2],orient,norm);*/
    }
    return norm;
}
/* <summary>                                */
/* Calculate explicit stepsizes for DWT.    */
/* </summary>                               */
void dwt_calc_explicit_stepsizes(opj_tccp_t * tccp, int prec)
{
    int totnumbands, bandno, diff;

    assert(tccp->numresolution[0] >= tccp->numresolution[2]);
    diff = tccp->numresolution[0] -
           tccp->numresolution[2];     /*if RESx=RESy != RESz */
    totnumbands = (7 * tccp->numresolution[0] - 6) - 4 * diff; /* 3-D */

    for (bandno = 0; bandno < totnumbands; bandno++) {
        double stepsize;
        int resno, level[3], orient, gain;

        /* Bandno:  0 - LLL     1 - LHL
                    2 - HLL     3 - HHL
                    4 - LLH     5 - LHH
                    6 - HLH     7 - HHH */

        resno = (bandno == 0) ? 0 : ((bandno <= 3 * diff) ? ((bandno - 1) / 3 + 1) : ((
                                         bandno + 4 * diff - 1) / 7 + 1));
        orient = (bandno == 0) ? 0 : ((bandno <= 3 * diff) ? ((bandno - 1) % 3 + 1) : ((
                                          bandno + 4 * diff - 1) % 7 + 1));
        level[0] = tccp->numresolution[0] - 1 - resno;
        level[1] = tccp->numresolution[1] - 1 - resno;
        level[2] = tccp->numresolution[2] - 1 - resno;

        /* Gain:    0 - LLL     1 - LHL
                    1 - HLL     2 - HHL
                    1 - LLH     2 - LHH
                    2 - HLH     3 - HHH     */
        gain = (tccp->reversible == 0) ? 0 : ((orient == 0) ? 0 :
                                              (((orient == 1) || (orient == 2) || (orient == 4)) ? 1 :
                                               (((orient == 3) || (orient == 5) || (orient == 6)) ? 2 : 3)));

        if (tccp->qntsty == J3D_CCP_QNTSTY_NOQNT) {
            stepsize = 1.0;
        } else {
            double norm = dwt_getnorm(orient, level,
                                      tccp->dwtid); /*Fetch norms if irreversible transform (by the moment only I9.7)*/
            stepsize = (1 << (gain + 1)) / norm;
        }
        /*fprintf(stdout,"[INFO] Bandno: %d Orient: %d Level: %d %d %d Stepsize: %f\n",bandno,orient,level[0],level[1],level[2],stepsize);*/
        dwt_encode_stepsize((int) floor(stepsize * 8192.0), prec + gain,
                            &tccp->stepsizes[bandno]);
    }
}