// Copyright(c) 2017-2020, Intel Corporation
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Intel Corporation nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif // HAVE_CONFIG_H
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <limits.h>
#include <sys/types.h>
#include <sys/stat.h>
#include "xfpga.h"
#include "bitstream_int.h"
#include "common_int.h"
#include "opae_drv.h"
#include "usrclk/user_clk_pgm_uclock.h"
#include "reconf_int.h"
// sysfs attributes
#define PORT_SYSFS_ERRORS "errors/errors"
#define PORT_SYSFS_ERR_CLEAR "errors/clear"
#define PWRMGMT_THRESHOLD1 "power_mgmt/threshold1"
#define PWRMGMT_THRESHOLD2 "power_mgmt/threshold2"
// Max power values
#define FPGA_BBS_IDLE_POWER 30 // watts
#define FPGA_MAX_POWER 90 // watts
#define FPGA_GBS_MAX_POWER 60 // watts
#define FPGA_THRESHOLD2(x) ((x*10)/100) // threshold1 + 10%
#pragma pack(push, 1)
// GBS Header
struct bitstream_header {
uint32_t magic;
uint64_t ifid_l;
uint64_t ifid_h;
};
#pragma pack(pop)
// Reconnfigure Error CSR
struct reconf_error {
union {
uint64_t csr;
struct {
uint64_t reconf_operation_error:1; /* PR operation error detected */
uint64_t reconf_CRC_error:1; /* PR CRC error detected*/
uint64_t reconf_incompatible_bitstream_error:1; /* PR incompatible bitstream error detected */
uint64_t reconf_IP_protocol_error:1; /* PR IP protocol error detected */
uint64_t reconf_FIFO_overflow_error:1; /* PR FIFO overflow error detected */
uint64_t reconf_timeout_error:1; /* PR timeout error detected */
uint64_t reconf_secure_load_error:1; /* PR secure load error detected */
uint64_t rsvd:57; /* Reserved */
};
};
};
STATIC fpga_result validate_bitstream(fpga_handle handle,
const uint8_t *bitstream, size_t bitstream_len,
int *header_len)
{
if (bitstream == NULL) {
OPAE_MSG("Bitstream is NULL");
return FPGA_INVALID_PARAM;
}
if (bitstream_len <= 0 ||
bitstream_len <= sizeof(struct bitstream_header)) {
OPAE_MSG("Invalid bitstream size");
return FPGA_INVALID_PARAM;
}
if (check_bitstream_guid(bitstream) == FPGA_OK) {
*header_len = get_bitstream_header_len(bitstream);
if (*header_len < 0) {
OPAE_MSG("Invalid bitstream header length");
return FPGA_EXCEPTION;
}
if (validate_bitstream_metadata(handle, bitstream) != FPGA_OK) {
OPAE_MSG("Invalid JSON data");
return FPGA_EXCEPTION;
}
return FPGA_OK;
} else {
return FPGA_INVALID_PARAM;
}
}
// open child accelerator exclusively - it not, it's busy!
STATIC fpga_result open_accel(fpga_handle handle, fpga_handle *accel)
{
fpga_result result = FPGA_OK;
fpga_result destroy_result = FPGA_OK;
struct _fpga_handle *_handle = (struct _fpga_handle *)handle;
fpga_token token = NULL;
fpga_properties props;
uint32_t matches = 0;
if (_handle == NULL) {
OPAE_ERR("Invalid handle");
return FPGA_INVALID_PARAM;
}
if (_handle->token == NULL) {
OPAE_ERR("Invalid token within handle");
return FPGA_INVALID_PARAM;
}
result = xfpga_fpgaGetProperties(NULL, &props);
if (result != FPGA_OK)
return result;
result = fpgaPropertiesSetParent(props, _handle->token);
if (result != FPGA_OK) {
OPAE_ERR("Error setting parent in properties.");
goto free_props;
}
// TODO: Use slot number as part of filter
// We only want to query for accelerators for the
// slot being reconfigured
result = xfpga_fpgaEnumerate(&props, 1, &token, 1, &matches);
if (result != FPGA_OK) {
OPAE_ERR("Error enumerating for accelerator to reconfigure");
goto free_props;
}
if (matches == 0) {
OPAE_ERR("No accelerator found to reconfigure");
result = FPGA_BUSY;
goto destroy_token;
}
result = xfpga_fpgaOpen(token, accel, 0);
if (result != FPGA_OK) {
OPAE_ERR("Could not open accelerator for given slot");
goto destroy_token;
}
destroy_token:
destroy_result = xfpga_fpgaDestroyToken(&token);
if (destroy_result != FPGA_OK)
OPAE_ERR("Error destroying a token");
free_props:
destroy_result = fpgaDestroyProperties(&props);
if (destroy_result != FPGA_OK)
OPAE_ERR("Error destroying properties");
if (result != FPGA_OK || destroy_result != FPGA_OK)
return result != FPGA_OK ? result : destroy_result;
return FPGA_OK;
}
// clears port errors
STATIC fpga_result clear_port_errors(fpga_handle handle)
{
char sysfs_path[PATH_MAX] = {0};
fpga_result result = FPGA_OK;
uint64_t error = 0 ;
result = sysfs_get_port_error_path(handle, sysfs_path);
if (result != FPGA_OK) {
OPAE_ERR("Failed to get port errors path");
return result;
}
// Read port error.
result = sysfs_read_u64(sysfs_path, &error);
if (result != FPGA_OK) {
OPAE_ERR("Failed to read port errors");
return result;
}
result = sysfs_get_port_error_clear_path(handle, sysfs_path);
if (result != FPGA_OK) {
OPAE_ERR("Failed to get port errors clear path");
return result;
}
// Clear port error.
result = sysfs_write_u64(sysfs_path, error);
if (result != FPGA_OK) {
OPAE_ERR("Failed to clear port errors");
return result;
}
return result;
}
// set afu user clock
fpga_result set_afu_userclock(fpga_handle handle,
uint64_t usrlclock_high,
uint64_t usrlclock_low)
{
char sysfs_path[PATH_MAX] = {0};
fpga_result result = FPGA_OK;
uint64_t userclk_high = 0;
uint64_t userclk_low = 0;
// Read port sysfs path
result = get_port_sysfs(handle, sysfs_path);
if (result != FPGA_OK) {
OPAE_ERR("Failed to get port syfs path");
return result;
}
// set user clock
result = set_userclock(sysfs_path, usrlclock_high, usrlclock_low);
if (result != FPGA_OK) {
OPAE_ERR("Failed to set user clock");
return result;
}
// read user clock
result = get_userclock(sysfs_path, &userclk_high, &userclk_low);
if (result != FPGA_OK) {
OPAE_ERR("Failed to get user clock");
return result;
}
return result;
}
// Sets FPGA threshold power values
fpga_result set_fpga_pwr_threshold(fpga_handle handle,
uint64_t gbs_power)
{
char sysfs_path[SYSFS_PATH_MAX] = { 0, };
fpga_result result = FPGA_OK;
uint64_t fpga_power = 0;
struct _fpga_token *_token = NULL;
struct _fpga_handle *_handle = (struct _fpga_handle *)handle;
if (_handle == NULL) {
OPAE_ERR("Invalid handle");
return FPGA_INVALID_PARAM;
}
_token = (struct _fpga_token *)_handle->token;
if (_token == NULL) {
OPAE_ERR("Invalid token within handle");
return FPGA_INVALID_PARAM;
}
// Set max power if not specified by gbs
if (gbs_power == 0) {
gbs_power = FPGA_GBS_MAX_POWER;
}
// verify gbs power limits
if (gbs_power > FPGA_GBS_MAX_POWER) {
OPAE_ERR("Invalid GBS power value");
result = FPGA_NOT_SUPPORTED;
return result;
}
// FPGA threshold1 = BBS Idle power + GBS power
fpga_power = gbs_power + FPGA_BBS_IDLE_POWER;
if (fpga_power > FPGA_MAX_POWER) {
OPAE_ERR("Total power requirements exceed FPGA maximum");
result = FPGA_NOT_SUPPORTED;
return result;
}
// set fpga threshold 1
if (snprintf(sysfs_path, sizeof(sysfs_path),
"%s/%s", _token->sysfspath, PWRMGMT_THRESHOLD1) < 0) {
OPAE_ERR("snprintf buffer overflow");
result = FPGA_EXCEPTION;
return result;
}
OPAE_DBG(" FPGA Threshold1 :%ld watts\n", fpga_power);
result = sysfs_write_u64(sysfs_path, fpga_power);
if (result != FPGA_OK) {
OPAE_ERR("Failed to write power threshold 1");
return result;
}
return result;
}
fpga_result __XFPGA_API__ xfpga_fpgaReconfigureSlot(fpga_handle fpga,
uint32_t slot,
const uint8_t *bitstream,
size_t bitstream_len,
int flags)
{
struct _fpga_handle *_handle = (struct _fpga_handle *)fpga;
fpga_result result = FPGA_OK;
struct reconf_error error = { {0} };
struct gbs_metadata metadata;
int bitstream_header_len = 0;
int err = 0;
fpga_handle accel = NULL;
struct stat st;
result = handle_check_and_lock(_handle);
if (result)
return result;
if (_handle->fddev < 0) {
OPAE_ERR("Invalid handle file descriptor");
result = FPGA_INVALID_PARAM;
goto out_unlock;
}
if (validate_bitstream(fpga, bitstream, bitstream_len,
&bitstream_header_len) != FPGA_OK) {
OPAE_MSG("Invalid bitstream");
result = FPGA_INVALID_PARAM;
goto out_unlock;
}
// error out if "force" flag is NOT indicated
// and the resource is in use
if (!(flags & FPGA_RECONF_FORCE)) {
result = open_accel(fpga, &accel);
if (result != FPGA_OK) {
OPAE_ERR("Accelerator in use or not found");
goto out_unlock;
}
}
// Clear port errors
result = clear_port_errors(fpga);
if (result != FPGA_OK) {
OPAE_ERR("Failed to clear port errors.");
}
if (get_bitstream_json_len(bitstream) > 0) {
enum fpga_hw_type hw_type = FPGA_HW_UNKNOWN;
// Read GBS json metadata
memset(&metadata, 0, sizeof(metadata));
result = read_gbs_metadata(bitstream, &metadata);
if (result != FPGA_OK) {
OPAE_ERR("Failed to read metadata");
goto out_unlock;
}
OPAE_DBG(" Version :%f\n", metadata.version);
OPAE_DBG(" Magic Num :%ld\n",
metadata.afu_image.magic_num);
OPAE_DBG(" Interface Id :%s\n",
metadata.afu_image.interface_uuid);
OPAE_DBG(" Clock_frequency_high :%d\n",
metadata.afu_image.clock_frequency_high);
OPAE_DBG(" Clock_frequency_low :%d\n",
metadata.afu_image.clock_frequency_low);
OPAE_DBG(" Power :%d\n",
metadata.afu_image.power);
OPAE_DBG(" Name :%s\n",
metadata.afu_image.afu_clusters.name);
OPAE_DBG(" Total_contexts :%d\n",
metadata.afu_image.afu_clusters.total_contexts);
OPAE_DBG(" AFU_uuid :%s\n",
metadata.afu_image.afu_clusters.afu_uuid);
// Set AFU user clock
if (metadata.afu_image.clock_frequency_high > 0 || metadata.afu_image.clock_frequency_low > 0) {
result = set_afu_userclock(fpga, metadata.afu_image.clock_frequency_high, metadata.afu_image.clock_frequency_low);
if (result != FPGA_OK) {
OPAE_ERR("Failed to set user clock");
goto out_unlock;
}
}
// get fpga device id.
result = get_fpga_hw_type(fpga, &hw_type);
if (result != FPGA_OK) {
OPAE_ERR("Failed to discover hardware type.");
goto out_unlock;
}
// Set power threshold for integrated fpga.
if (hw_type == FPGA_HW_MCP &&
!stat(FPGA_SYSFS_CLASS_PATH_INTEL, &st)) {
result = set_fpga_pwr_threshold(fpga, metadata.afu_image.power);
if (result != FPGA_OK) {
OPAE_ERR("Failed to set threshold.");
goto out_unlock;
}
} // device id
}
result = opae_fme_port_pr(
_handle->fddev, 0, slot, bitstream_len - bitstream_header_len,
(uint64_t)bitstream + bitstream_header_len, &error.csr);
if (result != 0) {
OPAE_ERR("Failed to reconfigure bitstream: %s",
strerror(errno));
if ((errno == EINVAL) || (errno == EFAULT)) {
result = FPGA_INVALID_PARAM;
} else {
result = FPGA_EXCEPTION;
}
}
if (error.reconf_operation_error == 0x1) {
OPAE_ERR("PR operation error detected");
result = FPGA_RECONF_ERROR;
}
if (error.reconf_CRC_error == 0x1) {
OPAE_ERR("PR CRC error detected");
result = FPGA_RECONF_ERROR;
}
if (error.reconf_incompatible_bitstream_error == 0x1) {
OPAE_ERR("PR incompatible bitstream error detected");
result = FPGA_RECONF_ERROR;
}
if (error.reconf_IP_protocol_error == 0x1) {
OPAE_ERR("PR IP protocol error detected");
result = FPGA_RECONF_ERROR;
}
if (error.reconf_FIFO_overflow_error == 0x1) {
OPAE_ERR("PR FIFO overflow error detected");
result = FPGA_RECONF_ERROR;
}
if (error.reconf_timeout_error == 0x1) {
OPAE_ERR("PR timeout error detected");
result = FPGA_RECONF_ERROR;
}
if (error.reconf_secure_load_error == 0x1) {
OPAE_ERR("PR secure load error detected");
result = FPGA_RECONF_ERROR;
}
out_unlock:
// close the accelerator opened during `open_accel`
if (accel && xfpga_fpgaClose(accel) != FPGA_OK) {
OPAE_ERR("Error closing accelerator after reconfiguration");
result = FPGA_RECONF_ERROR;
}
err = pthread_mutex_unlock(&_handle->lock);
if (err)
OPAE_ERR("pthread_mutex_unlock() failed: %s", strerror(err));
return result;
}