Blob Blame History Raw
/* BEGIN_ICS_COPYRIGHT1 ****************************************

Copyright (c) 2015-2020, Intel Corporation

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

    * Redistributions of source code must retain the above copyright notice,
      this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above copyright
      notice, this list of conditions and the following disclaimer in the
      documentation and/or other materials provided with the distribution.
    * Neither the name of Intel Corporation nor the names of its contributors
      may be used to endorse or promote products derived from this software
      without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

** END_ICS_COPYRIGHT1   ****************************************/

/* [ICS VERSION STRING: unknown] */
#include <ctype.h>
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <fcntl.h>
#include <signal.h>
#include <ctype.h>
#include <pthread.h>
#include <errno.h>
#include <fm_xml.h>
#include <opamgt_priv.h>
#include "ib_utils_openib.h"

#define OPAFMD_PIPE "/var/run/opafmd"

#define NO_SUCH_COMPONENT 0
#define SM_COMPONENT 1
#define FE_COMPONENT 2

#define FM_NUM_COMPONENTS 3

#define FM_MAX_INSTANCES 4

#define FM_XML_CONFIG "/etc/opa-fm/opafm.xml"

extern char *optarg;
extern int optind;

struct thread_data {
	int component;
	int instance;
};

struct restartCounter {
	struct componentCounter {
		time_t lastUpdate;
		unsigned int counter;
	} components[FM_NUM_COMPONENTS];
};

struct daemonConfig {
	struct instanceConfig {
		int enabled;
		struct componentConfig {
			int enabled;
			unsigned int maxRetries;
			unsigned int retryTimeout;
		} component[FM_NUM_COMPONENTS];
	} instance[FM_MAX_INSTANCES];
} config = {
	{				//config.instance[*]
		{
			0,		//config.instance[*].enabled
			{{0}}   //config.instance[*].component[*]
		}
	}
};

char *progName;
char *nullEnv[] = {0};
int smPID[FM_MAX_INSTANCES] = {0};
int fePID[FM_MAX_INSTANCES] = {0};
struct restartCounter instanceRestarts[FM_MAX_INSTANCES] = {};
int doStop = 0;
int fd = -1;

const char *componentToString(const unsigned int component);
const char *componentToExecName(const unsigned int component);
int *componentToPIDArray(const unsigned int component);
void reloadSMs(void);
void Usage(int err);
int checkRestarts(const unsigned int instance, const unsigned int component);
void sig_handler(int signo, siginfo_t *siginfo, void *context);
int parseInput(char *buf);
int spawn(const unsigned int instance, const int component);
int pkill(const unsigned int instance, const int component);
void updateInstances(void);
int loadConfig(void);
int daemon_main(void);
void *kill_thread(void *arg);


/**
 * Returns string representation of component.
 *
 *
 * @param component
 *
 * @return const char*
 */
const char *componentToString(const unsigned int component){
	switch (component){
	case SM_COMPONENT:
		return "SM";
	case FE_COMPONENT:
		return "FE";
	default:
		return "";
	}
}

/**
 * Returns string representation of component's executable.
 *
 *
 * @param component
 *
 * @return const char*
 */
const char *componentToExecName(const unsigned int component){
	switch (component){
	case SM_COMPONENT:
		return "sm";
	case FE_COMPONENT:
		return "fe";
	default:
		return "";
	}
}

/**
 * Returns associated PID array for component.
 *
 *
 * @param component
 *
 * @return int*
 */
int *componentToPIDArray(const unsigned int component){
	switch (component){
	case SM_COMPONENT:
		return smPID;
	case FE_COMPONENT:
		return fePID;
	default:
		return NULL;
	}
}

/**
 * Sends SIGHUP to all running SM instances.
 *
 */
void reloadSMs(void){
	int inst = 0;
	for (inst = 0; inst < FM_MAX_INSTANCES; ++inst){
		if (smPID[inst])
			kill(smPID[inst], SIGHUP);
	}
}

/**
 * Print program usage information
 *
 * @param err Program exit code
 */
void Usage(int err){
	fprintf(stderr, "Usage: %s -D\n", progName);
	exit(err);
}

/**
 * Checks restart counter specified to see if the counter has
 * exceeded the threshold over the course of its grace period.
 *
 *
 * @param instance
 * @param component
 *
 * @return int 0 if counter has not surpassed threshold, 1
 *  	   otherwise
 */
int checkRestarts(const unsigned int instance, const unsigned int component){
	struct componentCounter *count = &instanceRestarts[instance].components[component];
	int retryTimeout = config.instance[instance].component[component].retryTimeout;
	int maxRetries = config.instance[instance].component[component].maxRetries;
	time_t now = time(NULL);

	// Check if the current restart attempt is beyond the restart grace period
	if ((now - count->lastUpdate) > retryTimeout){
		// Restart the counter if the component has been alive longer than the grace period
		count->counter = 1;
	} else {
		// Otherwise, keep counting.
		count->counter += 1;
	}
	// Finally, we update the timestamp
	count->lastUpdate = now;
	// Then we return true if the threshold has been crossed, triggering a service failure.
	return count->counter > maxRetries;
}

/**
 * Handle Linux signals, specifically SIGTERM, SIGHUP and
 * SIGCHLD.
 *
 *
 * @param signo Caught signal
 * @param siginfo Signal information, ignored.
 * @param context Stack frame where signal occured, ignored.
 */
void sig_handler(int signo, siginfo_t *siginfo, void *context) {
	char *val = NULL;
	int ret;

	if(doStop || fd < 0)
		return;
	if(signo == SIGTERM){
		val = "sig_term\n";
	} else if (signo == SIGHUP){
		val = "sig_hup\n";
	} else if (signo == SIGCHLD){
		val = "sig_chld\n";
	}
	if (val) {
		ret = write(fd, val, strlen(val));
		if (ret != strlen(val)) {
			doStop = 1;
		}
	}
	return;
}

/**
 * pthread function to kill an instance of an FM component.
 *
 *
 * @param arg Pointer to thread_data structure.
 *
 * @return void* NULL
 */
void *kill_thread(void *arg){
	struct thread_data *data = arg;
	pkill(data->instance, data->component);
	free(data);
	return NULL;
}

/**
 * Function to parse values passed through named pipe to the
 * daemon.
 *
 *
 * @param buf Pointer to the string extracted from the named
 *  		  pipe
 *
 * @return int Returns 1 if the daemon recieved a command to
 *  	   stop.
 */
int parseInput(char *buf){
	char *token;
	int i, c;
	struct thread_data *thread = NULL;
	pthread_t thread_id[FM_MAX_INSTANCES*FM_NUM_COMPONENTS];
	token = strtok(buf, " ");
	if(token == NULL){
		fprintf(stderr, "Received invalid input. Ignoring.\n");
		return 0;
	}

	if(strncmp(token, "sig_chld", 8) == 0){
		int i = 0, pid = 0, stat = 0;
		unsigned int instance = 0, component = 0;

		while ((pid = waitpid(-1, &stat, WNOHANG)) > 0) {
			for(i = 0; i < FM_MAX_INSTANCES; ++i){
				if(smPID[i] == pid){
					component = SM_COMPONENT;
					instance = i;
					break;
				} else if (fePID[i] == pid){
					component = FE_COMPONENT;
					instance = i;
					break;
				} 

			}
			if(component == 0){
				continue;
			}
			fprintf(stderr, "%s component of instance %d has terminated with exit code %d\n", componentToString(component), instance, stat);
			if(stat == 0 || stat == 1){ //Skip restarting these components if expected (return 0) or user error (return 1)
				if(stat == 1)
					fprintf(stderr, "Check opafm.xml config for invalid settings.\n");
				return 0;
			}
			if(checkRestarts(instance, component)){
				//Component has failed too many times
				doStop = 3;
				return 0;
			}
			if (pkill(instance, component) == 0){
				spawn(instance, component);
			} else {
				//Failed to kill child. Might be a zombie.
				doStop = 3;
				return 0;
			}
		}
	} else if(!strncmp(token, "stop", 4) || !strncmp(token, "sig_term", 8)){
		token = strtok(NULL, " ");
		if(token == NULL) token = "a";
		switch(token[0]){
		case '0':	// Kill both SM and FE for this instance number.
			doStop = 1;
			token = strtok(NULL, " ");
			if(token == NULL){
				fprintf(stderr, "Received invalid input. Ignoring.\n");
				return 0;
			}
			i = atoi((const char*)token);
			if(i >= FM_MAX_INSTANCES || i < 0){
				fprintf(stderr, "Received invalid input. Ignoring.\n");
				return 0;
			}
			for(c = FM_NUM_COMPONENTS - 1; c >= 1; --c){
				thread = calloc(1, sizeof(struct thread_data));
				if(thread == NULL){
					fprintf(stderr, "Failed to allocate thread struct.\n");
					return 0;
				}
				thread->instance = i;
				thread->component = c;
				pthread_create(&thread_id[c], NULL, &kill_thread, thread);
			}
			for(c = 1; c < FM_NUM_COMPONENTS; c++){
				pthread_join(thread_id[c], NULL);
			}
			break;
		case '1':	// All components are stopped the same way, no need for duplicate code
		case '2':
		case '3':
			c = atoi((const char*)token);
			token = strtok(NULL, " ");
			if(token == NULL){
				fprintf(stderr, "Received invalid input. Ignoring.\n");
				return 0;
			}
			i = atoi((const char*)token);
			pkill(i, c);
			break;
		case 'a':	// Kill all running instances.
			doStop = 1;
			for(i = 0; i < FM_MAX_INSTANCES; ++i){
				for(c = 1; c < FM_NUM_COMPONENTS; ++c){
					thread = calloc(1, sizeof(struct thread_data));
					if(thread == NULL){
						fprintf(stderr, "Failed to allocate thread struct.\n");
						return 0;
					}
					thread->instance = i;
					thread->component = c;
					pthread_create(&thread_id[i*FM_NUM_COMPONENTS+c], NULL, &kill_thread, thread);
				}
			}
			for(i = 0; i < FM_MAX_INSTANCES; ++i){
				for(c = 1; c < FM_NUM_COMPONENTS; ++c){
					pthread_join(thread_id[i*FM_NUM_COMPONENTS+c], NULL);
				}
			}
			return 1;
		default:
			fprintf(stderr, "Unknown component value. (%d)\n", token[0]);
		}
		return 0;
	} else if(strncmp(token, "start", 5) == 0){
		token = strtok(NULL, " ");
		if(token == NULL){
			fprintf(stderr, "Received invalid input. Ignoring.\n");
			return 0;
		}
		switch(token[0]){
		case '0':
			token = strtok(NULL, " ");
			if(token == NULL){
				fprintf(stderr, "Received invalid input. Ignoring.\n");
				return 0;
			}
			i = atoi((const char*)token);
			if(i >= FM_MAX_INSTANCES) {
				fprintf(stderr, "Received invalid instance number %d. Ignoring.\n",i);
				return 0;
			}
			if(spawn(i, SM_COMPONENT) == -1) return 0;
			if(spawn(i, FE_COMPONENT) == -1) return 0;
			break;
		case '1':
		case '2':
		case '3':
			c = atoi((const char*)token);
			token = strtok(NULL, " ");
			if(token == NULL){
				fprintf(stderr, "Received invalid input. Ignoring.\n");
				return 0;
			}
			i = atoi((const char*)token);
			if(i >= FM_MAX_INSTANCES) {
				fprintf(stderr, "Received invalid instance number %d. Ignoring.\n",i);
				return 0;
			}
			spawn(i, c);
			break;
		default:
			fprintf(stderr, "Unknown component value.\n");
		}
	} else if(strncmp(token, "sig_hup", 7) == 0){
		reloadSMs();
		loadConfig();
		updateInstances();
	} else if(strncmp(token, "restart", 7) == 0){
		token = strtok(NULL, " ");
		if(token == NULL){
			fprintf(stderr, "Received invalid input. Ignoring.\n");
			return 0;
		}
		switch(token[0]){
		case '0':
			token = strtok(NULL, " ");
			if(token == NULL){
				fprintf(stderr, "Received invalid input. Ignoring.\n");
				return 0;
			}
			i = atoi((const char*)token);
			if(i >= FM_MAX_INSTANCES) {
				fprintf(stderr, "Received invalid instance number %d. Ignoring.\n",i);
				return 0;
			}
			if(pkill(i, SM_COMPONENT) == 0)
				spawn(i, SM_COMPONENT);
			if(pkill(i, FE_COMPONENT) == 0)
				spawn(i, FE_COMPONENT);
			break;
		case '1':
		case '2':
		case '3':
			c = atoi((const char*)token);
			token = strtok(NULL, " ");
			if(token == NULL){
				fprintf(stderr, "Received invalid input. Ignoring.\n");
				return 0;
			}
			i = atoi((const char*)token);
			if(i >= FM_MAX_INSTANCES) {
				fprintf(stderr, "Received invalid instance number %d. Ignoring.\n",i);
				return 0;
			}
			if(pkill(i, c) == 0)
				spawn(i, c);
			break;
		default:
			fprintf(stderr, "Unknown component value.\n");
		}
	}
	return 0;
}

/**
 * Spawns an instance of the FM component.
 *
 *
 * @param instance Instance number the component belongs to
 * @param component Integer representation of the component
 *  				(1 = SM, 2 = FE)
 *
 * @return int PID spawned or -1 if an error has occurred
 */

int spawn(const unsigned int instance, const int component){
	sigset_t mask;
	int *pids;
	int pid;
	char prog[32], name[32];
	if(instance >= FM_MAX_INSTANCES){
		fprintf(stderr, "spawn: Invalid instance number %d.\n",instance);
		return -1;
	}
	if((pids = componentToPIDArray(component)) == NULL){
		fprintf(stderr, "spawn: Invalid component number %d.\n",component);
		return -1;
	}
	if(pids[instance] != 0 && kill(pids[instance], 0) == 0){
		fprintf(stderr, "Instance %d of %s is already running.\n", instance, componentToString(component));
		return -1;
	}
	if (!config.instance[instance].component[component].enabled){
		fprintf(stderr, "Instance %d of %s is not enabled. Please enable instance in %s\n", instance, componentToString(component), FM_XML_CONFIG);
		return -1;
	}
	switch(pid = fork()){
	case 0:
		sigemptyset(&mask);
		sigaddset(&mask,SIGTERM);
		sigaddset(&mask,SIGCHLD);
		sigaddset(&mask,SIGHUP);
		sigprocmask(SIG_UNBLOCK, &mask, NULL);
		sprintf(prog, "/usr/lib/opa-fm/runtime/%s", componentToExecName(component));
		sprintf(name, "%s_%d", componentToExecName(component), instance);
		execle(prog, prog, "-e", name, NULL, nullEnv);
		break;
	case -1:
		fprintf(stderr, "Failed to start %s for instance %d.\n", componentToString(component), instance);
		break;
	default:
		fprintf(stdout, "Started instance %d of %s.\n", instance, componentToString(component));
		pids[instance] = pid;
		break;
	}
	return pid;
}

/**
 * Kills instance of FM component
 *
 *
 * @param instance Instance number the component belongs to
 * @param component Integer representation of the component
 *  				(1 = SM, 2 = FE)
 *
 * @return int Returns 0 if process was properly terminated,
 *  	   otherwise -1 on error.
 */
int pkill(const unsigned int instance, const int component){
	int *pids;
	int pid;
	int status;
	if(instance >= FM_MAX_INSTANCES){
		fprintf(stderr, "pkill: Invalid instance number %d.\n",instance);
		return -1;
	}
	if((pids = componentToPIDArray(component)) == NULL){
		fprintf(stderr, "pkill: Invalid component number %d.\n",component);
		return -1;
	}
	pid = pids[instance];
	if (!pid) return 0;
	if (kill(pid, 0) == 0){
		kill(pid, SIGTERM);								// Here we send a SIGTERM to the PID specified.
		time_t now, start;
		start = now = time(NULL);
		while (now - start < (component == SM_COMPONENT ? 3 : 1)) {
			waitpid((pid_t)pid, &status, WUNTRACED | WNOHANG);	// Reap the children if they're already dead. Because zombies are bad, mmkay.
			if(WIFSIGNALED(status) || WIFEXITED(status)) break;
			usleep(100000);
			now = time(NULL);
		}
		if(!(WIFSIGNALED(status) || WIFEXITED(status))){		// Checks for insubordinate children
			kill(pid, SIGKILL);							// Order a hit on them
			start = now = time(NULL);
			while (now - start < (component == SM_COMPONENT ? 3 : 1)) {
				waitpid((pid_t)pid, &status, WUNTRACED | WNOHANG);	// Reap the children if they're already dead. Because zombies are bad, mmkay.
				if(WIFSIGNALED(status) || WIFEXITED(status)) break;
				usleep(100000);
				now = time(NULL);
			}
			if(!(WIFSIGNALED(status) || WIFEXITED(status))){		// Report all survivors
				fprintf(stderr, "Failed to kill %s from instance %d\n", componentToString(component), instance);
				return -1;
			}
		}
		instanceRestarts[instance].components[component].lastUpdate = 0;	// Make sure to reset restart timer to prevent manual stop/restart from counting against component
		fprintf(stdout, "Stopped instance %d of %s.\n", instance, componentToString(component));
	} else {
		fprintf(stderr, "Instance %d of %s not running.\n", instance, componentToString(component));
	}
	pids[instance] = 0;	//PID not running or doesn't exist.
	return 0;
}

/**
 * Checks config and starts/stop instances according to config.
 *
 */
void updateInstances(void) {
	int inst, comp;
	for (inst = 0; inst < FM_MAX_INSTANCES; ++inst){
		if (config.instance[inst].enabled){
			for (comp = 1; comp < FM_NUM_COMPONENTS; ++comp){
				if (config.instance[inst].component[comp].enabled){
					if (!(componentToPIDArray(comp))[inst])
						spawn(inst, comp);
				} else {
					if ((componentToPIDArray(comp))[inst])
						pkill(inst, comp);
				}
			}
		} else {
			for (comp = 1; comp < FM_NUM_COMPONENTS; ++comp){
				if ((componentToPIDArray(comp))[inst])
					pkill(inst, comp);
			}
		}
	}
}

/**
 * Load up xml parser and extract values
 *
 *
 * @return int 0 on success.
 */
int loadConfig(void){
	FMXmlCompositeConfig_t *xml_config = NULL;
	int i, j, hfi, port, num_enabled = 0;

	char      name[UMAD_CA_NAME_LEN];
	uint64_t guid;

	xml_config = parseFmConfig(FM_XML_CONFIG, IXML_PARSER_FLAG_NONE, /* instance does not matter for startup */ 0, /* full */ 1, /* preverify */ 1, /* embedded */ 0);
	if (!xml_config) {
		fprintf(stdout, "Could not open or there was a parse error while reading configuration file ('%s')\n", FM_XML_CONFIG);
		return -1;
	}

	for (i = 0; i < FM_MAX_INSTANCES; i++) {
		if (!xml_config->fm_instance[i]) {
			config.instance[i].enabled = 0;
		} else {
			config.instance[i].enabled = xml_config->fm_instance[i]->fm_config.start;
			if (config.instance[i].enabled) ++num_enabled;
			config.instance[i].component[SM_COMPONENT].enabled = xml_config->fm_instance[i]->sm_config.start;
			config.instance[i].component[SM_COMPONENT].maxRetries = xml_config->fm_instance[i]->sm_config.startup_retries;
			config.instance[i].component[SM_COMPONENT].retryTimeout = xml_config->fm_instance[i]->sm_config.startup_stable_wait * 60;
			config.instance[i].component[FE_COMPONENT].enabled = xml_config->fm_instance[i]->fe_config.start;
			config.instance[i].component[FE_COMPONENT].maxRetries = xml_config->fm_instance[i]->fe_config.startup_retries;
			config.instance[i].component[FE_COMPONENT].retryTimeout = xml_config->fm_instance[i]->fe_config.startup_stable_wait * 60;


		}
	}

	if (!num_enabled) {
		fprintf(stderr, "None of the 4 instances are enabled! Please make sure at least one instance is enabled in your XML config file.\n");
		return 1;
	}

	if (xml_config->fm_instance[FM_MAX_INSTANCES]) {
		fprintf(stderr, "Found more than 4 instances in XML config, ignoring additional instances.\n");
	}

	struct { // Struct created to make the if tree below more readable.
		uint32 hfi;
		uint32 port;
		uint64 guid;
	} selected_device[FM_MAX_INSTANCES] = {{0}};

	for (i = 0; i < FM_MAX_INSTANCES; ++i) {
		if (!xml_config->fm_instance[i]) continue;
		// +1 for hfi, as both omgt_get_hfi_from_portguid and omgt_get_portguid assumes 1 based hfi value,
		// and xml_config->fm_instance[i]->fm_config gives zero based hfi
		selected_device[i].hfi = xml_config->fm_instance[i]->fm_config.hca+1;
		selected_device[i].port = xml_config->fm_instance[i]->fm_config.port;
		selected_device[i].guid = xml_config->fm_instance[i]->fm_config.port_guid;
		if (xml_config->fm_instance[i]->fm_config.start) {
			// To make sure we don't miss mismatched guid and hfi/port configs, we want to fill in missing info
			if (selected_device[i].guid && omgt_get_hfi_from_portguid(selected_device[i].guid,
					NULL, name, &hfi, &port, NULL, NULL, NULL, NULL) == VSTATUS_OK) {
				selected_device[i].hfi = hfi;
				selected_device[i].port = port;
			} else if (selected_device[i].port && omgt_get_portguid(selected_device[i].hfi, selected_device[i].port,
					NULL, NULL, NULL, &guid, NULL, NULL, NULL, NULL, NULL, NULL, NULL) == VSTATUS_OK) {
				selected_device[i].guid = guid;
			}
			if (!selected_device[i].guid || !selected_device[i].port) {
				fprintf(stderr, "Invalid config detected! Couldn't find device for instance %d!.\n", i);
				releaseXmlConfig(xml_config, /* full */ 1);
				return 1;
			}
		}
	}

	for (i = 0; i < FM_MAX_INSTANCES; ++i) {
		if (!xml_config->fm_instance[i]) continue;
		if (xml_config->fm_instance[i]->fm_config.start) { // only compare enabled instances
			for (j = i + 1; j < FM_MAX_INSTANCES; ++j) {
				if (!xml_config->fm_instance[j]) continue;
				if (xml_config->fm_instance[j]->fm_config.start && // against other enabled instances
					((selected_device[i].hfi == selected_device[j].hfi &&
					selected_device[i].port == selected_device[j].port) ||
					selected_device[i].guid == selected_device[j].guid)) {
						fprintf(stderr, "Invalid config detected! Same HFI detected for multiple enabled FM instances.\n");
						releaseXmlConfig(xml_config, /* full */ 1);
						return 1;
				}
			}
		}
	}

	releaseXmlConfig(xml_config, /* full */ 1);
	return 0;
}

/**
 * Daemon main loop. Sets up named pipe and captures commands
 * given through named pipe.
 *
 * Can be stopped with "stop" command or with SIGTERM.
 *
 *
 * @return int Returns negative integer on error.
 */
int daemon_main(){
	char buf[128] = {0};
	FILE *fp;
	struct sigaction act;
	sigset_t mask;
	int res = 0;

	sigemptyset(&mask);
	sigaddset(&mask,SIGTERM);
	sigaddset(&mask,SIGCHLD);
	sigaddset(&mask,SIGHUP);

    setlinebuf(stdout);

	bzero(&act, sizeof(act));
	act.sa_sigaction = sig_handler;
	act.sa_mask = mask;
	act.sa_flags = SA_NOCLDSTOP|SA_SIGINFO;

	sigaction(SIGTERM, &act, NULL);
	sigaction(SIGCHLD, &act, NULL);
	sigaction(SIGHUP, &act, NULL);
	if((res = loadConfig()) != 0){
		if (res == 1) return res;
		fprintf(stderr, "Failed to load conf, continuing with defaults.\n");
	}
	updateInstances();

	unlink(OPAFMD_PIPE); // cleanup any bad states
	if(mkfifo(OPAFMD_PIPE, 0660) == -1){
		fprintf(stderr, "Failed to create pipe: %s\n", strerror(errno));
		return(2);
	}
	if((fd = open(OPAFMD_PIPE, O_RDWR)) == -1){
		fprintf(stderr, "Failed to open pipe for reading: %s\n", strerror(errno));
		unlink(OPAFMD_PIPE); // cleanup any bad states
		return(2);
        }
	if((fp = fdopen(fd, "r")) == NULL){
		fprintf(stderr, "Failed to open pipe for reading: %s\n", strerror(errno));
		unlink(OPAFMD_PIPE); // cleanup any bad states
		return(2);
	}

	sigprocmask(SIG_BLOCK, &mask, NULL);
	while(!doStop) {
		char *s;
		sigprocmask(SIG_UNBLOCK, &mask, NULL);
		s = fgets(buf, 127, fp);
		sigprocmask(SIG_BLOCK, &mask, NULL);
		if (s != NULL) {
			parseInput(buf);
		}
	}
	sigprocmask(SIG_UNBLOCK, &mask, NULL);

	fclose(fp);
	doStop = -(doStop - 1);	// Use doStop value as return value. Allows systemd to show daemon status on failure.
	unlink(OPAFMD_PIPE);			// Destroy pipe
	pthread_exit(&doStop);	// Allows any running background threads to terminate properly.
}

int main(int argc, char* argv[]) {
	char opts[] = "dDi:";
	char c;
	int isDebug = 0, isDaemon = 0, res = 0;
	char *cmd = NULL, *comp = NULL, inst[2] = {0};
	progName = argv[0];
	if(argc < 2)
		Usage(1);
	while((c = getopt(argc, argv, opts)) != -1) {
		switch (c) {
		case 'd':
			isDebug = 1;
			// fall through
		case 'D':
			isDaemon = 1;
			break;
		case 'i':
			memcpy(inst, optarg, 1);
			break;
		case '?':
			if (optopt == 'c')
				fprintf(stderr, "Missing argument for option -%c\n", optopt);
			else if (isprint(optopt))
				fprintf(stderr, "Unknown option -%c\n", optopt);
			Usage(0);
			break;
		}
	}
	if(optind < argc && isDaemon){
		fprintf(stderr, "Cannot start daemon with additional arguments.\n");
		Usage(1);
	}
	while (optind < argc) {
		char *arg = argv[optind++];
		switch(arg[0]){
		case 's':
			switch(arg[1]){
			case 't':
				if(strcmp(arg, "start"))
					cmd = "stop";
				else
					cmd = "start";
				break;
			case 'm':
				comp = "sm";
				break;
			default:
				fprintf(stderr, "Unknown parameter %s\n", arg);
				Usage(1);
			}
			break;
		case 'r':
			if (strcmp(arg, "restart")) {
				fprintf(stderr, "Unknown parameter %s\n", arg);
				Usage(1);
			} else {
				cmd = "restart";
			} break;
		case 'f':
			if (strcmp(arg, "fe")) {
				fprintf(stderr, "Unknown parameter %s\n", arg);
				Usage(1);
			} else {
				comp = "fe";
			}
			break;
		case 'h':
			if (strcmp(arg, "halt")){
				fprintf(stderr, "Unknown parameter %s\n", arg);
				Usage(1);
			} else {
				int fd;
				if((fd = open(OPAFMD_PIPE, O_WRONLY|O_NONBLOCK)) == -1){
					// Daemon is already stopped
					exit(0);
				}
				res = write (fd, "stop\n", 5);	// write stop command without parameters to named pipe to kill it
				if(res <= 0){
					//Something went wrong while writing to pipe.
					fprintf(stderr, "Failed to send stop command to daemon: %s\n", strerror(errno));
					close(fd);
					exit(2);
				}
				close(fd);

				// Wait until the pipe stops existing.
				while (access(OPAFMD_PIPE, F_OK) != -1) {
					usleep(100000);
				}
				exit(0);
			}
		default:
			fprintf(stderr, "Unknown parameter %s\n", arg);
			Usage(1);
		}
	}
	if(isDaemon){
		if (isDebug) {
			// don't fork if debug
			return daemon_main();
		}	
		// Here we fork the daemon and if successful...
		switch(fork()){
		case 0:
			// daemon inits it's main loop
			return daemon_main();
		case -1:
			fprintf(stderr, "Failed to fork.\n");
			return 2;
		default:
			return 0;
		}
	} else {
		char prog[] = "/usr/lib/opa-fm/bin/opafmctrl";
		if(inst[0] != 0){
			if(comp != NULL)
				execle(prog, prog, cmd, "-i", inst, comp, NULL, nullEnv);	// Call opafmctl with instance number and component,
			else
				execle(prog, prog, cmd, "-i", inst, NULL, nullEnv);			// only with instance number,
		} else {
			if(comp != NULL)
				execle(prog, prog, cmd, comp, NULL, nullEnv);				// only with component,
			else
				execle(prog, prog, cmd, NULL, nullEnv);						// or without additional arguments.
		}
	}
	return 0;
}