Blob Blame History Raw
/*
  Functions here are copied from the source code for libf2c.

  Typically each function there is in its own file.

  We don't link against libf2c directly, because we can't guarantee
  it is available, and shipping a static library isn't portable.
*/

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "f2c.h"


extern void s_wsfe(cilist *f) {;}
extern void e_wsfe(void) {;}
extern void do_fio(integer *c, char *s, ftnlen l) {;}

/* You'll want this if you redo the f2c_*.c files with the -C option
 * to f2c for checking array subscripts. (It's not suggested you do that
 * for production use, of course.) */
extern int
s_rnge(char *var, int index, char *routine, int lineno)
{
    fprintf(stderr, "array index out-of-bounds for %s[%d] in routine %s:%d\n",
            var, index, routine, lineno);
    fflush(stderr);
    abort();
}

#ifdef KR_headers
extern float sqrtf();
double f__cabsf(real, imag) float real, imag;
#else
#undef abs

double f__cabsf(float real, float imag)
#endif
{
float temp;

if(real < 0.0f)
	real = -real;
if(imag < 0.0f)
	imag = -imag;
if(imag > real){
	temp = real;
	real = imag;
	imag = temp;
}
if((imag+real) == real)
	return((float)real);

temp = imag/real;
temp = real*sqrtf(1.0 + temp*temp);  /*overflow!!*/
return(temp);
}


#ifdef KR_headers
extern double sqrt();
double f__cabs(real, imag) double real, imag;
#else
#undef abs

double f__cabs(double real, double imag)
#endif
{
double temp;

if(real < 0)
	real = -real;
if(imag < 0)
	imag = -imag;
if(imag > real){
	temp = real;
	real = imag;
	imag = temp;
}
if((imag+real) == real)
	return((double)real);

temp = imag/real;
temp = real*sqrt(1.0 + temp*temp);  /*overflow!!*/
return(temp);
}

 VOID
#ifdef KR_headers
r_cnjg(r, z) complex *r, *z;
#else
r_cnjg(complex *r, complex *z)
#endif
{
r->r = z->r;
r->i = - z->i;
}

 VOID
#ifdef KR_headers
d_cnjg(r, z) doublecomplex *r, *z;
#else
d_cnjg(doublecomplex *r, doublecomplex *z)
#endif
{
r->r = z->r;
r->i = - z->i;
}


#ifdef KR_headers
float r_imag(z) complex *z;
#else
float r_imag(complex *z)
#endif
{
return(z->i);
}

#ifdef KR_headers
double d_imag(z) doublecomplex *z;
#else
double d_imag(doublecomplex *z)
#endif
{
return(z->i);
}


#define log10e 0.43429448190325182765

#ifdef KR_headers
float logf();
float r_lg10(x) real *x;
#else
#undef abs

float r_lg10(real *x)
#endif
{
return( log10e * logf(*x) );
}

#ifdef KR_headers
double log();
double d_lg10(x) doublereal *x;
#else
#undef abs

double d_lg10(doublereal *x)
#endif
{
return( log10e * log(*x) );
}

#ifdef KR_headers
double r_sign(a,b) real *a, *b;
#else
double r_sign(real *a, real *b)
#endif
{
float x;
x = (*a >= 0.0f ? *a : - *a);
return( *b >= 0.0f ? x : -x);
}

#ifdef KR_headers
double d_sign(a,b) doublereal *a, *b;
#else
double d_sign(doublereal *a, doublereal *b)
#endif
{
double x;
x = (*a >= 0 ? *a : - *a);
return( *b >= 0 ? x : -x);
}


#ifdef KR_headers
double floor();
integer i_dnnt(x) doublereal *x;
#else
#undef abs

integer i_dnnt(doublereal *x)
#endif
{
return( (*x)>=0 ?
	floor(*x + .5) : -floor(.5 - *x) );
}


#ifdef KR_headers
double floor();
integer i_nint(x) real *x;
#else
#undef abs
integer i_nint(real *x)
#endif
{
return (integer)(*x >= 0 ? floor(*x + .5) : -floor(.5 - *x));
}

#ifdef KR_headers
double pow();
double pow_dd(ap, bp) doublereal *ap, *bp;
#else
#undef abs

double pow_dd(doublereal *ap, doublereal *bp)
#endif
{
return(pow(*ap, *bp) );
}


#ifdef KR_headers
double pow_ri(ap, bp) real *ap; integer *bp;
#else
double pow_ri(real *ap, integer *bp)
#endif
{
float pow, x;
integer n;
unsigned long u;

pow = 1;
x = *ap;
n = *bp;

if(n != 0)
	{
	if(n < 0)
		{
		n = -n;
		x = 1.0f/x;
		}
	for(u = n; ; )
		{
		if(u & 01)
			pow *= x;
		if(u >>= 1)
			x *= x;
		else
			break;
		}
	}
return(pow);
}

#ifdef KR_headers
double pow_di(ap, bp) doublereal *ap; integer *bp;
#else
double pow_di(doublereal *ap, integer *bp)
#endif
{
double pow, x;
integer n;
unsigned long u;

pow = 1;
x = *ap;
n = *bp;

if(n != 0)
	{
	if(n < 0)
		{
		n = -n;
		x = 1/x;
		}
	for(u = n; ; )
		{
		if(u & 01)
			pow *= x;
		if(u >>= 1)
			x *= x;
		else
			break;
		}
	}
return(pow);
}

#ifdef KR_headers
VOID pow_zi(p, a, b) 	/* p = a**b  */
 doublecomplex *p, *a; integer *b;
#else
extern void z_div(doublecomplex*, doublecomplex*, doublecomplex*);
void pow_zi(doublecomplex *p, doublecomplex *a, integer *b) 	/* p = a**b  */
#endif
{
	integer n;
	unsigned long u;
	double t;
	doublecomplex q, x;
	static doublecomplex one = {1.0, 0.0};

	n = *b;
	q.r = 1;
	q.i = 0;

	if(n == 0)
		goto done;
	if(n < 0)
		{
		n = -n;
		z_div(&x, &one, a);
		}
	else
		{
		x.r = a->r;
		x.i = a->i;
		}

	for(u = n; ; )
		{
		if(u & 01)
			{
			t = q.r * x.r - q.i * x.i;
			q.i = q.r * x.i + q.i * x.r;
			q.r = t;
			}
		if(u >>= 1)
			{
			t = x.r * x.r - x.i * x.i;
			x.i = 2 * x.r * x.i;
			x.r = t;
			}
		else
			break;
		}
 done:
	p->i = q.i;
	p->r = q.r;
	}

#ifdef KR_headers
VOID pow_ci(p, a, b) 	/* p = a**b  */
 complex *p, *a; integer *b;
#else
extern void pow_zi(doublecomplex*, doublecomplex*, integer*);
void pow_ci(complex *p, complex *a, integer *b) 	/* p = a**b  */
#endif
{
doublecomplex p1, a1;

a1.r = a->r;
a1.i = a->i;

pow_zi(&p1, &a1, b);

p->r = p1.r;
p->i = p1.i;
}

/* Unless compiled with -DNO_OVERWRITE, this variant of s_cat allows the
 * target of a concatenation to appear on its right-hand side (contrary
 * to the Fortran 77 Standard, but in accordance with Fortran 90).
 */
#define NO_OVERWRITE


#ifndef NO_OVERWRITE

#undef abs
#ifdef KR_headers
 extern char *F77_aloc();
 extern void free();
 extern void exit_();
#else

 extern char *F77_aloc(ftnlen, char*);
#endif

#endif /* NO_OVERWRITE */

 VOID
#ifdef KR_headers
s_cat(lp, rpp, rnp, np, ll) char *lp, *rpp[]; ftnlen rnp[], *np, ll;
#else
s_cat(char *lp, char *rpp[], ftnlen rnp[], ftnlen *np, ftnlen ll)
#endif
{
	ftnlen i, nc;
	char *rp;
	ftnlen n = *np;
#ifndef NO_OVERWRITE
	ftnlen L, m;
	char *lp0, *lp1;

	lp0 = 0;
	lp1 = lp;
	L = ll;
	i = 0;
	while(i < n) {
		rp = rpp[i];
		m = rnp[i++];
		if (rp >= lp1 || rp + m <= lp) {
			if ((L -= m) <= 0) {
				n = i;
				break;
				}
			lp1 += m;
			continue;
			}
		lp0 = lp;
		lp = lp1 = F77_aloc(L = ll, "s_cat");
		break;
		}
	lp1 = lp;
#endif /* NO_OVERWRITE */
	for(i = 0 ; i < n ; ++i) {
		nc = ll;
		if(rnp[i] < nc)
			nc = rnp[i];
		ll -= nc;
		rp = rpp[i];
		while(--nc >= 0)
			*lp++ = *rp++;
		}
	while(--ll >= 0)
		*lp++ = ' ';
#ifndef NO_OVERWRITE
	if (lp0) {
		memmove(lp0, lp1, L);
		free(lp1);
		}
#endif
	}


/* compare two strings */

#ifdef KR_headers
integer s_cmp(a0, b0, la, lb) char *a0, *b0; ftnlen la, lb;
#else
integer s_cmp(char *a0, char *b0, ftnlen la, ftnlen lb)
#endif
{
register unsigned char *a, *aend, *b, *bend;
a = (unsigned char *)a0;
b = (unsigned char *)b0;
aend = a + la;
bend = b + lb;

if(la <= lb)
	{
	while(a < aend)
		if(*a != *b)
			return( *a - *b );
		else
			{ ++a; ++b; }

	while(b < bend)
		if(*b != ' ')
			return( ' ' - *b );
		else	++b;
	}

else
	{
	while(b < bend)
		if(*a == *b)
			{ ++a; ++b; }
		else
			return( *a - *b );
	while(a < aend)
		if(*a != ' ')
			return(*a - ' ');
		else	++a;
	}
return(0);
}
/* Unless compiled with -DNO_OVERWRITE, this variant of s_copy allows the
 * target of an assignment to appear on its right-hand side (contrary
 * to the Fortran 77 Standard, but in accordance with Fortran 90),
 * as in  a(2:5) = a(4:7) .
 */



/* assign strings:  a = b */

#ifdef KR_headers
VOID s_copy(a, b, la, lb) register char *a, *b; ftnlen la, lb;
#else
void s_copy(register char *a, register char *b, ftnlen la, ftnlen lb)
#endif
{
	register char *aend, *bend;

	aend = a + la;

	if(la <= lb)
#ifndef NO_OVERWRITE
		if (a <= b || a >= b + la)
#endif
			while(a < aend)
				*a++ = *b++;
#ifndef NO_OVERWRITE
		else
			for(b += la; a < aend; )
				*--aend = *--b;
#endif

	else {
		bend = b + lb;
#ifndef NO_OVERWRITE
		if (a <= b || a >= bend)
#endif
			while(b < bend)
				*a++ = *b++;
#ifndef NO_OVERWRITE
		else {
			a += lb;
			while(b < bend)
				*--a = *--bend;
			a += lb;
			}
#endif
		while(a < aend)
			*a++ = ' ';
		}
	}


#ifdef KR_headers
double f__cabsf();
double c_abs(z) complex *z;
#else
double f__cabsf(float, float);
double c_abs(complex *z)
#endif
{
return( f__cabsf( z->r, z->i ) );
}

#ifdef KR_headers
double f__cabs();
double z_abs(z) doublecomplex *z;
#else
double f__cabs(double, double);
double z_abs(doublecomplex *z)
#endif
{
return( f__cabs( z->r, z->i ) );
}


#ifdef KR_headers
extern void sig_die();
VOID c_div(c, a, b) complex *a, *b, *c;
#else
extern void sig_die(char*, int);
void c_div(complex *c, complex *a, complex *b)
#endif
{
float ratio, den;
float abr, abi;

if( (abr = b->r) < 0.f)
	abr = - abr;
if( (abi = b->i) < 0.f)
	abi = - abi;
if( abr <= abi )
	{
	  /*Let IEEE Infinties handle this ;( */
	  /*if(abi == 0)
		sig_die("complex division by zero", 1);*/
	ratio = b->r / b->i ;
	den = b->i * (1 + ratio*ratio);
	c->r = (a->r*ratio + a->i) / den;
	c->i = (a->i*ratio - a->r) / den;
	}

else
	{
	ratio = b->i / b->r ;
	den = b->r * (1.f + ratio*ratio);
	c->r = (a->r + a->i*ratio) / den;
	c->i = (a->i - a->r*ratio) / den;
	}

}

#ifdef KR_headers
extern void sig_die();
VOID z_div(c, a, b) doublecomplex *a, *b, *c;
#else
extern void sig_die(char*, int);
void z_div(doublecomplex *c, doublecomplex *a, doublecomplex *b)
#endif
{
double ratio, den;
double abr, abi;

if( (abr = b->r) < 0.)
	abr = - abr;
if( (abi = b->i) < 0.)
	abi = - abi;
if( abr <= abi )
	{
	  /*Let IEEE Infinties handle this ;( */
	  /*if(abi == 0)
		sig_die("complex division by zero", 1);*/
	ratio = b->r / b->i ;
	den = b->i * (1 + ratio*ratio);
	c->r = (a->r*ratio + a->i) / den;
	c->i = (a->i*ratio - a->r) / den;
	}

else
	{
	ratio = b->i / b->r ;
	den = b->r * (1 + ratio*ratio);
	c->r = (a->r + a->i*ratio) / den;
	c->i = (a->i - a->r*ratio) / den;
	}

}


#ifdef KR_headers
float sqrtf(), f__cabsf();
VOID c_sqrt(r, z) complex *r, *z;
#else
#undef abs

extern double f__cabsf(float, float);
void c_sqrt(complex *r, complex *z)
#endif
{
float mag;

if( (mag = f__cabsf(z->r, z->i)) == 0.f)
	r->r = r->i = 0.f;
else if(z->r > 0.0f)
	{
	r->r = sqrtf(0.5f * (mag + z->r) );
	r->i = z->i / r->r / 2.0f;
	}
else
	{
	r->i = sqrtf(0.5f * (mag - z->r) );
	if(z->i < 0.0f)
		r->i = - r->i;
	r->r = z->i / r->i / 2.0f;
	}
}


#ifdef KR_headers
double sqrt(), f__cabs();
VOID z_sqrt(r, z) doublecomplex *r, *z;
#else
#undef abs

extern double f__cabs(double, double);
void z_sqrt(doublecomplex *r, doublecomplex *z)
#endif
{
double mag;

if( (mag = f__cabs(z->r, z->i)) == 0.)
	r->r = r->i = 0.;
else if(z->r > 0)
	{
	r->r = sqrt(0.5 * (mag + z->r) );
	r->i = z->i / r->r / 2;
	}
else
	{
	r->i = sqrt(0.5 * (mag - z->r) );
	if(z->i < 0)
		r->i = - r->i;
	r->r = z->i / r->i / 2;
	}
}
#ifdef __cplusplus
extern "C" {
#endif

#ifdef KR_headers
integer pow_ii(ap, bp) integer *ap, *bp;
#else
integer pow_ii(integer *ap, integer *bp)
#endif
{
	integer pow, x, n;
	unsigned long u;

	x = *ap;
	n = *bp;

	if (n <= 0) {
		if (n == 0 || x == 1)
			return 1;
		if (x != -1)
			return x == 0 ? 1/x : 0;
		n = -n;
		}
	u = n;
	for(pow = 1; ; )
		{
		if(u & 01)
			pow *= x;
		if(u >>= 1)
			x *= x;
		else
			break;
		}
	return(pow);
	}
#ifdef __cplusplus
}
#endif

#ifdef KR_headers
extern void f_exit();
VOID s_stop(s, n) char *s; ftnlen n;
#else
#undef abs
#undef min
#undef max
#ifdef __cplusplus
extern "C" {
#endif
#ifdef __cplusplus
extern "C" {
#endif
void f_exit(void);

int s_stop(char *s, ftnlen n)
#endif
{
int i;

if(n > 0)
	{
	fprintf(stderr, "STOP ");
	for(i = 0; i<n ; ++i)
		putc(*s++, stderr);
	fprintf(stderr, " statement executed\n");
	}
#ifdef NO_ONEXIT
f_exit();
#endif
exit(0);

/* We cannot avoid (useless) compiler diagnostics here:		*/
/* some compilers complain if there is no return statement,	*/
/* and others complain that this one cannot be reached.		*/

return 0; /* NOT REACHED */
}
#ifdef __cplusplus
}
#endif
#ifdef __cplusplus
}
#endif