/***************************************************************************
* utils.cc -- Miscellaneous utils that didn't fit into any of the other *
* source files. *
* *
***********************IMPORTANT NMAP LICENSE TERMS************************
* *
* The Nmap Security Scanner is (C) 1996-2018 Insecure.Com LLC ("The Nmap *
* Project"). Nmap is also a registered trademark of the Nmap Project. *
* This program is free software; you may redistribute and/or modify it *
* under the terms of the GNU General Public License as published by the *
* Free Software Foundation; Version 2 ("GPL"), BUT ONLY WITH ALL OF THE *
* CLARIFICATIONS AND EXCEPTIONS DESCRIBED HEREIN. This guarantees your *
* right to use, modify, and redistribute this software under certain *
* conditions. If you wish to embed Nmap technology into proprietary *
* software, we sell alternative licenses (contact sales@nmap.com). *
* Dozens of software vendors already license Nmap technology such as *
* host discovery, port scanning, OS detection, version detection, and *
* the Nmap Scripting Engine. *
* *
* Note that the GPL places important restrictions on "derivative works", *
* yet it does not provide a detailed definition of that term. To avoid *
* misunderstandings, we interpret that term as broadly as copyright law *
* allows. For example, we consider an application to constitute a *
* derivative work for the purpose of this license if it does any of the *
* following with any software or content covered by this license *
* ("Covered Software"): *
* *
* o Integrates source code from Covered Software. *
* *
* o Reads or includes copyrighted data files, such as Nmap's nmap-os-db *
* or nmap-service-probes. *
* *
* o Is designed specifically to execute Covered Software and parse the *
* results (as opposed to typical shell or execution-menu apps, which will *
* execute anything you tell them to). *
* *
* o Includes Covered Software in a proprietary executable installer. The *
* installers produced by InstallShield are an example of this. Including *
* Nmap with other software in compressed or archival form does not *
* trigger this provision, provided appropriate open source decompression *
* or de-archiving software is widely available for no charge. For the *
* purposes of this license, an installer is considered to include Covered *
* Software even if it actually retrieves a copy of Covered Software from *
* another source during runtime (such as by downloading it from the *
* Internet). *
* *
* o Links (statically or dynamically) to a library which does any of the *
* above. *
* *
* o Executes a helper program, module, or script to do any of the above. *
* *
* This list is not exclusive, but is meant to clarify our interpretation *
* of derived works with some common examples. Other people may interpret *
* the plain GPL differently, so we consider this a special exception to *
* the GPL that we apply to Covered Software. Works which meet any of *
* these conditions must conform to all of the terms of this license, *
* particularly including the GPL Section 3 requirements of providing *
* source code and allowing free redistribution of the work as a whole. *
* *
* As another special exception to the GPL terms, the Nmap Project grants *
* permission to link the code of this program with any version of the *
* OpenSSL library which is distributed under a license identical to that *
* listed in the included docs/licenses/OpenSSL.txt file, and distribute *
* linked combinations including the two. *
* *
* The Nmap Project has permission to redistribute Npcap, a packet *
* capturing driver and library for the Microsoft Windows platform. *
* Npcap is a separate work with it's own license rather than this Nmap *
* license. Since the Npcap license does not permit redistribution *
* without special permission, our Nmap Windows binary packages which *
* contain Npcap may not be redistributed without special permission. *
* *
* Any redistribution of Covered Software, including any derived works, *
* must obey and carry forward all of the terms of this license, including *
* obeying all GPL rules and restrictions. For example, source code of *
* the whole work must be provided and free redistribution must be *
* allowed. All GPL references to "this License", are to be treated as *
* including the terms and conditions of this license text as well. *
* *
* Because this license imposes special exceptions to the GPL, Covered *
* Work may not be combined (even as part of a larger work) with plain GPL *
* software. The terms, conditions, and exceptions of this license must *
* be included as well. This license is incompatible with some other open *
* source licenses as well. In some cases we can relicense portions of *
* Nmap or grant special permissions to use it in other open source *
* software. Please contact fyodor@nmap.org with any such requests. *
* Similarly, we don't incorporate incompatible open source software into *
* Covered Software without special permission from the copyright holders. *
* *
* If you have any questions about the licensing restrictions on using *
* Nmap in other works, we are happy to help. As mentioned above, we also *
* offer an alternative license to integrate Nmap into proprietary *
* applications and appliances. These contracts have been sold to dozens *
* of software vendors, and generally include a perpetual license as well *
* as providing support and updates. They also fund the continued *
* development of Nmap. Please email sales@nmap.com for further *
* information. *
* *
* If you have received a written license agreement or contract for *
* Covered Software stating terms other than these, you may choose to use *
* and redistribute Covered Software under those terms instead of these. *
* *
* Source is provided to this software because we believe users have a *
* right to know exactly what a program is going to do before they run it. *
* This also allows you to audit the software for security holes. *
* *
* Source code also allows you to port Nmap to new platforms, fix bugs, *
* and add new features. You are highly encouraged to send your changes *
* to the dev@nmap.org mailing list for possible incorporation into the *
* main distribution. By sending these changes to Fyodor or one of the *
* Insecure.Org development mailing lists, or checking them into the Nmap *
* source code repository, it is understood (unless you specify *
* otherwise) that you are offering the Nmap Project the unlimited, *
* non-exclusive right to reuse, modify, and relicense the code. Nmap *
* will always be available Open Source, but this is important because *
* the inability to relicense code has caused devastating problems for *
* other Free Software projects (such as KDE and NASM). We also *
* occasionally relicense the code to third parties as discussed above. *
* If you wish to specify special license conditions of your *
* contributions, just say so when you send them. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Nmap *
* license file for more details (it's in a COPYING file included with *
* Nmap, and also available from https://svn.nmap.org/nmap/COPYING) *
* *
***************************************************************************/
#include "nping.h"
#include "utils.h"
#include "NpingOps.h"
#include "global_structures.h"
#include "output.h"
#include "nbase.h"
#include "pcap.h"
#include "dnet.h"
#include <errno.h>
#include <vector>
extern NpingOps o;
/** Returns true if "source" contains at least one instance of "substring" */
bool contains(const char *source, const char *substring){
if(source==NULL || substring==NULL )
nping_fatal(QT_3,"contains(): NULL value received.");
if( strcasestr(source, substring) )
return true;
else
return false;
} /* End of contains() */
/** Returns true if the supplied string matches "rand" or "random" (not case
* sensitive)*/
bool meansRandom(const char *source){
if(source==NULL)
nping_fatal(QT_3,"meansRandom(): NULL value received.");
if( !strcasecmp(source, "rand") || !strcasecmp(source, "random") )
return true;
else
return false;
} /* End of meansRandom() */
/** Returns true if source contains the representation of a number >= min and
* <= max in the given base (with nothing following). */
static bool isNumber_range(const char *source, int base,
unsigned long min, unsigned long max){
unsigned long ul;
char *tail;
errno = 0;
ul = strtoul(source, &tail, base);
if (errno != 0 || tail == source || *tail != '\0')
return false;
return ul >= min && ul <= max;
}
/** Returns true if "source" is a number in the supplied base that can fit
* into a 8-bit var */
bool isNumber_u8(const char *source, int base){
return isNumber_range(source, base, 0UL, 0xFFUL);
}
/** Returns true if "source" is a number in the supplied base that can fit
* into a 16-bit var */
bool isNumber_u16(const char *source, int base){
return isNumber_range(source, base, 0UL, 0xFFFFUL);
}
/** Returns true if "source" is a number in the supplied base that can fit
* into a 32-bit var */
bool isNumber_u32(const char *source, int base){
return isNumber_range(source, base, 0UL, 0xFFFFFFFFUL);
}
/** Returns a buffer that contains the binary equivalent to the supplied
* hex spec or NULL in case of error.
* @warning Returned pointer points to a static buffer that subsequent calls
* will overwrite. */
u8 *parseBufferSpec(char *str, size_t *outlen){
char auxbuff[1024];
static u8 dst[16384];
size_t dstlen=16384;
unsigned int i=0, j=0;
char *start=NULL;
if(str==NULL || outlen==NULL)
return NULL;
/* This catches the empty string possibility "" */
if(strlen(str) == 0)
return NULL;
else
memset(auxbuff,0,1024);
/* String should be treated as a hex number in this format: 0xAABBCCDDEE...
* We process it the way it is specified, we don't perform byte order
* conversions so if the users says 0x00AA we write dst[0]=0x00, dst[1]==0xAA
* no matter the endianness of the host system. */
if( !strncmp("0x", str, 2) ){
/* This catches the case of an empty "0x" */
if(strlen(str) == 2)
return NULL;
start=str+2;
}
/* String should be treated as list of hex char in this format: \x00\xFF\x0A*/
else if( !strncmp("\\x", str, 2) ){
/* This catches the case of an empty "\x" */
if(strlen(str) == 2)
return NULL;
/* Copy all interesting bytes to an aux array, discard "\x" */
for(i=0; i<strlen(str) && j<1023; i++){
if( str[i]!='\\' && str[i]!='x' && str[i]!='X')
auxbuff[j++]=str[i];
}
auxbuff[j]='\0'; /* NULL terminate the string */
start=auxbuff;
}
/* It must be a hex number in this format: AABBCCDDEE (without 0x or \x) */
else{
start=str;
}
/*OK, here we should have "start" pointing to the beginning of a string
* in the format AABBCCDDEE... */
/* Check if all we've got are hex chars */
for(i=0; i<strlen(start); i++){
if( !isxdigit(start[i]) )
return NULL;
}
/* Check if we have an even number of hex chars */
if( strlen(start)%2 != 0 )
return NULL;
/* We are ready to parse this string */
for(i=0, j=0; j<dstlen && i<strlen(start)-1; i+=2){
char twobytes[3];
twobytes[0]=start[i];
twobytes[1]=start[i+1];
twobytes[2]='\0';
dst[j++]=(u8)strtol(twobytes, NULL, 16);
}
/* Store final length */
*outlen=j;
return dst;
} /* End of parseBufferSpec*/
/* Determines how many bits "a" and "b" have in common until they differ. For
* example, if A is 11111111 and B is 11111101, this function will return 6,
* as the first 6 bits of A and B are equal.
* @param len is the length in BYTES of "a" and "b".
*
* TODO: Check if this function is endian-safe.
*/
int bitcmp(u8 *a, u8*b, int len){
int equal=0;
int firstpart=len-1;
if(a==NULL || b==NULL || len<=0)
return -1;
for(int i=0; i<len; i++){
if(a[i]!=b[i]){
firstpart=i;
break;
}
}
/* Do all bits match? */
if(firstpart==len)
return len*8;
else
equal=firstpart*8;
/* Take the first byte that didn't match completely and determine how
* many bits they have in common until they differ */
for(int i=0, j=0x80; i<8; i++, j/=2){
if( (a[firstpart] & j) == (b[firstpart] & j) )
equal++;
else
return equal;
}
return equal;
} /* End of bitcmp() */
/** Removes every instance of the character stored in parameter "c" in the
* supplied string.
* @warning the supplied buffer is modified by this function. */
int removechar(char *string, char c){
size_t i=0, j=0;
if(string==NULL)
return OP_FAILURE;
while(string[j] != '\0') {
if(string[j] != c)
string[i++] = string[j];
j++;
}
string[i] = '\0';
return OP_SUCCESS;
} /* End of removechar() */
/** Removes every instance of ':' in the supplied string.
* @warning the supplied buffer is modified by this function. Whenever a
* colon is found, the rest of the string is moved one position to the left
* so the colon gets overwritten. */
int removecolon(char *string){
return removechar(string, ':');
}/* End of removecolon() */
/* lamont_hdump() has a bug so 3-byte lines are not printed correctly.
* This function is a better version of hdump written by Luis MartinGarcia.
* It uses current locale to determine if a character is printable or
* not. It prints 73char wide lines like these:
0000 e8 60 65 86 d7 86 6d 30 35 97 54 87 ff 67 05 9e .`e...m05.T..g..
0010 07 5a 98 c0 ea ad 50 d2 62 4f 7b ff e1 34 f8 fc .Z....P.bO{..4..
0020 c4 84 0a 6a 39 ad 3c 10 63 b2 22 c4 24 40 f4 b1 ...j9.<.c.".$@..
* The lines look basically like Wireshark hex dump.
* */
void luis_hdump(char *cp, unsigned int length) {
static char asciify[257]; /* Stores character table */
static bool asc_init=false; /* Flag to generate table only once */
unsigned int i=0, hex=0, asc=0; /* Array indexes */
int line_count=0; /* For byte count at line start */
u8 current_char=0; /* Current character to print */
#define LINE_LEN 70 /* Length of printed line */
char line2print[LINE_LEN]; /* Stores current line */
char printbyte[16]; /* For byte conversion */
memset(line2print, ' ', LINE_LEN);
line2print[LINE_LEN-1]='\0';
/* On the first run, generate a list of nice printable characters
* (according to current locale) */
if( asc_init==false){
asc_init=true;
for(int i=0; i<256; i++){
if( isalnum(i) || isdigit(i) || ispunct(i) ){ asciify[i]=i; }
else{ asciify[i]='.'; }
}
}
#define HEX_START 3
#define ASC_START 53
for(i=0, hex=HEX_START, asc=ASC_START; i<length; i++){
current_char=cp[i];
if( hex==HEX_START+24) hex++; /* Insert space every 8 bytes */
/* First print the hex number */
sprintf(printbyte,"%02x", current_char);
line2print[hex++]=printbyte[0];
line2print[hex++]=printbyte[1];
line2print[hex++]=' ';
/* Then print its ascii equivalent */
line2print[asc++]=asciify[ current_char ];
/* Every 16 buffer bytes, print the line. */
if( (((i+1)%16)==0 && i!=0) || i+1==length ){
printf("%04x%s\n", (16*line_count++), line2print);
hex=HEX_START; asc=ASC_START;
memset(line2print, ' ', LINE_LEN);
line2print[LINE_LEN-1]='\0';
}
}
return;
} /* End of luis_hdump() */
/** Takes a string representing a number, converts it to an unsigned
* long, and stores it in *dst.
* @param str is the string to be converted. The number may be in any
* of the following forms:
* - Hexadecimal number: It must start with "0x" and have an even
* number of hex digits after it.
* - Octal number: It must start with "0" and have any number of
* octal digits ([0,7]) after it.
* - Decimal number: Any string that does not start with "0x" or
* "0" will be treated as a decimal number. It may only contain
* decimal digits (no whitespace, no weird symbols, and not even
* a sign character (+ or -).
* - Random number: The number specification may contain the special
* value "rand" or "random". In that case, a random number of the
* requested length will be generated and stored in the supplied
* buffer.
* @param min values less than this cause an error.
* @param max values greater than this cause an error.
* @param dst should be the address of an unsigned long variable.
* @return OP_SUCCESS if conversion was successful or OP_FAILURE in
* case of error. */
static int parse_unsigned_number(const char *str, unsigned long min, unsigned long max, unsigned long *dst){
unsigned long int result;
char *tail=NULL;
if(str==NULL || dst==NULL)
return OP_FAILURE;
/* Check if the spec contains a sign character */
if(strpbrk(str, "-+") != NULL)
return OP_FAILURE;
/* Case 1: User wants a random value */
if(!strcasecmp(str, "rand") || !strcasecmp(str, "random")){
u32 r = get_random_u32();
*dst = min + (unsigned long) ((max - min + 1) * ((double) r / 0xffffffffUL));
return OP_SUCCESS;
}
/* Case 2: User supplied an actual number */
errno=0;
result=strtoul(str, &tail, 0);
if(errno!=0 || tail==str || *tail!='\0')
return OP_FAILURE;
if (result >= min && result <= max) {
*dst = result;
return OP_SUCCESS;
} else {
return OP_FAILURE;
}
} /* End of parse_number() */
/** Takes a string representing an 8-bit number and converts it into an
* actual integer. The result is stored in memory area pointed by
* "dstbuff". Returns OP_SUCCESS if conversion was successful or
* OP_FAILURE in case of error.*/
int parse_u8(const char *str, u8 *dst){
unsigned long ul;
int ret;
ret = parse_unsigned_number(str, 0UL, 0xffUL, &ul);
if (ret == OP_SUCCESS)
*dst = ul;
return ret;
}
/** Takes a string representing a 16-bit number and converts it into an
* actual integer. The result is stored in memory area pointed by
* "dstbuff". Returns OP_SUCCESS if conversion was successful or
* OP_FAILURE in case of error.*/
int parse_u16(const char *str, u16 *dst){
unsigned long ul;
int ret;
ret = parse_unsigned_number(str, 0UL, 0xffffUL, &ul);
if (ret == OP_SUCCESS)
*dst = ul;
return ret;
}
/** Takes a string representing a 32-bit number and converts it into an
* actual integer. The result is stored in memory area pointed by
* "dstbuff". Returns OP_SUCCESS if conversion was successful or
* OP_FAILURE in case of error.*/
int parse_u32(const char *str, u32 *dst){
unsigned long ul;
int ret;
ret = parse_unsigned_number(str, 0UL, 0xffffffffUL, &ul);
if (ret == OP_SUCCESS)
*dst = ul;
return ret;
}
/** Prints the hexadecimal dump of the supplied buffer to standard output */
int print_hexdump(int level, const u8 *cp, u32 length){
char *str = hexdump(cp, length);
if(str==NULL)
return OP_FAILURE;
nping_print(level, "%s", str);
free(str);
return OP_SUCCESS;
} /* End of print_hexdump() */