Blob Blame History Raw
/* ----------------------------------------------------------------------- *
 *
 *   Copyright 1996-2019 The NASM Authors - All Rights Reserved
 *   See the file AUTHORS included with the NASM distribution for
 *   the specific copyright holders.
 *
 *   Redistribution and use in source and binary forms, with or without
 *   modification, are permitted provided that the following
 *   conditions are met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.
 *
 *     THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
 *     CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
 *     INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 *     MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 *     DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 *     CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 *     SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 *     NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 *     LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 *     HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
 *     OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
 *     EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * ----------------------------------------------------------------------- */

/*
 * Common code for outelf32 and outelf64
 */

#include "compiler.h"


#include "nasm.h"
#include "nasmlib.h"
#include "error.h"
#include "saa.h"
#include "raa.h"
#include "stdscan.h"
#include "eval.h"
#include "outform.h"
#include "outlib.h"
#include "rbtree.h"
#include "hashtbl.h"
#include "ver.h"

#include "dwarf.h"
#include "stabs.h"
#include "outelf.h"
#include "elf.h"

#if defined(OF_ELF32) || defined(OF_ELF64) || defined(OF_ELFX32)

#define SECT_DELTA 32
static struct elf_section **sects;
static int nsects, sectlen;

#define SHSTR_DELTA 256
static char *shstrtab;
static int shstrtablen, shstrtabsize;

static struct SAA *syms;
static uint32_t nlocals, nglobs, ndebugs; /* Symbol counts */

static int32_t def_seg;

static struct RAA *bsym;

static struct SAA *symtab, *symtab_shndx;

static struct SAA *strs;
static uint32_t strslen;

static struct RAA *section_by_index;
static struct hash_table section_by_name;

static struct elf_symbol *fwds;

static char elf_module[FILENAME_MAX];

extern const struct ofmt of_elf32;
extern const struct ofmt of_elf64;
extern const struct ofmt of_elfx32;

static struct ELF_SECTDATA {
    void                *data;
    int64_t             len;
    bool                is_saa;
} *elf_sects;

static int elf_nsect, nsections;
static int64_t elf_foffs;

static void elf_write(void);
static void elf_sect_write(struct elf_section *, const void *, size_t);
static void elf_sect_writeaddr(struct elf_section *, int64_t, size_t);
static void elf_section_header(int name, int type, uint64_t flags,
                               void *data, bool is_saa, uint64_t datalen,
                               int link, int info,
                               uint64_t align, uint64_t entsize);
static void elf_write_sections(void);
static size_t elf_build_symtab(void);
static int add_sectname(const char *, const char *);

/* First debugging section index */
static int sec_debug;

struct erel {
    int                 offset;
    int                 info;
};

struct symlininfo {
    int                 offset;
    int                 section;        /* index into sects[] */
    int                 segto;          /* internal section number */
    char                *name;          /* shallow-copied pointer of section name */
};

struct linelist {
    struct linelist     *next;
    struct linelist     *last;
    struct symlininfo   info;
    char                *filename;
    int                 line;
};

struct sectlist {
    struct SAA          *psaa;
    int                 section;
    int                 line;
    int                 offset;
    int                 file;
    struct sectlist     *next;
    struct sectlist     *last;
};

/* common debug variables */
static int currentline = 1;
static int debug_immcall = 0;

/* stabs debug variables */
static struct linelist *stabslines = 0;
static int numlinestabs = 0;
static char *stabs_filename = 0;
static uint8_t *stabbuf = 0, *stabstrbuf = 0, *stabrelbuf = 0;
static int stablen, stabstrlen, stabrellen;

/* dwarf debug variables */
static struct linelist *dwarf_flist = 0, *dwarf_clist = 0, *dwarf_elist = 0;
static struct sectlist *dwarf_fsect = 0, *dwarf_csect = 0, *dwarf_esect = 0;
static int dwarf_numfiles = 0, dwarf_nsections;
static uint8_t *arangesbuf = 0, *arangesrelbuf = 0, *pubnamesbuf = 0, *infobuf = 0,  *inforelbuf = 0,
               *abbrevbuf = 0, *linebuf = 0, *linerelbuf = 0, *framebuf = 0, *locbuf = 0;
static int8_t line_base = -5, line_range = 14, opcode_base = 13;
static int arangeslen, arangesrellen, pubnameslen, infolen, inforellen,
           abbrevlen, linelen, linerellen, framelen, loclen;
static int64_t dwarf_infosym, dwarf_abbrevsym, dwarf_linesym;

static struct elf_symbol *lastsym;

/* common debugging routines */
static void debug_typevalue(int32_t);

/* stabs debugging routines */
static void stabs_linenum(const char *filename, int32_t linenumber, int32_t);
static void stabs_output(int, void *);
static void stabs_generate(void);
static void stabs_cleanup(void);

/* dwarf debugging routines */

/* This should match the order in elf_write() */
enum dwarf_sect {
    DWARF_ARANGES,
    DWARF_RELA_ARANGES,
    DWARF_PUBNAMES,
    DWARF_INFO,
    DWARF_RELA_INFO,
    DWARF_ABBREV,
    DWARF_LINE,
    DWARF_RELA_LINE,
    DWARF_FRAME,
    DWARF_LOC,
    DWARF_NSECT
};

struct dwarf_format {
    uint16_t dwarf_version;
    uint16_t sect_version[DWARF_NSECT];
    /* ... add more here to generalize further */
};
const struct dwarf_format *dwfmt;

static void dwarf32_init(void);
static void dwarfx32_init(void);
static void dwarf64_init(void);
static void dwarf_linenum(const char *filename, int32_t linenumber, int32_t);
static void dwarf_output(int, void *);
static void dwarf_generate(void);
static void dwarf_cleanup(void);
static void dwarf_findfile(const char *);
static void dwarf_findsect(const int);

struct elf_format_info {
    size_t word;                /* Word size (4 or 8) */
    size_t ehdr_size;           /* Size of the ELF header */
    size_t shdr_size;           /* Size of a section header */
    size_t sym_size;            /* Size of a symbol */
    size_t rel_size;            /* Size of a reltype relocation */
    size_t rela_size;           /* Size of a RELA relocation */
    char relpfx[8];             /* Relocation section prefix */
    uint32_t reltype;           /* Relocation section type */
    uint16_t e_machine;         /* Header e_machine field */
    uint8_t ei_class;           /* ELFCLASS32 or ELFCLASS64 */
    bool elf64;                 /* 64-bit ELF */

    /* Write a symbol */
    void (*elf_sym)(const struct elf_symbol *);

    /* Build a relocation table */
    struct SAA *(*elf_build_reltab)(const struct elf_reloc *);
};
static const struct elf_format_info *efmt;

static void elf32_sym(const struct elf_symbol *sym);
static void elf64_sym(const struct elf_symbol *sym);

static struct SAA *elf32_build_reltab(const struct elf_reloc *r);
static struct SAA *elfx32_build_reltab(const struct elf_reloc *r);
static struct SAA *elf64_build_reltab(const struct elf_reloc *r);

static bool dfmt_is_stabs(void);
static bool dfmt_is_dwarf(void);

/*
 * Special NASM section numbers which are used to define ELF special
 * symbols.
 */
static int32_t elf_gotpc_sect, elf_gotoff_sect;
static int32_t elf_got_sect, elf_plt_sect;
static int32_t elf_sym_sect, elf_gottpoff_sect, elf_tlsie_sect;

uint8_t elf_osabi = 0;      /* Default OSABI = 0 (System V or Linux) */
uint8_t elf_abiver = 0;     /* Current ABI version */

/* Known sections with nonstandard defaults. -n means n*pointer size. */
struct elf_known_section {
    const char *name;   /* Name of section */
    int type;           /* Section type (SHT_) */
    uint32_t flags;     /* Section flags (SHF_) */
    int align;          /* Section alignment */
    int entsize;	/* Entry size, if applicable */
};

static const struct elf_known_section elf_known_sections[] = {
    { ".text",          SHT_PROGBITS,      SHF_ALLOC|SHF_EXECINSTR,     16,  0 },
    { ".rodata",        SHT_PROGBITS,      SHF_ALLOC,                    4,  0 },
    { ".lrodata",       SHT_PROGBITS,      SHF_ALLOC,                    4,  0 },
    { ".data",          SHT_PROGBITS,      SHF_ALLOC|SHF_WRITE,          4,  0 },
    { ".ldata",         SHT_PROGBITS,      SHF_ALLOC|SHF_WRITE,          4,  0 },
    { ".bss",           SHT_NOBITS,        SHF_ALLOC|SHF_WRITE,          4,  0 },
    { ".lbss",          SHT_NOBITS,        SHF_ALLOC|SHF_WRITE,          4,  0 },
    { ".tdata",         SHT_PROGBITS,      SHF_ALLOC|SHF_WRITE|SHF_TLS,  4,  0 },
    { ".tbss",          SHT_NOBITS,        SHF_ALLOC|SHF_WRITE|SHF_TLS,  4,  0 },
    { ".comment",       SHT_PROGBITS,      0,                            1,  0 },
    { ".preinit_array", SHT_PREINIT_ARRAY, SHF_ALLOC,                   -1, -1 },
    { ".init_array",    SHT_INIT_ARRAY,    SHF_ALLOC,                   -1, -1 },
    { ".fini_array",    SHT_FINI_ARRAY,    SHF_ALLOC,                   -1, -1 },
    { ".note",          SHT_NOTE,          0,                            4,  0 },
    { NULL /*default*/, SHT_PROGBITS,      SHF_ALLOC,                    1,  0 }
};

struct size_unit {
    char name[8];
    int bytes;
    int align;
};
static const struct size_unit size_units[] =
{
    { "byte",     1,  1 },
    { "word",     2,  2 },
    { "dword",    4,  4 },
    { "qword",    8,  8 },
    { "tword",   10,  2 },
    { "tbyte",   10,  2 },
    { "oword",   16, 16 },
    { "xword",   16, 16 },
    { "yword",   32, 32 },
    { "zword",   64, 64 },
    { "pointer", -1, -1 },
    { "",         0,  0 }
};

static inline size_t to_bytes(int val)
{
    return (val >= 0) ? (size_t)val : -val * efmt->word;
}

/* parse section attributes */
static void elf_section_attrib(char *name, char *attr, uint32_t *flags_and, uint32_t *flags_or,
                               uint64_t *alignp, uint64_t *entsize, int *type)
{
    char *opt, *val, *next;
    uint64_t align = 0;
    uint64_t xalign = 0;

    opt = nasm_skip_spaces(attr);
    if (!opt || !*opt)
        return;

    while ((opt = nasm_opt_val(opt, &val, &next))) {
        if (!nasm_stricmp(opt, "align")) {
            if (!val) {
                nasm_nonfatal("section align without value specified");
            } else {
                bool err;
                uint64_t a = readnum(val, &err);
                if (a && !is_power2(a)) {
                    nasm_error(ERR_NONFATAL,
                               "section alignment %"PRId64" is not a power of two",
                               a);
                } else if (a > align) {
                    align = a;
                }
            }
        } else if (!nasm_stricmp(opt, "alloc")) {
            *flags_and  |= SHF_ALLOC;
            *flags_or   |= SHF_ALLOC;
        } else if (!nasm_stricmp(opt, "noalloc")) {
            *flags_and  |= SHF_ALLOC;
            *flags_or   &= ~SHF_ALLOC;
        } else if (!nasm_stricmp(opt, "exec")) {
            *flags_and  |= SHF_EXECINSTR;
            *flags_or   |= SHF_EXECINSTR;
        } else if (!nasm_stricmp(opt, "noexec")) {
            *flags_and  |= SHF_EXECINSTR;
            *flags_or   &= ~SHF_EXECINSTR;
        } else if (!nasm_stricmp(opt, "write")) {
            *flags_and  |= SHF_WRITE;
            *flags_or   |= SHF_WRITE;
        } else if (!nasm_stricmp(opt, "nowrite") ||
		   !nasm_stricmp(opt, "readonly")) {
            *flags_and  |= SHF_WRITE;
            *flags_or   &= ~SHF_WRITE;
        } else if (!nasm_stricmp(opt, "tls")) {
            *flags_and  |= SHF_TLS;
            *flags_or   |= SHF_TLS;
        } else if (!nasm_stricmp(opt, "notls")) {
            *flags_and  |= SHF_TLS;
            *flags_or   &= ~SHF_TLS;
        } else if (!nasm_stricmp(opt, "merge")) {
            *flags_and  |= SHF_MERGE;
            *flags_or   |= SHF_MERGE;
        } else if (!nasm_stricmp(opt, "nomerge")) {
            *flags_and  |= SHF_MERGE;
            *flags_or   &= ~SHF_MERGE;
        } else if (!nasm_stricmp(opt, "strings")) {
            *flags_and  |= SHF_STRINGS;
            *flags_or   |= SHF_STRINGS;
        } else if (!nasm_stricmp(opt, "nostrings")) {
            *flags_and  |= SHF_STRINGS;
            *flags_or   &= ~SHF_STRINGS;
        } else if (!nasm_stricmp(opt, "progbits")) {
            *type = SHT_PROGBITS;
        } else if (!nasm_stricmp(opt, "nobits")) {
            *type = SHT_NOBITS;
        } else if (!nasm_stricmp(opt, "note")) {
            *type = SHT_NOTE;
	} else if (!nasm_stricmp(opt, "preinit_array")) {
	    *type = SHT_PREINIT_ARRAY;
	} else if (!nasm_stricmp(opt, "init_array")) {
	    *type = SHT_INIT_ARRAY;
	} else if (!nasm_stricmp(opt, "fini_array")) {
	    *type = SHT_FINI_ARRAY;
        } else {
	    uint64_t mult;
	    size_t l;
	    const char *a = strchr(opt, '*');
	    bool err;
	    const struct size_unit *su;

	    if (a) {
		l = a - opt - 1;
		mult = readnum(a+1, &err);
	    } else {
		l = strlen(opt);
		mult = 1;
	    }

	    for (su = size_units; su->bytes; su++) {
		if (!nasm_strnicmp(opt, su->name, l))
		    break;
	    }

	    if (su->bytes) {
		*entsize = to_bytes(su->bytes) * mult;
		xalign = to_bytes(su->align);
	    } else {
		/* Unknown attribute */
		nasm_warn(WARN_OTHER,
			   "unknown section attribute '%s' ignored on"
			   " declaration of section `%s'", opt, name);
	    }
         }
        opt = next;
    }

    switch (*type) {
    case SHT_PREINIT_ARRAY:
    case SHT_INIT_ARRAY:
    case SHT_FINI_ARRAY:
	if (!xalign)
	    xalign = efmt->word;
	if (!*entsize)
	    *entsize = efmt->word;
	break;
    default:
	break;
    }

    if (!align)
        align = xalign;
    if (!align)
	align = SHA_ANY;

    *alignp = align;
}

static enum directive_result
elf_directive(enum directive directive, char *value)
{
    int64_t n;
    bool err;
    char *p;

    switch (directive) {
    case D_OSABI:
        if (!pass_first())      /* XXX: Why? */
            return DIRR_OK;

        n = readnum(value, &err);
        if (err) {
            nasm_nonfatal("`osabi' directive requires a parameter");
            return DIRR_ERROR;
        }

        if (n < 0 || n > 255) {
            nasm_nonfatal("valid osabi numbers are 0 to 255");
            return DIRR_ERROR;
        }

        elf_osabi  = n;
        elf_abiver = 0;

        p = strchr(value,',');
        if (!p)
            return DIRR_OK;

        n = readnum(p + 1, &err);
        if (err || n < 0 || n > 255) {
            nasm_nonfatal("invalid ABI version number (valid: 0 to 255)");
            return DIRR_ERROR;
        }

        elf_abiver = n;
        return DIRR_OK;

    default:
        return DIRR_UNKNOWN;
    }
}

static void elf_init(void);

static void elf32_init(void)
{
    static const struct elf_format_info ef_elf32 = {
        4,
        sizeof(Elf32_Ehdr),
        sizeof(Elf32_Shdr),
        sizeof(Elf32_Sym),
        sizeof(Elf32_Rel),
        sizeof(Elf32_Rela),
        ".rel",
        SHT_REL,
        EM_386,
        ELFCLASS32,
        false,

        elf32_sym,
        elf32_build_reltab
    };
    efmt = &ef_elf32;
    elf_init();
}

static void elfx32_init(void)
{
    static const struct elf_format_info ef_elfx32 = {
        4,
        sizeof(Elf32_Ehdr),
        sizeof(Elf32_Shdr),
        sizeof(Elf32_Sym),
        sizeof(Elf32_Rela),
        sizeof(Elf32_Rela),
        ".rela",
        SHT_RELA,
        EM_X86_64,
        ELFCLASS32,
        false,

        elf32_sym,
        elfx32_build_reltab
    };
    efmt = &ef_elfx32;
    elf_init();
}

static void elf64_init(void)
{
    static const struct elf_format_info ef_elf64 = {
        8,
        sizeof(Elf64_Ehdr),
        sizeof(Elf64_Shdr),
        sizeof(Elf64_Sym),
        sizeof(Elf64_Rela),
        sizeof(Elf64_Rela),
        ".rela",
        SHT_RELA,
        EM_X86_64,
        ELFCLASS64,
        true,

        elf64_sym,
        elf64_build_reltab
    };
    efmt = &ef_elf64;
    elf_init();
}

static void elf_init(void)
{
    static const char * const reserved_sections[] = {
        ".shstrtab", ".strtab", ".symtab", ".symtab_shndx", NULL
    };
    const char * const *p;

    strlcpy(elf_module, inname, sizeof(elf_module));
    sects = NULL;
    nsects = sectlen = 0;
    syms = saa_init((int32_t)sizeof(struct elf_symbol));
    nlocals = nglobs = ndebugs = 0;
    bsym = raa_init();
    strs = saa_init(1L);
    saa_wbytes(strs, "\0", 1L);
    saa_wbytes(strs, elf_module, strlen(elf_module)+1);
    strslen = 2 + strlen(elf_module);
    shstrtab = NULL;
    shstrtablen = shstrtabsize = 0;;
    add_sectname("", "");       /* SHN_UNDEF */

    fwds = NULL;

    section_by_index = raa_init();

    /*
     * Add reserved section names to the section hash, with NULL
     * as the data pointer
     */
    for (p = reserved_sections; *p; p++) {
        struct hash_insert hi;
        hash_find(&section_by_name, *p, &hi);
        hash_add(&hi, *p, NULL);
    }

    /*
     * FIXME: tlsie is Elf32 only and
     * gottpoff is Elfx32|64 only.
     */
    elf_gotpc_sect = seg_alloc();
    backend_label("..gotpc", elf_gotpc_sect + 1, 0L);
    elf_gotoff_sect = seg_alloc();
    backend_label("..gotoff", elf_gotoff_sect + 1, 0L);
    elf_got_sect = seg_alloc();
    backend_label("..got", elf_got_sect + 1, 0L);
    elf_plt_sect = seg_alloc();
    backend_label("..plt", elf_plt_sect + 1, 0L);
    elf_sym_sect = seg_alloc();
    backend_label("..sym", elf_sym_sect + 1, 0L);
    elf_gottpoff_sect = seg_alloc();
    backend_label("..gottpoff", elf_gottpoff_sect + 1, 0L);
    elf_tlsie_sect = seg_alloc();
    backend_label("..tlsie", elf_tlsie_sect + 1, 0L);

    def_seg = seg_alloc();
}

static void elf_cleanup(void)
{
    struct elf_reloc *r;
    int i;

    elf_write();
    for (i = 0; i < nsects; i++) {
        if (sects[i]->type != SHT_NOBITS)
            saa_free(sects[i]->data);
        if (sects[i]->rel)
            saa_free(sects[i]->rel);
        while (sects[i]->head) {
            r = sects[i]->head;
            sects[i]->head = sects[i]->head->next;
            nasm_free(r);
        }
    }
    hash_free(&section_by_name);
    raa_free(section_by_index);
    nasm_free(sects);
    saa_free(syms);
    raa_free(bsym);
    saa_free(strs);
    dfmt->cleanup();
}

/*
 * Add entry to the elf .shstrtab section and increment nsections.
 * Returns the section index for this new section.
 *
 * IMPORTANT: this needs to match the order the section headers are
 * emitted.
 */
static int add_sectname(const char *firsthalf, const char *secondhalf)
{
    int l1 = strlen(firsthalf);
    int l2 = strlen(secondhalf);

    while (shstrtablen + l1 + l2 + 1 > shstrtabsize)
        shstrtab = nasm_realloc(shstrtab, (shstrtabsize += SHSTR_DELTA));

    memcpy(shstrtab + shstrtablen, firsthalf, l1);
    shstrtablen += l1;
    memcpy(shstrtab + shstrtablen, secondhalf, l2+1);
    shstrtablen += l2 + 1;

    return nsections++;
}

static struct elf_section *
elf_make_section(char *name, int type, int flags, uint64_t align)
{
    struct elf_section *s;

    s = nasm_zalloc(sizeof(*s));

    if (type != SHT_NOBITS)
        s->data = saa_init(1L);
    s->tail = &s->head;
    if (!strcmp(name, ".text"))
        s->index = def_seg;
    else
        s->index = seg_alloc();

    s->name     = nasm_strdup(name);
    s->type     = type;
    s->flags    = flags;
    s->align    = align;
    s->shndx    = add_sectname("", name);

    if (nsects >= sectlen)
        sects = nasm_realloc(sects, (sectlen += SECT_DELTA) * sizeof(*sects));
    sects[nsects++] = s;

    return s;
}

static int32_t elf_section_names(char *name, int *bits)
{
    char *p;
    uint32_t flags, flags_and, flags_or;
    uint64_t align, entsize;
    void **hp;
    struct elf_section *s;
    struct hash_insert hi;
    int type;

    if (!name) {
        *bits = ofmt->maxbits;
        return def_seg;
    }

    p = nasm_skip_word(name);
    if (*p)
        *p++ = '\0';
    flags_and = flags_or = type = align = entsize = 0;

    elf_section_attrib(name, p, &flags_and, &flags_or, &align, &entsize, &type);

    hp = hash_find(&section_by_name, name, &hi);
    if (hp) {
        s = *hp;
        if (!s) {
            nasm_nonfatal("attempt to redefine reserved section name `%s'", name);
            return NO_SEG;
        }
    } else {
        const struct elf_known_section *ks = elf_known_sections;

        while (ks->name) {
            if (!strcmp(name, ks->name))
                break;
            ks++;
        }

        type = type ? type : ks->type;
	if (!align)
	    align = to_bytes(ks->align);
	if (!entsize)
	    entsize = to_bytes(ks->entsize);
        flags = (ks->flags & ~flags_and) | flags_or;

        s = elf_make_section(name, type, flags, align);
        hash_add(&hi, s->name, s);
        section_by_index = raa_write_ptr(section_by_index, s->index >> 1, s);
    }

    if ((type && s->type != type)
        || ((s->flags & flags_and) != flags_or)
        || (entsize && s->entsize && entsize != s->entsize)) {
        nasm_warn(WARN_OTHER, "incompatible section attributes ignored on"
                  " redeclaration of section `%s'", name);
    }

    if (align > s->align)
        s->align = align;

    if (entsize && !s->entsize)
        s->entsize = entsize;

    if ((flags_or & SHF_MERGE) && s->entsize == 0) {
        if (!(s->flags & SHF_STRINGS))
            nasm_nonfatal("section attribute merge specified without an entry size or `strings'");
        s->entsize = 1;
    }

    return s->index;
}

static inline bool sym_type_local(int type)
{
    return ELF32_ST_BIND(type) == STB_LOCAL;
}

static void elf_deflabel(char *name, int32_t segment, int64_t offset,
                         int is_global, char *special)
{
    int pos = strslen;
    struct elf_symbol *sym;
    const char *spcword = nasm_skip_spaces(special);
    int bind, type;             /* st_info components */
    const struct elf_section *sec = NULL;

    if (debug_level(2)) {
        nasm_debug(" elf_deflabel: %s, seg=%"PRIx32", off=%"PRIx64", is_global=%d, %s\n",
                   name, segment, offset, is_global, special);
    }

    if (name[0] == '.' && name[1] == '.' && name[2] != '@') {
        /*
         * This is a NASM special symbol. We never allow it into
         * the ELF symbol table, even if it's a valid one. If it
         * _isn't_ a valid one, we should barf immediately.
         *
         * FIXME: tlsie is Elf32 only, and gottpoff is Elfx32|64 only.
         */
        if (strcmp(name, "..gotpc") && strcmp(name, "..gotoff") &&
            strcmp(name, "..got") && strcmp(name, "..plt") &&
            strcmp(name, "..sym") && strcmp(name, "..gottpoff") &&
            strcmp(name, "..tlsie"))
            nasm_nonfatal("unrecognised special symbol `%s'", name);
        return;
    }

    if (is_global == 3) {
        struct elf_symbol **s;
        /*
         * Fix up a forward-reference symbol size from the first
         * pass.
         */
        for (s = &fwds; *s; s = &(*s)->nextfwd)
            if (!strcmp((*s)->name, name)) {
                struct tokenval tokval;
                expr *e;
                char *p = nasm_skip_spaces(nasm_skip_word(special));

                stdscan_reset();
                stdscan_set(p);
                tokval.t_type = TOKEN_INVALID;
                e = evaluate(stdscan, NULL, &tokval, NULL, 1, NULL);
                if (e) {
                    if (!is_simple(e))
                        nasm_nonfatal("cannot use relocatable"
                                      " expression as symbol size");
                    else
                        (*s)->size = reloc_value(e);
                }

                /*
                 * Remove it from the list of unresolved sizes.
                 */
                nasm_free((*s)->name);
                *s = (*s)->nextfwd;
                return;
            }
        return;                 /* it wasn't an important one */
    }

    saa_wbytes(strs, name, (int32_t)(1 + strlen(name)));
    strslen += 1 + strlen(name);

    lastsym = sym = saa_wstruct(syms);

    memset(&sym->symv, 0, sizeof(struct rbtree));

    sym->strpos = pos;
    bind = is_global ? STB_GLOBAL : STB_LOCAL;
    type = STT_NOTYPE;
    sym->other = STV_DEFAULT;
    sym->size = 0;
    if (segment == NO_SEG) {
        sym->section = XSHN_ABS;
    } else {
        sym->section = XSHN_UNDEF;
        if (segment == def_seg) {
            /* we have to be sure at least text section is there */
            int tempint;
            if (segment != elf_section_names(".text", &tempint))
                nasm_panic("strange segment conditions in ELF driver");
        }
        sec = raa_read_ptr(section_by_index, segment >> 1);
        if (sec)
            sym->section = sec->shndx;
    }

    if (is_global == 2) {
        sym->size = offset;
        sym->symv.key = 0;
        sym->section = XSHN_COMMON;
        /*
         * We have a common variable. Check the special text to see
         * if it's a valid number and power of two; if so, store it
         * as the alignment for the common variable.
         *
         * XXX: this should allow an expression.
         */
        if (spcword) {
            bool err;
            sym->symv.key = readnum(spcword, &err);
            if (err)
                nasm_nonfatal("alignment constraint `%s' is not a"
                              " valid number", special);
            else if (!is_power2(sym->symv.key))
                nasm_nonfatal("alignment constraint `%s' is not a"
                              " power of two", special);
            spcword = nasm_skip_spaces(nasm_skip_word(spcword));
        }
    } else {
        sym->symv.key = (sym->section == XSHN_UNDEF ? 0 : offset);
    }

    if (spcword && *spcword) {
        const char *wend;
        bool ok = true;

        while (ok) {
            size_t wlen;
            wend = nasm_skip_word(spcword);
            wlen = wend - spcword;

            switch (wlen) {
            case 4:
                if (!nasm_strnicmp(spcword, "data", wlen))
                    type = STT_OBJECT;
                else if (!nasm_strnicmp(spcword, "weak", wlen))
                    bind = STB_WEAK;
                else
                    ok = false;
                break;

            case 6:
                if (!nasm_strnicmp(spcword, "notype", wlen))
                    type = STT_NOTYPE;
                else if (!nasm_strnicmp(spcword, "object", wlen))
                    type = STT_OBJECT;
                else if (!nasm_strnicmp(spcword, "hidden", wlen))
                    sym->other = STV_HIDDEN;
                else if (!nasm_strnicmp(spcword, "strong", wlen))
                    bind = STB_GLOBAL;
                else
                    ok = false;
                break;

            case 7:
                if (!nasm_strnicmp(spcword, "default", wlen))
                    sym->other = STV_DEFAULT;
                else
                    ok = false;
                break;

            case 8:
                if (!nasm_strnicmp(spcword, "function", wlen))
                    type = STT_FUNC;
                else if (!nasm_stricmp(spcword, "internal"))
                    sym->other = STV_INTERNAL;
                else
                    ok = false;
                break;

            case 9:
                if (!nasm_strnicmp(spcword, "protected", wlen))
                    sym->other = STV_PROTECTED;
                else
                    ok = false;
                break;

            default:
                ok = false;
                break;
            }

            if (ok)
                spcword = nasm_skip_spaces(wend);
        }
        if (!is_global && bind != STB_LOCAL) {
            nasm_nonfatal("weak and strong only applies to global symbols");
            bind = STB_LOCAL;
        }

        if (spcword && *spcword) {
            struct tokenval tokval;
            expr *e;
            int fwd = 0;
            char *saveme = stdscan_get();

            /*
             * We have a size expression; attempt to
             * evaluate it.
             */
            stdscan_reset();
            stdscan_set((char *)spcword);
            tokval.t_type = TOKEN_INVALID;
            e = evaluate(stdscan, NULL, &tokval, &fwd, 0, NULL);
            if (fwd) {
                sym->nextfwd = fwds;
                fwds = sym;
                sym->name = nasm_strdup(name);
            } else if (e) {
                if (!is_simple(e))
                    nasm_nonfatal("cannot use relocatable"
                                  " expression as symbol size");
                else
                    sym->size = reloc_value(e);
            }
            stdscan_set(saveme);
        }
    }

    /*
     * If it is in a TLS segment, mark symbol accordingly.
     */
    if (sec && (sec->flags & SHF_TLS))
        type = STT_TLS;

    /* Note: ELF32_ST_INFO() and ELF64_ST_INFO() are identical */
    sym->type = ELF32_ST_INFO(bind, type);

    if (sym_type_local(sym->type)) {
        nlocals++;
    } else {
        /*
         * If sym->section == SHN_ABS, then the first line of the
         * else section would cause a core dump, because its a reference
         * beyond the end of the section array.
         * This behaviour is exhibited by this code:
         *     GLOBAL crash_nasm
         *     crash_nasm equ 0
         * To avoid such a crash, such requests are silently discarded.
         * This may not be the best solution.
         */
        if (sym->section == XSHN_UNDEF || sym->section == XSHN_COMMON) {
            bsym = raa_write(bsym, segment, nglobs);
        } else if (sym->section != XSHN_ABS) {
            /*
             * This is a global symbol; so we must add it to the rbtree
             * of global symbols in its section.
             *
             * In addition, we check the special text for symbol
             * type and size information.
             */
            sects[sym->section-1]->gsyms =
                rb_insert(sects[sym->section-1]->gsyms, &sym->symv);

        }
        sym->globnum = nglobs;
        nglobs++;
    }
}

static void elf_add_reloc(struct elf_section *sect, int32_t segment,
                          int64_t offset, int type)
{
    struct elf_reloc *r;

    r = *sect->tail = nasm_zalloc(sizeof(struct elf_reloc));
    sect->tail = &r->next;

    r->address = sect->len;
    r->offset = offset;

    if (segment != NO_SEG) {
        const struct elf_section *s;
        s = raa_read_ptr(section_by_index, segment >> 1);
        if (s)
            r->symbol = s->shndx + 1;
        else
            r->symbol = GLOBAL_TEMP_BASE + raa_read(bsym, segment);
    }
    r->type = type;

    sect->nrelocs++;
}

/*
 * This routine deals with ..got and ..sym relocations: the more
 * complicated kinds. In shared-library writing, some relocations
 * with respect to global symbols must refer to the precise symbol
 * rather than referring to an offset from the base of the section
 * _containing_ the symbol. Such relocations call to this routine,
 * which searches the symbol list for the symbol in question.
 *
 * R_386_GOT32 | R_X86_64_GOT32 references require the _exact_ symbol address to be
 * used; R_386_32 | R_X86_64_32 references can be at an offset from the symbol.
 * The boolean argument `exact' tells us this.
 *
 * Return value is the adjusted value of `addr', having become an
 * offset from the symbol rather than the section. Should always be
 * zero when returning from an exact call.
 *
 * Limitation: if you define two symbols at the same place,
 * confusion will occur.
 *
 * Inefficiency: we search, currently, using a linked list which
 * isn't even necessarily sorted.
 */
static int64_t elf_add_gsym_reloc(struct elf_section *sect,
                                  int32_t segment, uint64_t offset,
                                  int64_t pcrel, int type, bool exact)
{
    struct elf_reloc *r;
    struct elf_section *s;
    struct elf_symbol *sym;
    struct rbtree *srb;

    /*
     * First look up the segment/offset pair and find a global
     * symbol corresponding to it. If it's not one of our segments,
     * then it must be an external symbol, in which case we're fine
     * doing a normal elf_add_reloc after first sanity-checking
     * that the offset from the symbol is zero.
     */
    s = raa_read_ptr(section_by_index, segment >> 1);
    if (!s) {
        if (exact && offset)
            nasm_nonfatal("invalid access to an external symbol");
        else
            elf_add_reloc(sect, segment, offset - pcrel, type);
        return 0;
    }

    srb = rb_search(s->gsyms, offset);
    if (!srb || (exact && srb->key != offset)) {
        nasm_nonfatal("unable to find a suitable global symbol"
                      " for this reference");
        return 0;
    }
    sym = container_of(srb, struct elf_symbol, symv);

    r = *sect->tail = nasm_malloc(sizeof(struct elf_reloc));
    sect->tail = &r->next;

    r->next     = NULL;
    r->address  = sect->len;
    r->offset = offset - pcrel - sym->symv.key;
    r->symbol   = GLOBAL_TEMP_BASE + sym->globnum;
    r->type     = type;

    sect->nrelocs++;
    return r->offset;
}

static void elf32_out(int32_t segto, const void *data,
                      enum out_type type, uint64_t size,
                      int32_t segment, int32_t wrt)
{
    struct elf_section *s;
    int64_t addr;
    int reltype, bytes;
    static struct symlininfo sinfo;

    /*
     * handle absolute-assembly (structure definitions)
     */
    if (segto == NO_SEG) {
        if (type != OUT_RESERVE)
            nasm_nonfatal("attempt to assemble code in [ABSOLUTE] space");
        return;
    }

    s = raa_read_ptr(section_by_index, segto >> 1);
    if (!s) {
        int tempint;            /* ignored */
        if (segto != elf_section_names(".text", &tempint))
            nasm_panic("strange segment conditions in ELF driver");
        else
            s = sects[nsects - 1];
    }

    /* again some stabs debugging stuff */
    sinfo.offset = s->len;
    /* Adjust to an index of the section table. */
    sinfo.section = s->shndx - 1;
    sinfo.segto = segto;
    sinfo.name = s->name;
    dfmt->debug_output(TY_DEBUGSYMLIN, &sinfo);
    /* end of debugging stuff */

    if (s->type == SHT_NOBITS && type != OUT_RESERVE) {
        nasm_warn(WARN_OTHER, "attempt to initialize memory in"
                  " BSS section `%s': ignored", s->name);
        s->len += realsize(type, size);
        return;
    }

    switch (type) {
    case OUT_RESERVE:
        if (s->type != SHT_NOBITS) {
            nasm_warn(WARN_ZEROING, "uninitialized space declared in"
                      " non-BSS section `%s': zeroing", s->name);
            elf_sect_write(s, NULL, size);
        } else
            s->len += size;
        break;

    case OUT_RAWDATA:
        elf_sect_write(s, data, size);
        break;

    case OUT_ADDRESS:
    {
        bool err = false;
        int asize = abs((int)size);

        addr = *(int64_t *)data;
        if (segment != NO_SEG) {
            if (segment & 1) {
                nasm_nonfatal("ELF format does not support"
                              " segment base references");
            } else {
                if (wrt == NO_SEG) {
                    /*
                     * The if() is a hack to deal with compilers which
                     * don't handle switch() statements with 64-bit
                     * expressions.
                     */
                    switch (asize) {
                    case 1:
                        elf_add_reloc(s, segment, 0, R_386_8);
                        break;
                    case 2:
                        elf_add_reloc(s, segment, 0, R_386_16);
                        break;
                    case 4:
                        elf_add_reloc(s, segment, 0, R_386_32);
                        break;
                    default: /* Error issued further down */
                        err = true;
                        break;
                    }
                } else if (wrt == elf_gotpc_sect + 1) {
                    /*
                     * The user will supply GOT relative to $$. ELF
                     * will let us have GOT relative to $. So we
                     * need to fix up the data item by $-$$.
                     */
                    err = asize != 4;
                    addr += s->len;
                    elf_add_reloc(s, segment, 0, R_386_GOTPC);
                } else if (wrt == elf_gotoff_sect + 1) {
                    err = asize != 4;
                    elf_add_reloc(s, segment, 0, R_386_GOTOFF);
                } else if (wrt == elf_tlsie_sect + 1) {
                    err = asize != 4;
                    addr = elf_add_gsym_reloc(s, segment, addr, 0,
                                              R_386_TLS_IE, true);
                } else if (wrt == elf_got_sect + 1) {
                    err = asize != 4;
                    addr = elf_add_gsym_reloc(s, segment, addr, 0,
                                              R_386_GOT32, true);
                } else if (wrt == elf_sym_sect + 1) {
                    switch (asize) {
                    case 1:
                        addr = elf_add_gsym_reloc(s, segment, addr, 0,
                                                  R_386_8, false);
                        break;
                    case 2:
                        addr = elf_add_gsym_reloc(s, segment, addr, 0,
                                                  R_386_16, false);
                        break;
                    case 4:
                        addr = elf_add_gsym_reloc(s, segment, addr, 0,
                                                  R_386_32, false);
                        break;
                    default:
                        err = true;
                        break;
                    }
                } else if (wrt == elf_plt_sect + 1) {
                    nasm_nonfatal("ELF format cannot produce non-PC-"
                                  "relative PLT references");
                } else {
                    nasm_nonfatal("ELF format does not support this"
                                  " use of WRT");
                    wrt = NO_SEG; /* we can at least _try_ to continue */
                }
            }
        }

        if (err) {
            nasm_nonfatal("Unsupported %d-bit ELF relocation", asize << 3);
        }
        elf_sect_writeaddr(s, addr, asize);
        break;
    }

    case OUT_REL1ADR:
        reltype = R_386_PC8;
        bytes = 1;
        goto rel12adr;
    case OUT_REL2ADR:
        reltype = R_386_PC16;
        bytes = 2;
        goto rel12adr;

rel12adr:
        addr = *(int64_t *)data - size;
        nasm_assert(segment != segto);
        if (segment != NO_SEG && (segment & 1)) {
            nasm_nonfatal("ELF format does not support"
                          " segment base references");
        } else {
            if (wrt == NO_SEG) {
                elf_add_reloc(s, segment, 0, reltype);
            } else {
                nasm_nonfatal("Unsupported %d-bit ELF relocation", bytes << 3);
            }
        }
        elf_sect_writeaddr(s, addr, bytes);
        break;

    case OUT_REL4ADR:
        addr = *(int64_t *)data - size;
        if (segment == segto)
            nasm_panic("intra-segment OUT_REL4ADR");
        if (segment != NO_SEG && (segment & 1)) {
            nasm_nonfatal("ELF format does not support"
                          " segment base references");
        } else {
            if (wrt == NO_SEG) {
                elf_add_reloc(s, segment, 0, R_386_PC32);
            } else if (wrt == elf_plt_sect + 1) {
                elf_add_reloc(s, segment, 0, R_386_PLT32);
            } else if (wrt == elf_gotpc_sect + 1 ||
                       wrt == elf_gotoff_sect + 1 ||
                       wrt == elf_got_sect + 1) {
                nasm_nonfatal("ELF format cannot produce PC-"
                              "relative GOT references");
            } else {
                nasm_nonfatal("ELF format does not support this"
                              " use of WRT");
                wrt = NO_SEG;   /* we can at least _try_ to continue */
            }
        }
        elf_sect_writeaddr(s, addr, 4);
        break;

    case OUT_REL8ADR:
        nasm_nonfatal("32-bit ELF format does not support 64-bit relocations");
        addr = 0;
        elf_sect_writeaddr(s, addr, 8);
        break;

    default:
        panic();
    }
}
static void elf64_out(int32_t segto, const void *data,
                      enum out_type type, uint64_t size,
                      int32_t segment, int32_t wrt)
{
    struct elf_section *s;
    int64_t addr;
    int reltype, bytes;
    static struct symlininfo sinfo;

    /*
     * handle absolute-assembly (structure definitions)
     */
    if (segto == NO_SEG) {
        if (type != OUT_RESERVE)
            nasm_nonfatal("attempt to assemble code in [ABSOLUTE] space");
        return;
    }

    s = raa_read_ptr(section_by_index, segto >> 1);
    if (!s) {
        int tempint;            /* ignored */
        if (segto != elf_section_names(".text", &tempint))
            nasm_panic("strange segment conditions in ELF driver");
        else
            s = sects[nsects - 1];
    }

    /* again some stabs debugging stuff */
    sinfo.offset = s->len;
    /* Adjust to an index of the section table. */
    sinfo.section = s->shndx - 1;
    sinfo.segto = segto;
    sinfo.name = s->name;
    dfmt->debug_output(TY_DEBUGSYMLIN, &sinfo);
    /* end of debugging stuff */

    if (s->type == SHT_NOBITS && type != OUT_RESERVE) {
        nasm_warn(WARN_OTHER, "attempt to initialize memory in"
                  " BSS section `%s': ignored", s->name);
        s->len += realsize(type, size);
        return;
    }

    switch (type) {
    case OUT_RESERVE:
        if (s->type != SHT_NOBITS) {
            nasm_warn(WARN_ZEROING, "uninitialized space declared in"
                      " non-BSS section `%s': zeroing", s->name);
            elf_sect_write(s, NULL, size);
        } else
            s->len += size;
        break;

    case OUT_RAWDATA:
        if (segment != NO_SEG)
            nasm_panic("OUT_RAWDATA with other than NO_SEG");
        elf_sect_write(s, data, size);
        break;

    case OUT_ADDRESS:
    {
        int isize = (int)size;
        int asize = abs((int)size);

        addr = *(int64_t *)data;
        if (segment == NO_SEG) {
            /* Do nothing */
        } else if (segment & 1) {
            nasm_nonfatal("ELF format does not support"
                          " segment base references");
        } else {
            if (wrt == NO_SEG) {
                switch (isize) {
                case 1:
                case -1:
                    elf_add_reloc(s, segment, addr, R_X86_64_8);
                    break;
                case 2:
                case -2:
                    elf_add_reloc(s, segment, addr, R_X86_64_16);
                    break;
                case 4:
                    elf_add_reloc(s, segment, addr, R_X86_64_32);
                    break;
                case -4:
                    elf_add_reloc(s, segment, addr, R_X86_64_32S);
                    break;
                case 8:
                case -8:
                    elf_add_reloc(s, segment, addr, R_X86_64_64);
                    break;
                default:
                    nasm_panic("internal error elf64-hpa-871");
                    break;
                }
                addr = 0;
            } else if (wrt == elf_gotpc_sect + 1) {
                /*
                 * The user will supply GOT relative to $$. ELF
                 * will let us have GOT relative to $. So we
                 * need to fix up the data item by $-$$.
                 */
                addr += s->len;
                elf_add_reloc(s, segment, addr, R_X86_64_GOTPC32);
                addr = 0;
            } else if (wrt == elf_gotoff_sect + 1) {
                if (asize != 8) {
                    nasm_nonfatal("ELF64 requires ..gotoff "
                                  "references to be qword");
                } else {
                    elf_add_reloc(s, segment, addr, R_X86_64_GOTOFF64);
                    addr = 0;
                }
            } else if (wrt == elf_got_sect + 1) {
                switch (asize) {
                case 4:
                    elf_add_gsym_reloc(s, segment, addr, 0,
                                       R_X86_64_GOT32, true);
                    addr = 0;
                    break;
                case 8:
                    elf_add_gsym_reloc(s, segment, addr, 0,
                                       R_X86_64_GOT64, true);
                    addr = 0;
                    break;
                default:
                    nasm_nonfatal("invalid ..got reference");
                    break;
                }
            } else if (wrt == elf_sym_sect + 1) {
                switch (isize) {
                case 1:
                case -1:
                    elf_add_gsym_reloc(s, segment, addr, 0,
                                       R_X86_64_8, false);
                    addr = 0;
                    break;
                case 2:
                case -2:
                    elf_add_gsym_reloc(s, segment, addr, 0,
                                       R_X86_64_16, false);
                    addr = 0;
                    break;
                case 4:
                    elf_add_gsym_reloc(s, segment, addr, 0,
                                       R_X86_64_32, false);
                    addr = 0;
                    break;
                case -4:
                    elf_add_gsym_reloc(s, segment, addr, 0,
                                       R_X86_64_32S, false);
                    addr = 0;
                    break;
                case 8:
                case -8:
                    elf_add_gsym_reloc(s, segment, addr, 0,
                                       R_X86_64_64, false);
                    addr = 0;
                    break;
                default:
                    nasm_panic("internal error elf64-hpa-903");
                    break;
                }
            } else if (wrt == elf_plt_sect + 1) {
                nasm_nonfatal("ELF format cannot produce non-PC-"
                              "relative PLT references");
            } else {
                nasm_nonfatal("ELF format does not support this"
                              " use of WRT");
            }
        }
        elf_sect_writeaddr(s, addr, asize);
        break;
    }

    case OUT_REL1ADR:
        reltype = R_X86_64_PC8;
        bytes = 1;
        goto rel12adr;

    case OUT_REL2ADR:
        reltype = R_X86_64_PC16;
        bytes = 2;
        goto rel12adr;

rel12adr:
        addr = *(int64_t *)data - size;
        if (segment == segto)
            nasm_panic("intra-segment OUT_REL1ADR");
        if (segment == NO_SEG) {
            /* Do nothing */
        } else if (segment & 1) {
            nasm_nonfatal("ELF format does not support"
                          " segment base references");
        } else {
            if (wrt == NO_SEG) {
                elf_add_reloc(s, segment, addr, reltype);
                addr = 0;
            } else {
                nasm_nonfatal("Unsupported %d-bit ELF relocation", bytes << 3);
            }
        }
        elf_sect_writeaddr(s, addr, bytes);
        break;

    case OUT_REL4ADR:
        addr = *(int64_t *)data - size;
        if (segment == segto)
            nasm_panic("intra-segment OUT_REL4ADR");
        if (segment == NO_SEG) {
            /* Do nothing */
        } else if (segment & 1) {
            nasm_nonfatal("ELF64 format does not support"
                          " segment base references");
        } else {
            if (wrt == NO_SEG) {
                elf_add_reloc(s, segment, addr, R_X86_64_PC32);
                addr = 0;
            } else if (wrt == elf_plt_sect + 1) {
                elf_add_gsym_reloc(s, segment, addr+size, size,
                                   R_X86_64_PLT32, true);
                addr = 0;
            } else if (wrt == elf_gotpc_sect + 1 ||
                       wrt == elf_got_sect + 1) {
                elf_add_gsym_reloc(s, segment, addr+size, size,
                                   R_X86_64_GOTPCREL, true);
                addr = 0;
            } else if (wrt == elf_gotoff_sect + 1 ||
                       wrt == elf_got_sect + 1) {
                nasm_nonfatal("ELF64 requires ..gotoff references to be "
                              "qword absolute");
            } else if (wrt == elf_gottpoff_sect + 1) {
                elf_add_gsym_reloc(s, segment, addr+size, size,
                                   R_X86_64_GOTTPOFF, true);
                addr = 0;
            } else {
                nasm_nonfatal("ELF64 format does not support this"
                              " use of WRT");
            }
        }
        elf_sect_writeaddr(s, addr, 4);
        break;

    case OUT_REL8ADR:
        addr = *(int64_t *)data - size;
        if (segment == segto)
            nasm_panic("intra-segment OUT_REL8ADR");
        if (segment == NO_SEG) {
            /* Do nothing */
        } else if (segment & 1) {
            nasm_nonfatal("ELF64 format does not support"
                          " segment base references");
        } else {
            if (wrt == NO_SEG) {
                elf_add_reloc(s, segment, addr, R_X86_64_PC64);
                addr = 0;
            } else if (wrt == elf_gotpc_sect + 1 ||
                       wrt == elf_got_sect + 1) {
                elf_add_gsym_reloc(s, segment, addr+size, size,
                                   R_X86_64_GOTPCREL64, true);
                addr = 0;
            } else if (wrt == elf_gotoff_sect + 1 ||
                       wrt == elf_got_sect + 1) {
                nasm_nonfatal("ELF64 requires ..gotoff references to be "
                              "absolute");
            } else if (wrt == elf_gottpoff_sect + 1) {
                nasm_nonfatal("ELF64 requires ..gottpoff references to be "
                              "dword");
            } else {
                nasm_nonfatal("ELF64 format does not support this"
                              " use of WRT");
            }
        }
        elf_sect_writeaddr(s, addr, 8);
        break;

    default:
        panic();
    }
}

static void elfx32_out(int32_t segto, const void *data,
                       enum out_type type, uint64_t size,
                       int32_t segment, int32_t wrt)
{
    struct elf_section *s;
    int64_t addr;
    int reltype, bytes;
    static struct symlininfo sinfo;

    /*
     * handle absolute-assembly (structure definitions)
     */
    if (segto == NO_SEG) {
        if (type != OUT_RESERVE)
            nasm_nonfatal("attempt to assemble code in [ABSOLUTE] space");
        return;
    }

    s = raa_read_ptr(section_by_index, segto >> 1);
    if (!s) {
        int tempint;            /* ignored */
        if (segto != elf_section_names(".text", &tempint))
            nasm_panic("strange segment conditions in ELF driver");
        else
            s = sects[nsects - 1];
    }

    /* again some stabs debugging stuff */
    sinfo.offset = s->len;
    /* Adjust to an index of the section table. */
    sinfo.section = s->shndx - 1;
    sinfo.segto = segto;
    sinfo.name = s->name;
    dfmt->debug_output(TY_DEBUGSYMLIN, &sinfo);
    /* end of debugging stuff */

    if (s->type == SHT_NOBITS && type != OUT_RESERVE) {
        nasm_warn(WARN_OTHER, "attempt to initialize memory in"
                  " BSS section `%s': ignored", s->name);
        s->len += realsize(type, size);
        return;
    }

    switch (type) {
    case OUT_RESERVE:
        if (s->type != SHT_NOBITS) {
            nasm_warn(WARN_ZEROING, "uninitialized space declared in"
                      " non-BSS section `%s': zeroing", s->name);
            elf_sect_write(s, NULL, size);
        } else
            s->len += size;
        break;

    case OUT_RAWDATA:
        if (segment != NO_SEG)
            nasm_panic("OUT_RAWDATA with other than NO_SEG");
        elf_sect_write(s, data, size);
        break;

    case OUT_ADDRESS:
    {
        int isize = (int)size;
        int asize = abs((int)size);

        addr = *(int64_t *)data;
        if (segment == NO_SEG) {
            /* Do nothing */
        } else if (segment & 1) {
            nasm_nonfatal("ELF format does not support"
                          " segment base references");
        } else {
            if (wrt == NO_SEG) {
                switch (isize) {
                case 1:
                case -1:
                    elf_add_reloc(s, segment, addr, R_X86_64_8);
                    break;
                case 2:
                case -2:
                    elf_add_reloc(s, segment, addr, R_X86_64_16);
                    break;
                case 4:
                    elf_add_reloc(s, segment, addr, R_X86_64_32);
                    break;
                case -4:
                    elf_add_reloc(s, segment, addr, R_X86_64_32S);
                    break;
                case 8:
                case -8:
                    elf_add_reloc(s, segment, addr, R_X86_64_64);
                    break;
                default:
                    nasm_panic("internal error elfx32-hpa-871");
                    break;
                }
                addr = 0;
            } else if (wrt == elf_gotpc_sect + 1) {
                /*
                 * The user will supply GOT relative to $$. ELF
                 * will let us have GOT relative to $. So we
                 * need to fix up the data item by $-$$.
                 */
                addr += s->len;
                elf_add_reloc(s, segment, addr, R_X86_64_GOTPC32);
                addr = 0;
            } else if (wrt == elf_gotoff_sect + 1) {
                nasm_nonfatal("ELFX32 doesn't support "
                              "R_X86_64_GOTOFF64");
            } else if (wrt == elf_got_sect + 1) {
                switch (asize) {
                case 4:
                    elf_add_gsym_reloc(s, segment, addr, 0,
                                       R_X86_64_GOT32, true);
                    addr = 0;
                    break;
                default:
                    nasm_nonfatal("invalid ..got reference");
                    break;
                }
            } else if (wrt == elf_sym_sect + 1) {
                switch (isize) {
                case 1:
                case -1:
                    elf_add_gsym_reloc(s, segment, addr, 0,
                                       R_X86_64_8, false);
                    addr = 0;
                    break;
                case 2:
                case -2:
                    elf_add_gsym_reloc(s, segment, addr, 0,
                                       R_X86_64_16, false);
                    addr = 0;
                    break;
                case 4:
                    elf_add_gsym_reloc(s, segment, addr, 0,
                                       R_X86_64_32, false);
                    addr = 0;
                    break;
                case -4:
                    elf_add_gsym_reloc(s, segment, addr, 0,
                                       R_X86_64_32S, false);
                    addr = 0;
                    break;
                case 8:
                case -8:
                    elf_add_gsym_reloc(s, segment, addr, 0,
                                       R_X86_64_64, false);
                    addr = 0;
                    break;
                default:
                    nasm_panic("internal error elfx32-hpa-903");
                    break;
                }
            } else if (wrt == elf_plt_sect + 1) {
                nasm_nonfatal("ELF format cannot produce non-PC-"
                              "relative PLT references");
            } else {
                nasm_nonfatal("ELF format does not support this"
                              " use of WRT");
            }
        }
        elf_sect_writeaddr(s, addr, asize);
        break;
    }

    case OUT_REL1ADR:
        reltype = R_X86_64_PC8;
        bytes = 1;
        goto rel12adr;

    case OUT_REL2ADR:
        reltype = R_X86_64_PC16;
        bytes = 2;
        goto rel12adr;

rel12adr:
        addr = *(int64_t *)data - size;
        if (segment == segto)
            nasm_panic("intra-segment OUT_REL1ADR");
        if (segment == NO_SEG) {
            /* Do nothing */
        } else if (segment & 1) {
            nasm_nonfatal("ELF format does not support"
                          " segment base references");
        } else {
            if (wrt == NO_SEG) {
                elf_add_reloc(s, segment, addr, reltype);
                addr = 0;
            } else {
                nasm_nonfatal("unsupported %d-bit ELF relocation", bytes << 3);
            }
        }
        elf_sect_writeaddr(s, addr, bytes);
        break;

    case OUT_REL4ADR:
        addr = *(int64_t *)data - size;
        if (segment == segto)
            nasm_panic("intra-segment OUT_REL4ADR");
        if (segment == NO_SEG) {
            /* Do nothing */
        } else if (segment & 1) {
            nasm_nonfatal("ELFX32 format does not support"
                          " segment base references");
        } else {
            if (wrt == NO_SEG) {
                elf_add_reloc(s, segment, addr, R_X86_64_PC32);
                addr = 0;
            } else if (wrt == elf_plt_sect + 1) {
                elf_add_gsym_reloc(s, segment, addr+size, size,
                                   R_X86_64_PLT32, true);
                addr = 0;
            } else if (wrt == elf_gotpc_sect + 1 ||
                       wrt == elf_got_sect + 1) {
                elf_add_gsym_reloc(s, segment, addr+size, size,
                                   R_X86_64_GOTPCREL, true);
                addr = 0;
            } else if (wrt == elf_gotoff_sect + 1 ||
                       wrt == elf_got_sect + 1) {
                nasm_nonfatal("invalid ..gotoff reference");
            } else if (wrt == elf_gottpoff_sect + 1) {
                elf_add_gsym_reloc(s, segment, addr+size, size,
                                   R_X86_64_GOTTPOFF, true);
                addr = 0;
            } else {
                nasm_nonfatal("ELFX32 format does not support this use of WRT");
            }
        }
        elf_sect_writeaddr(s, addr, 4);
        break;

    case OUT_REL8ADR:
        nasm_nonfatal("32-bit ELF format does not support 64-bit relocations");
        addr = 0;
        elf_sect_writeaddr(s, addr, 8);
        break;

    default:
        panic();
    }
}

/*
 * Section index/count with a specified overflow value (usually SHN_INDEX,
 * but 0 for e_shnum.
 */
static inline uint16_t elf_shndx(int section, uint16_t overflow)
{
    return cpu_to_le16(section < (int)SHN_LORESERVE ? section : overflow);
}

struct ehdr_common {
    uint8_t	e_ident[EI_NIDENT];
    uint16_t    e_type;
    uint16_t    e_machine;
    uint32_t	e_version;
};

union ehdr {
    Elf32_Ehdr ehdr32;
    Elf64_Ehdr ehdr64;
    struct ehdr_common com;
};

static void elf_write(void)
{
    int align;
    char *p;
    int i;
    size_t symtablocal;
    int sec_shstrtab, sec_symtab, sec_strtab;
    union ehdr ehdr;

    /*
     * Add any sections we don't already have:
     * rel/rela sections for the user sections, debug sections, and
     * the ELF special sections.
     */

    sec_debug = nsections;
    if (dfmt_is_stabs()) {
        /* in case the debug information is wanted, just add these three sections... */
        add_sectname("", ".stab");
        add_sectname("", ".stabstr");
        add_sectname(efmt->relpfx, ".stab");
    } else if (dfmt_is_dwarf()) {
        /* the dwarf debug standard specifies the following ten sections,
           not all of which are currently implemented,
           although all of them are defined. */
        add_sectname("", ".debug_aranges");
        add_sectname(".rela", ".debug_aranges");
        add_sectname("", ".debug_pubnames");
        add_sectname("", ".debug_info");
        add_sectname(".rela", ".debug_info");
        add_sectname("", ".debug_abbrev");
        add_sectname("", ".debug_line");
        add_sectname(".rela", ".debug_line");
        add_sectname("", ".debug_frame");
        add_sectname("", ".debug_loc");
    }

    sec_shstrtab = add_sectname("", ".shstrtab");
    sec_symtab   = add_sectname("", ".symtab");
    sec_strtab   = add_sectname("", ".strtab");

    /*
     * Build the symbol table and relocation tables.
     */
    symtablocal = elf_build_symtab();

    /* Do we need an .symtab_shndx section? */
    if (symtab_shndx)
        add_sectname("", ".symtab_shndx");

    for (i = 0; i < nsects; i++) {
        if (sects[i]->head) {
            add_sectname(efmt->relpfx, sects[i]->name);
            sects[i]->rel = efmt->elf_build_reltab(sects[i]->head);
        }
    }

    /*
     * Output the ELF header.
     */
    nasm_zero(ehdr);

    /* These fields are in the same place for 32 and 64 bits */
    memcpy(&ehdr.com.e_ident[EI_MAG0], ELFMAG, SELFMAG);
    ehdr.com.e_ident[EI_CLASS]      = efmt->ei_class;
    ehdr.com.e_ident[EI_DATA]       = ELFDATA2LSB;
    ehdr.com.e_ident[EI_VERSION]    = EV_CURRENT;
    ehdr.com.e_ident[EI_OSABI]      = elf_osabi;
    ehdr.com.e_ident[EI_ABIVERSION] = elf_abiver;
    ehdr.com.e_type                 = cpu_to_le16(ET_REL);
    ehdr.com.e_machine              = cpu_to_le16(efmt->e_machine);
    ehdr.com.e_version              = cpu_to_le16(EV_CURRENT);

    if (!efmt->elf64) {
        ehdr.ehdr32.e_shoff         = cpu_to_le32(sizeof ehdr);
        ehdr.ehdr32.e_ehsize        = cpu_to_le16(sizeof(Elf32_Ehdr));
        ehdr.ehdr32.e_shentsize     = cpu_to_le16(sizeof(Elf32_Shdr));
        ehdr.ehdr32.e_shnum         = elf_shndx(nsections, 0);
        ehdr.ehdr32.e_shstrndx      = elf_shndx(sec_shstrtab, SHN_XINDEX);
    } else {
        ehdr.ehdr64.e_shoff         = cpu_to_le64(sizeof ehdr);
        ehdr.ehdr64.e_ehsize        = cpu_to_le16(sizeof(Elf64_Ehdr));
        ehdr.ehdr64.e_shentsize     = cpu_to_le16(sizeof(Elf64_Shdr));
        ehdr.ehdr64.e_shnum         = elf_shndx(nsections, 0);
        ehdr.ehdr64.e_shstrndx      = elf_shndx(sec_shstrtab, SHN_XINDEX);
    }

    nasm_write(&ehdr, sizeof(ehdr), ofile);
    elf_foffs = sizeof ehdr + efmt->shdr_size * nsections;

    /*
     * Now output the section header table.
     */
    align = ALIGN(elf_foffs, SEC_FILEALIGN) - elf_foffs;
    elf_foffs += align;
    elf_nsect = 0;
    elf_sects = nasm_malloc(sizeof(*elf_sects) * nsections);

    /* SHN_UNDEF */
    elf_section_header(0, SHT_NULL, 0, NULL, false,
                       nsections > (int)SHN_LORESERVE ? nsections : 0,
                       sec_shstrtab >= (int)SHN_LORESERVE ? sec_shstrtab : 0,
                       0, 0, 0);
    p = shstrtab + 1;

    /* The normal sections */
    for (i = 0; i < nsects; i++) {
        elf_section_header(p - shstrtab, sects[i]->type, sects[i]->flags,
                           sects[i]->data, true,
                           sects[i]->len, 0, 0,
                           sects[i]->align, sects[i]->entsize);
        p += strlen(p) + 1;
    }

    /* The debugging sections */
    if (dfmt_is_stabs()) {
        /* for debugging information, create the last three sections
           which are the .stab , .stabstr and .rel.stab sections respectively */

        /* this function call creates the stab sections in memory */
        stabs_generate();

        if (stabbuf && stabstrbuf && stabrelbuf) {
            elf_section_header(p - shstrtab, SHT_PROGBITS, 0, stabbuf, false,
                               stablen, sec_stabstr, 0, 4, 12);
            p += strlen(p) + 1;

            elf_section_header(p - shstrtab, SHT_STRTAB, 0, stabstrbuf, false,
                               stabstrlen, 0, 0, 4, 0);
            p += strlen(p) + 1;

            /* link -> symtable  info -> section to refer to */
            elf_section_header(p - shstrtab, efmt->reltype, 0,
                               stabrelbuf, false, stabrellen,
                               sec_symtab, sec_stab,
                               efmt->word, efmt->rel_size);
            p += strlen(p) + 1;
        }
    } else if (dfmt_is_dwarf()) {
        /* for dwarf debugging information, create the ten dwarf sections */

        /* this function call creates the dwarf sections in memory */
        if (dwarf_fsect)
            dwarf_generate();

        elf_section_header(p - shstrtab, SHT_PROGBITS, 0, arangesbuf, false,
                           arangeslen, 0, 0, 1, 0);
        p += strlen(p) + 1;

        elf_section_header(p - shstrtab, SHT_RELA, 0, arangesrelbuf, false,
                           arangesrellen, sec_symtab,
                           sec_debug_aranges,
                           efmt->word, efmt->rela_size);
        p += strlen(p) + 1;

        elf_section_header(p - shstrtab, SHT_PROGBITS, 0, pubnamesbuf,
                           false, pubnameslen, 0, 0, 1, 0);
        p += strlen(p) + 1;

        elf_section_header(p - shstrtab, SHT_PROGBITS, 0, infobuf, false,
                           infolen, 0, 0, 1, 0);
        p += strlen(p) + 1;

        elf_section_header(p - shstrtab, SHT_RELA, 0, inforelbuf, false,
                           inforellen, sec_symtab,
                           sec_debug_info,
                           efmt->word, efmt->rela_size);
        p += strlen(p) + 1;

        elf_section_header(p - shstrtab, SHT_PROGBITS, 0, abbrevbuf, false,
                           abbrevlen, 0, 0, 1, 0);
        p += strlen(p) + 1;

        elf_section_header(p - shstrtab, SHT_PROGBITS, 0, linebuf, false,
                           linelen, 0, 0, 1, 0);
        p += strlen(p) + 1;

        elf_section_header(p - shstrtab, SHT_RELA, 0, linerelbuf, false,
                           linerellen, sec_symtab,
                           sec_debug_line,
                           efmt->word, efmt->rela_size);
        p += strlen(p) + 1;

        elf_section_header(p - shstrtab, SHT_PROGBITS, 0, framebuf, false,
                           framelen, 0, 0, 8, 0);
        p += strlen(p) + 1;

        elf_section_header(p - shstrtab, SHT_PROGBITS, 0, locbuf, false,
                           loclen, 0, 0, 1, 0);
        p += strlen(p) + 1;
    }

    /* .shstrtab */
    elf_section_header(p - shstrtab, SHT_STRTAB, 0, shstrtab, false,
                       shstrtablen, 0, 0, 1, 0);
    p += strlen(p) + 1;

    /* .symtab */
    elf_section_header(p - shstrtab, SHT_SYMTAB, 0, symtab, true,
                       symtab->datalen, sec_strtab, symtablocal,
                       efmt->word, efmt->sym_size);
    p += strlen(p) + 1;

    /* .strtab */
    elf_section_header(p - shstrtab, SHT_STRTAB, 0, strs, true,
                       strslen, 0, 0, 1, 0);
    p += strlen(p) + 1
;
    /* .symtab_shndx */
    if (symtab_shndx) {
        elf_section_header(p - shstrtab, SHT_SYMTAB_SHNDX, 0,
                           symtab_shndx, true, symtab_shndx->datalen,
                           sec_symtab, 0, 1, 0);
        p += strlen(p) + 1;
    }

    /* The relocation sections */
    for (i = 0; i < nsects; i++) {
        if (sects[i]->rel) {
            elf_section_header(p - shstrtab, efmt->reltype, 0,
                               sects[i]->rel, true, sects[i]->rel->datalen,
                               sec_symtab, sects[i]->shndx,
                               efmt->word, efmt->rel_size);
            p += strlen(p) + 1;
        }
    }
    fwritezero(align, ofile);

    /*
     * Now output the sections.
     */
    elf_write_sections();

    nasm_free(elf_sects);
    saa_free(symtab);
    if (symtab_shndx)
        saa_free(symtab_shndx);
}

static size_t nsyms;

static void elf_sym(const struct elf_symbol *sym)
{
    int shndx = sym->section;

    /*
     * Careful here. This relies on sym->section being signed; for
     * special section indicies this value needs to be cast to
     * (int16_t) so that it sign-extends, however, here SHN_LORESERVE
     * is used as an unsigned constant.
     */
    if (shndx >= (int)SHN_LORESERVE) {
        if (unlikely(!symtab_shndx)) {
            /* Create symtab_shndx and fill previous entries with zero */
            symtab_shndx = saa_init(1);
            saa_wbytes(symtab_shndx, NULL, nsyms << 2);
        }
    } else {
        shndx = 0;              /* Section index table always write zero */
    }

    if (symtab_shndx)
        saa_write32(symtab_shndx, shndx);

    efmt->elf_sym(sym);
    nsyms++;
}

static void elf32_sym(const struct elf_symbol *sym)
{
    Elf32_Sym sym32;

    sym32.st_name     = cpu_to_le32(sym->strpos);
    sym32.st_value    = cpu_to_le32(sym->symv.key);
    sym32.st_size     = cpu_to_le32(sym->size);
    sym32.st_info     = sym->type;
    sym32.st_other    = sym->other;
    sym32.st_shndx    = elf_shndx(sym->section, SHN_XINDEX);
    saa_wbytes(symtab, &sym32, sizeof sym32);
}

static void elf64_sym(const struct elf_symbol *sym)
{
    Elf64_Sym sym64;

    sym64.st_name     = cpu_to_le32(sym->strpos);
    sym64.st_value    = cpu_to_le64(sym->symv.key);
    sym64.st_size     = cpu_to_le64(sym->size);
    sym64.st_info     = sym->type;
    sym64.st_other    = sym->other;
    sym64.st_shndx    = elf_shndx(sym->section, SHN_XINDEX);
    saa_wbytes(symtab, &sym64, sizeof sym64);
}

static size_t elf_build_symtab(void)
{
    struct elf_symbol *sym, xsym;
    size_t nlocal;
    int i;

    symtab       = saa_init(1);
    symtab_shndx = NULL;

    /*
     * Zero symbol first as required by spec.
     */
    nasm_zero(xsym);
    elf_sym(&xsym);

    /*
     * Next, an entry for the file name.
     */
    nasm_zero(xsym);
    xsym.strpos  = 1;
    xsym.type    = ELF32_ST_INFO(STB_LOCAL, STT_FILE);
    xsym.section = XSHN_ABS;
    elf_sym(&xsym);

    /*
     * Now some standard symbols defining the segments, for relocation
     * purposes.
     */
    nasm_zero(xsym);
    for (i = 1; i <= nsects; i++) {
        xsym.type    = ELF64_ST_INFO(STB_LOCAL, STT_SECTION);
        xsym.section = i;
        elf_sym(&xsym);
    }

    /*
     * dwarf needs symbols for debug sections
     * which are relocation targets.
     */
    if (dfmt_is_dwarf()) {
        dwarf_infosym   = nsyms;
        xsym.section    = sec_debug_info;
        elf_sym(&xsym);

        dwarf_abbrevsym = nsyms;
        xsym.section    = sec_debug_abbrev;
        elf_sym(&xsym);

        dwarf_linesym   = nsyms;
        xsym.section    = sec_debug_line;
        elf_sym(&xsym);
    }

    /*
     * Now the other local symbols.
     */
    saa_rewind(syms);
    while ((sym = saa_rstruct(syms))) {
        if (!sym_type_local(sym->type))
            continue;

        elf_sym(sym);
    }

    nlocal = nsyms;

    /*
     * Now the global symbols.
     */
    saa_rewind(syms);
    while ((sym = saa_rstruct(syms))) {
        if (sym_type_local(sym->type))
            continue;

        elf_sym(sym);
    }

    return nlocal;
}

static struct SAA *elf32_build_reltab(const struct elf_reloc *r)
{
    struct SAA *s;
    int32_t global_offset;
    Elf32_Rel rel32;

    if (!r)
        return NULL;

    s = saa_init(1L);

    /*
     * How to onvert from a global placeholder to a real symbol index;
     * the +2 refers to the two special entries, the null entry and
     * the filename entry.
     */
    global_offset = -GLOBAL_TEMP_BASE + nsects + nlocals + ndebugs + 2;

    while (r) {
        int32_t sym = r->symbol;

        if (sym >= GLOBAL_TEMP_BASE)
            sym += global_offset;

        rel32.r_offset    = cpu_to_le32(r->address);
        rel32.r_info      = cpu_to_le32(ELF32_R_INFO(sym, r->type));
        saa_wbytes(s, &rel32, sizeof rel32);

        r = r->next;
    }

    return s;
}

static struct SAA *elfx32_build_reltab(const struct elf_reloc *r)
{
    struct SAA *s;
    int32_t global_offset;
    Elf32_Rela rela32;

    if (!r)
        return NULL;

    s = saa_init(1L);

    /*
     * How to onvert from a global placeholder to a real symbol index;
     * the +2 refers to the two special entries, the null entry and
     * the filename entry.
     */
    global_offset = -GLOBAL_TEMP_BASE + nsects + nlocals + ndebugs + 2;

    while (r) {
        int32_t sym = r->symbol;

        if (sym >= GLOBAL_TEMP_BASE)
            sym += global_offset;

        rela32.r_offset   = cpu_to_le32(r->address);
        rela32.r_info     = cpu_to_le32(ELF32_R_INFO(sym, r->type));
        rela32.r_addend   = cpu_to_le32(r->offset);
        saa_wbytes(s, &rela32, sizeof rela32);

        r = r->next;
    }

    return s;
}

static struct SAA *elf64_build_reltab(const struct elf_reloc *r)
{
    struct SAA *s;
    int32_t global_offset;
    Elf64_Rela rela64;

    if (!r)
        return NULL;

    s = saa_init(1L);

    /*
     * How to onvert from a global placeholder to a real symbol index;
     * the +2 refers to the two special entries, the null entry and
     * the filename entry.
     */
    global_offset = -GLOBAL_TEMP_BASE + nsects + nlocals + ndebugs + 2;

    while (r) {
        int32_t sym = r->symbol;

        if (sym >= GLOBAL_TEMP_BASE)
            sym += global_offset;

        rela64.r_offset   = cpu_to_le64(r->address);
        rela64.r_info     = cpu_to_le64(ELF64_R_INFO(sym, r->type));
        rela64.r_addend   = cpu_to_le64(r->offset);
        saa_wbytes(s, &rela64, sizeof rela64);

        r = r->next;
    }

    return s;
}

static void elf_section_header(int name, int type, uint64_t flags,
                               void *data, bool is_saa, uint64_t datalen,
                               int link, int info,
                               uint64_t align, uint64_t entsize)
{
    elf_sects[elf_nsect].data = data;
    elf_sects[elf_nsect].len = datalen;
    elf_sects[elf_nsect].is_saa = is_saa;
    elf_nsect++;

    if (!efmt->elf64) {
        Elf32_Shdr  shdr;

        shdr.sh_name         = cpu_to_le32(name);
        shdr.sh_type         = cpu_to_le32(type);
        shdr.sh_flags        = cpu_to_le32(flags);
        shdr.sh_addr         = 0;
        shdr.sh_offset       = cpu_to_le32(type == SHT_NULL ? 0 : elf_foffs);
        shdr.sh_size         = cpu_to_le32(datalen);
        if (data)
            elf_foffs += ALIGN(datalen, SEC_FILEALIGN);
        shdr.sh_link         = cpu_to_le32(link);
        shdr.sh_info         = cpu_to_le32(info);
        shdr.sh_addralign    = cpu_to_le32(align);
        shdr.sh_entsize      = cpu_to_le32(entsize);

        nasm_write(&shdr, sizeof shdr, ofile);
    } else {
        Elf64_Shdr  shdr;

        shdr.sh_name         = cpu_to_le32(name);
        shdr.sh_type         = cpu_to_le32(type);
        shdr.sh_flags        = cpu_to_le64(flags);
        shdr.sh_addr         = 0;
        shdr.sh_offset       = cpu_to_le64(type == SHT_NULL ? 0 : elf_foffs);
        shdr.sh_size         = cpu_to_le64(datalen);
        if (data)
            elf_foffs += ALIGN(datalen, SEC_FILEALIGN);
        shdr.sh_link        = cpu_to_le32(link);
        shdr.sh_info        = cpu_to_le32(info);
        shdr.sh_addralign   = cpu_to_le64(align);
        shdr.sh_entsize     = cpu_to_le64(entsize);

        nasm_write(&shdr, sizeof shdr, ofile);
    }
}

static void elf_write_sections(void)
{
    int i;
    for (i = 0; i < elf_nsect; i++)
        if (elf_sects[i].data) {
            int32_t len = elf_sects[i].len;
            int32_t reallen = ALIGN(len, SEC_FILEALIGN);
            int32_t align = reallen - len;
            if (elf_sects[i].is_saa)
                saa_fpwrite(elf_sects[i].data, ofile);
            else
                nasm_write(elf_sects[i].data, len, ofile);
            fwritezero(align, ofile);
        }
}

static void elf_sect_write(struct elf_section *sect, const void *data, size_t len)
{
    saa_wbytes(sect->data, data, len);
    sect->len += len;
}

static void elf_sect_writeaddr(struct elf_section *sect, int64_t data, size_t len)
{
    saa_writeaddr(sect->data, data, len);
    sect->len += len;
}

static void elf_sectalign(int32_t seg, unsigned int value)
{
    struct elf_section *s;

    s = raa_read_ptr(section_by_index, seg >> 1);
    if (!s || !is_power2(value))
        return;

    if (value > s->align)
        s->align = value;
}

extern macros_t elf_stdmac[];

/* Claim "elf" as a pragma namespace, for the future */
static const struct pragma_facility elf_pragma_list[] =
{
    { "elf", NULL },
    { NULL, NULL }          /* Implements the canonical output name */
};


static const struct dfmt elf32_df_dwarf = {
    "ELF32 (i386) dwarf (newer)",
    "dwarf",
    dwarf32_init,
    dwarf_linenum,
    null_debug_deflabel,
    null_debug_directive,
    debug_typevalue,
    dwarf_output,
    dwarf_cleanup,
    NULL                        /* pragma list */
};

static const struct dfmt elf32_df_stabs = {
    "ELF32 (i386) stabs (older)",
    "stabs",
    null_debug_init,
    stabs_linenum,
    null_debug_deflabel,
    null_debug_directive,
    debug_typevalue,
    stabs_output,
    stabs_cleanup,
    NULL                        /* pragma list */
};

static const struct dfmt * const elf32_debugs_arr[3] =
  { &elf32_df_dwarf, &elf32_df_stabs, NULL };

const struct ofmt of_elf32 = {
    "ELF32 (i386) (Linux, most Unix variants)",
    "elf32",
    ".o",
    0,
    32,
    elf32_debugs_arr,
    &elf32_df_dwarf,
    elf_stdmac,
    elf32_init,
    null_reset,
    nasm_do_legacy_output,
    elf32_out,
    elf_deflabel,
    elf_section_names,
    NULL,
    elf_sectalign,
    null_segbase,
    elf_directive,
    elf_cleanup,
    elf_pragma_list,
};

static const struct dfmt elf64_df_dwarf = {
    "ELF64 (x86-64) dwarf (newer)",
    "dwarf",
    dwarf64_init,
    dwarf_linenum,
    null_debug_deflabel,
    null_debug_directive,
    debug_typevalue,
    dwarf_output,
    dwarf_cleanup,
    NULL                        /* pragma list */
};

static const struct dfmt elf64_df_stabs = {
    "ELF64 (x86-64) stabs (older)",
    "stabs",
    null_debug_init,
    stabs_linenum,
    null_debug_deflabel,
    null_debug_directive,
    debug_typevalue,
    stabs_output,
    stabs_cleanup,
    NULL                        /* pragma list */
};

static const struct dfmt * const elf64_debugs_arr[3] =
  { &elf64_df_dwarf, &elf64_df_stabs, NULL };

const struct ofmt of_elf64 = {
    "ELF64 (x86-64) (Linux, most Unix variants)",
    "elf64",
    ".o",
    0,
    64,
    elf64_debugs_arr,
    &elf64_df_dwarf,
    elf_stdmac,
    elf64_init,
    null_reset,
    nasm_do_legacy_output,
    elf64_out,
    elf_deflabel,
    elf_section_names,
    NULL,
    elf_sectalign,
    null_segbase,
    elf_directive,
    elf_cleanup,
    elf_pragma_list,
};

static const struct dfmt elfx32_df_dwarf = {
    "ELFx32 (x86-64) dwarf (newer)",
    "dwarf",
    dwarfx32_init,
    dwarf_linenum,
    null_debug_deflabel,
    null_debug_directive,
    debug_typevalue,
    dwarf_output,
    dwarf_cleanup,
    NULL                        /* pragma list */
};

static const struct dfmt elfx32_df_stabs = {
    "ELFx32 (x86-64) stabs (older)",
    "stabs",
    null_debug_init,
    stabs_linenum,
    null_debug_deflabel,
    null_debug_directive,
    debug_typevalue,
    stabs_output,
    stabs_cleanup,
    elf_pragma_list,
};

static const struct dfmt * const elfx32_debugs_arr[3] =
  { &elfx32_df_dwarf, &elfx32_df_stabs, NULL };

const struct ofmt of_elfx32 = {
    "ELFx32 (ELF32 for x86-64) (Linux)",
    "elfx32",
    ".o",
    0,
    64,
    elfx32_debugs_arr,
    &elfx32_df_dwarf,
    elf_stdmac,
    elfx32_init,
    null_reset,
    nasm_do_legacy_output,
    elfx32_out,
    elf_deflabel,
    elf_section_names,
    NULL,
    elf_sectalign,
    null_segbase,
    elf_directive,
    elf_cleanup,
    NULL                        /* pragma list */
};

static bool is_elf64(void)
{
	return ofmt == &of_elf64;
}

static bool is_elf32(void)
{
	return ofmt == &of_elf32;
}

static bool is_elfx32(void)
{
	return ofmt == &of_elfx32;
}

static bool dfmt_is_stabs(void)
{
	return dfmt == &elf32_df_stabs ||
               dfmt == &elfx32_df_stabs ||
               dfmt == &elf64_df_stabs;
}

static bool dfmt_is_dwarf(void)
{
	return dfmt == &elf32_df_dwarf ||
               dfmt == &elfx32_df_dwarf ||
               dfmt == &elf64_df_dwarf;
}

/* common debugging routines */
static void debug_typevalue(int32_t type)
{
    int32_t stype, ssize;
    switch (TYM_TYPE(type)) {
        case TY_LABEL:
            ssize = 0;
            stype = STT_NOTYPE;
            break;
        case TY_BYTE:
            ssize = 1;
            stype = STT_OBJECT;
            break;
        case TY_WORD:
            ssize = 2;
            stype = STT_OBJECT;
            break;
        case TY_DWORD:
            ssize = 4;
            stype = STT_OBJECT;
            break;
        case TY_FLOAT:
            ssize = 4;
            stype = STT_OBJECT;
            break;
        case TY_QWORD:
            ssize = 8;
            stype = STT_OBJECT;
            break;
        case TY_TBYTE:
            ssize = 10;
            stype = STT_OBJECT;
            break;
        case TY_OWORD:
            ssize = 16;
            stype = STT_OBJECT;
            break;
        case TY_YWORD:
            ssize = 32;
            stype = STT_OBJECT;
            break;
        case TY_ZWORD:
            ssize = 64;
            stype = STT_OBJECT;
            break;
        case TY_COMMON:
            ssize = 0;
            stype = STT_COMMON;
            break;
        case TY_SEG:
            ssize = 0;
            stype = STT_SECTION;
            break;
        case TY_EXTERN:
            ssize = 0;
            stype = STT_NOTYPE;
            break;
        case TY_EQU:
            ssize = 0;
            stype = STT_NOTYPE;
            break;
        default:
            ssize = 0;
            stype = STT_NOTYPE;
            break;
    }
    if (stype == STT_OBJECT && lastsym && !lastsym->type) {
        lastsym->size = ssize;
        lastsym->type = stype;
    }
}

/* stabs debugging routines */

static void stabs_linenum(const char *filename, int32_t linenumber, int32_t segto)
{
    (void)segto;
    if (!stabs_filename) {
        stabs_filename = nasm_malloc(strlen(filename) + 1);
        strcpy(stabs_filename, filename);
    } else {
        if (strcmp(stabs_filename, filename)) {
            /* yep, a memory leak...this program is one-shot anyway, so who cares...
               in fact, this leak comes in quite handy to maintain a list of files
               encountered so far in the symbol lines... */

            /* why not nasm_free(stabs_filename); we're done with the old one */

            stabs_filename = nasm_malloc(strlen(filename) + 1);
            strcpy(stabs_filename, filename);
        }
    }
    debug_immcall = 1;
    currentline = linenumber;
}

static void stabs_output(int type, void *param)
{
    struct symlininfo *s;
    struct linelist *el;
    if (type == TY_DEBUGSYMLIN) {
        if (debug_immcall) {
            s = (struct symlininfo *)param;
            if (!(sects[s->section]->flags & SHF_EXECINSTR))
                return; /* line info is only collected for executable sections */
            numlinestabs++;
            el = nasm_malloc(sizeof(struct linelist));
            el->info.offset = s->offset;
            el->info.section = s->section;
            el->info.name = s->name;
            el->line = currentline;
            el->filename = stabs_filename;
            el->next = 0;
            if (stabslines) {
                stabslines->last->next = el;
                stabslines->last = el;
            } else {
                stabslines = el;
                stabslines->last = el;
            }
        }
    }
    debug_immcall = 0;
}

/* for creating the .stab , .stabstr and .rel.stab sections in memory */

static void stabs_generate(void)
{
    int i, numfiles, strsize, numstabs = 0, currfile, mainfileindex;
    uint8_t *sbuf, *ssbuf, *rbuf, *sptr, *rptr;
    char **allfiles;
    int *fileidx;

    struct linelist *ptr;

    ptr = stabslines;

    allfiles = nasm_zalloc(numlinestabs * sizeof(char *));
    numfiles = 0;
    while (ptr) {
        if (numfiles == 0) {
            allfiles[0] = ptr->filename;
            numfiles++;
        } else {
            for (i = 0; i < numfiles; i++) {
                if (!strcmp(allfiles[i], ptr->filename))
                    break;
            }
            if (i >= numfiles) {
                allfiles[i] = ptr->filename;
                numfiles++;
            }
        }
        ptr = ptr->next;
    }
    strsize = 1;
    fileidx = nasm_malloc(numfiles * sizeof(int));
    for (i = 0; i < numfiles; i++) {
        fileidx[i] = strsize;
        strsize += strlen(allfiles[i]) + 1;
    }
    currfile = mainfileindex = 0;
    for (i = 0; i < numfiles; i++) {
        if (!strcmp(allfiles[i], elf_module)) {
            currfile = mainfileindex = i;
            break;
        }
    }

    /*
     * worst case size of the stab buffer would be:
     * the sourcefiles changes each line, which would mean 1 SOL, 1 SYMLIN per line
     * plus one "ending" entry
     */
    sbuf = nasm_malloc((numlinestabs * 2 + 4) *
                                    sizeof(struct stabentry));
    ssbuf = nasm_malloc(strsize);
    rbuf = nasm_malloc(numlinestabs * (is_elf64() ? 16 : 8) * (2 + 3));
    rptr = rbuf;

    for (i = 0; i < numfiles; i++)
        strcpy((char *)ssbuf + fileidx[i], allfiles[i]);
    ssbuf[0] = 0;

    stabstrlen = strsize;       /* set global variable for length of stab strings */

    sptr = sbuf;
    ptr = stabslines;
    numstabs = 0;

    if (ptr) {
        /*
         * this is the first stab, its strx points to the filename of the
         * the source-file, the n_desc field should be set to the number
         * of remaining stabs
         */
        WRITE_STAB(sptr, fileidx[0], 0, 0, 0, stabstrlen);

        /* this is the stab for the main source file */
        WRITE_STAB(sptr, fileidx[mainfileindex], N_SO, 0, 0, 0);

        /* relocation table entry */

        /*
         * Since the symbol table has two entries before
         * the section symbols, the index in the info.section
         * member must be adjusted by adding 2
         */

        if (is_elf32()) {
            WRITELONG(rptr, (sptr - sbuf) - 4);
            WRITELONG(rptr, ((ptr->info.section + 2) << 8) | R_386_32);
        } else if (is_elfx32()) {
            WRITELONG(rptr, (sptr - sbuf) - 4);
            WRITELONG(rptr, ((ptr->info.section + 2) << 8) | R_X86_64_32);
            WRITELONG(rptr, 0);
        } else {
            nasm_assert(is_elf64());
            WRITEDLONG(rptr, (int64_t)(sptr - sbuf) - 4);
            WRITELONG(rptr, R_X86_64_32);
            WRITELONG(rptr, ptr->info.section + 2);
            WRITEDLONG(rptr, 0);
        }
        numstabs++;
    }

    if (is_elf32()) {
        while (ptr) {
            if (strcmp(allfiles[currfile], ptr->filename)) {
                /* oops file has changed... */
                for (i = 0; i < numfiles; i++)
                    if (!strcmp(allfiles[i], ptr->filename))
                        break;
                currfile = i;
                WRITE_STAB(sptr, fileidx[currfile], N_SOL, 0, 0,
                           ptr->info.offset);
                numstabs++;

                /* relocation table entry */
                WRITELONG(rptr, (sptr - sbuf) - 4);
                WRITELONG(rptr, ((ptr->info.section + 2) << 8) | R_386_32);
            }

            WRITE_STAB(sptr, 0, N_SLINE, 0, ptr->line, ptr->info.offset);
            numstabs++;

            /* relocation table entry */
            WRITELONG(rptr, (sptr - sbuf) - 4);
            WRITELONG(rptr, ((ptr->info.section + 2) << 8) | R_386_32);

            ptr = ptr->next;
        }
    } else if (is_elfx32()) {
        while (ptr) {
            if (strcmp(allfiles[currfile], ptr->filename)) {
                /* oops file has changed... */
                for (i = 0; i < numfiles; i++)
                    if (!strcmp(allfiles[i], ptr->filename))
                        break;
                currfile = i;
                WRITE_STAB(sptr, fileidx[currfile], N_SOL, 0, 0,
                           ptr->info.offset);
                numstabs++;

                /* relocation table entry */
                WRITELONG(rptr, (sptr - sbuf) - 4);
                WRITELONG(rptr, ((ptr->info.section + 2) << 8) | R_X86_64_32);
                WRITELONG(rptr, ptr->info.offset);
            }

            WRITE_STAB(sptr, 0, N_SLINE, 0, ptr->line, ptr->info.offset);
            numstabs++;

            /* relocation table entry */
            WRITELONG(rptr, (sptr - sbuf) - 4);
            WRITELONG(rptr, ((ptr->info.section + 2) << 8) | R_X86_64_32);
            WRITELONG(rptr, ptr->info.offset);

            ptr = ptr->next;
        }
    } else {
        nasm_assert(is_elf64());
        while (ptr) {
            if (strcmp(allfiles[currfile], ptr->filename)) {
                /* oops file has changed... */
                for (i = 0; i < numfiles; i++)
                    if (!strcmp(allfiles[i], ptr->filename))
                        break;
                currfile = i;
                WRITE_STAB(sptr, fileidx[currfile], N_SOL, 0, 0,
                           ptr->info.offset);
                numstabs++;

                /* relocation table entry */
                WRITEDLONG(rptr, (int64_t)(sptr - sbuf) - 4);
                WRITELONG(rptr, R_X86_64_32);
                WRITELONG(rptr, ptr->info.section + 2);
                WRITEDLONG(rptr, ptr->info.offset);
            }

            WRITE_STAB(sptr, 0, N_SLINE, 0, ptr->line, ptr->info.offset);
            numstabs++;

            /* relocation table entry */
            WRITEDLONG(rptr, (int64_t)(sptr - sbuf) - 4);
            WRITELONG(rptr, R_X86_64_32);
            WRITELONG(rptr, ptr->info.section + 2);
            WRITEDLONG(rptr, ptr->info.offset);

            ptr = ptr->next;
        }
    }

    /* this is an "ending" token */
    WRITE_STAB(sptr, 0, N_SO, 0, 0, 0);
    numstabs++;

    ((struct stabentry *)sbuf)->n_desc = numstabs;

    nasm_free(allfiles);
    nasm_free(fileidx);

    stablen = (sptr - sbuf);
    stabrellen = (rptr - rbuf);
    stabrelbuf = rbuf;
    stabbuf = sbuf;
    stabstrbuf = ssbuf;
}

static void stabs_cleanup(void)
{
    struct linelist *ptr, *del;
    if (!stabslines)
        return;

    ptr = stabslines;
    while (ptr) {
        del = ptr;
        ptr = ptr->next;
        nasm_free(del);
    }

    nasm_free(stabbuf);
    nasm_free(stabrelbuf);
    nasm_free(stabstrbuf);
}

/* dwarf routines */

static void dwarf_init_common(const struct dwarf_format *fmt)
{
    dwfmt = fmt;
    ndebugs = 3; /* 3 debug symbols */
}

static void dwarf32_init(void)
{
    static const struct dwarf_format dwfmt32 = {
        2,                          /* DWARF 2 */
        /* section version numbers: */
        { 2,                        /* .debug_aranges */
          0,                        /* .rela.debug_aranges */
          2,                        /* .debug_pubnames */
          2,                        /* .debug_info */
          0,                        /* .rela.debug_info */
          0,                        /* .debug_abbrev */
          2,                        /* .debug_line */
          0,                        /* .rela.debug_line */
          1,                        /* .debug_frame */
          0 }                       /* .debug_loc */
    };
    dwarf_init_common(&dwfmt32);
}

static void dwarfx32_init(void)
{
    static const struct dwarf_format dwfmtx32 = {
        3,                          /* DWARF 3 */
        /* section version numbers: */
        { 2,                        /* .debug_aranges */
          0,                        /* .rela.debug_aranges */
          2,                        /* .debug_pubnames */
          3,                        /* .debug_info */
          0,                        /* .rela.debug_info */
          0,                        /* .debug_abbrev */
          3,                        /* .debug_line */
          0,                        /* .rela.debug_line */
          3,                        /* .debug_frame */
          0 }                       /* .debug_loc */
    };
    dwarf_init_common(&dwfmtx32);
}

static void dwarf64_init(void)
{
    static const struct dwarf_format dwfmt64 = {
        3,                          /* DWARF 3 */
        /* section version numbers: */
        { 2,                        /* .debug_aranges */
          0,                        /* .rela.debug_aranges */
          2,                        /* .debug_pubnames */
          3,                        /* .debug_info */
          0,                        /* .rela.debug_info */
          0,                        /* .debug_abbrev */
          3,                        /* .debug_line */
          0,                        /* .rela.debug_line */
          3,                        /* .debug_frame */
          0 }                       /* .debug_loc */
    };
    dwarf_init_common(&dwfmt64);
}

static void dwarf_linenum(const char *filename, int32_t linenumber,
                            int32_t segto)
{
    (void)segto;
    dwarf_findfile(filename);
    debug_immcall = 1;
    currentline = linenumber;
}

/* called from elf_out with type == TY_DEBUGSYMLIN */
static void dwarf_output(int type, void *param)
{
    int ln, aa, inx, maxln, soc;
    struct symlininfo *s;
    struct SAA *plinep;

    (void)type;

    s = (struct symlininfo *)param;

    /* line number info is only gathered for executable sections */
    if (!(sects[s->section]->flags & SHF_EXECINSTR))
        return;

    /* Check if section index has changed */
    if (!(dwarf_csect && (dwarf_csect->section) == (s->section)))
        dwarf_findsect(s->section);

    /* do nothing unless line or file has changed */
    if (!debug_immcall)
        return;

    ln = currentline - dwarf_csect->line;
    aa = s->offset - dwarf_csect->offset;
    inx = dwarf_clist->line;
    plinep = dwarf_csect->psaa;
    /* check for file change */
    if (!(inx == dwarf_csect->file)) {
        saa_write8(plinep,DW_LNS_set_file);
        saa_write8(plinep,inx);
        dwarf_csect->file = inx;
    }
    /* check for line change */
    if (ln) {
        /* test if in range of special op code */
        maxln = line_base + line_range;
        soc = (ln - line_base) + (line_range * aa) + opcode_base;
        if (ln >= line_base && ln < maxln && soc < 256) {
            saa_write8(plinep,soc);
        } else {
            saa_write8(plinep,DW_LNS_advance_line);
            saa_wleb128s(plinep,ln);
            if (aa) {
                saa_write8(plinep,DW_LNS_advance_pc);
                saa_wleb128u(plinep,aa);
            }
            saa_write8(plinep,DW_LNS_copy);
        }
        dwarf_csect->line = currentline;
        dwarf_csect->offset = s->offset;
    }

    /* show change handled */
    debug_immcall = 0;
}


static void dwarf_generate(void)
{
    uint8_t *pbuf;
    int indx;
    struct linelist *ftentry;
    struct SAA *paranges, *ppubnames, *pinfo, *pabbrev, *plines, *plinep;
    struct SAA *parangesrel, *plinesrel, *pinforel;
    struct sectlist *psect;
    size_t saalen, linepoff, totlen, highaddr;

    if (is_elf32()) {
        /* write epilogues for each line program range */
        /* and build aranges section */
        paranges = saa_init(1L);
        parangesrel = saa_init(1L);
        saa_write16(paranges, dwfmt->sect_version[DWARF_ARANGES]);
        saa_write32(parangesrel, paranges->datalen+4);
        saa_write32(parangesrel, (dwarf_infosym << 8) +  R_386_32); /* reloc to info */
        saa_write32(parangesrel, 0);
        saa_write32(paranges,0);    /* offset into info */
        saa_write8(paranges,4);     /* pointer size */
        saa_write8(paranges,0);     /* not segmented */
        saa_write32(paranges,0);    /* padding */
        /* iterate though sectlist entries */
        psect = dwarf_fsect;
        totlen = 0;
        highaddr = 0;
        for (indx = 0; indx < dwarf_nsections; indx++) {
            plinep = psect->psaa;
            /* Line Number Program Epilogue */
            saa_write8(plinep,2);           /* std op 2 */
            saa_write8(plinep,(sects[psect->section]->len)-psect->offset);
            saa_write8(plinep,DW_LNS_extended_op);
            saa_write8(plinep,1);           /* operand length */
            saa_write8(plinep,DW_LNE_end_sequence);
            totlen += plinep->datalen;
            /* range table relocation entry */
            saa_write32(parangesrel, paranges->datalen + 4);
            saa_write32(parangesrel, ((uint32_t) (psect->section + 2) << 8) +  R_386_32);
            saa_write32(parangesrel, (uint32_t) 0);
            /* range table entry */
            saa_write32(paranges,0x0000);   /* range start */
            saa_write32(paranges,sects[psect->section]->len); /* range length */
            highaddr += sects[psect->section]->len;
            /* done with this entry */
            psect = psect->next;
        }
        saa_write32(paranges,0);    /* null address */
        saa_write32(paranges,0);    /* null length */
        saalen = paranges->datalen;
        arangeslen = saalen + 4;
        arangesbuf = pbuf = nasm_malloc(arangeslen);
        WRITELONG(pbuf,saalen);     /* initial length */
        saa_rnbytes(paranges, pbuf, saalen);
        saa_free(paranges);
    } else if (is_elfx32()) {
        /* write epilogues for each line program range */
        /* and build aranges section */
        paranges = saa_init(1L);
        parangesrel = saa_init(1L);
        saa_write16(paranges, dwfmt->sect_version[DWARF_ARANGES]);
        saa_write32(parangesrel, paranges->datalen+4);
        saa_write32(parangesrel, (dwarf_infosym << 8) +  R_X86_64_32); /* reloc to info */
        saa_write32(parangesrel, 0);
        saa_write32(paranges,0);            /* offset into info */
        saa_write8(paranges,4);             /* pointer size */
        saa_write8(paranges,0);             /* not segmented */
        saa_write32(paranges,0);            /* padding */
        /* iterate though sectlist entries */
        psect = dwarf_fsect;
        totlen = 0;
        highaddr = 0;
        for (indx = 0; indx < dwarf_nsections; indx++)  {
            plinep = psect->psaa;
            /* Line Number Program Epilogue */
            saa_write8(plinep,2);			/* std op 2 */
            saa_write8(plinep,(sects[psect->section]->len)-psect->offset);
            saa_write8(plinep,DW_LNS_extended_op);
            saa_write8(plinep,1);			/* operand length */
            saa_write8(plinep,DW_LNE_end_sequence);
            totlen += plinep->datalen;
            /* range table relocation entry */
            saa_write32(parangesrel, paranges->datalen + 4);
            saa_write32(parangesrel, ((uint32_t) (psect->section + 2) << 8) +  R_X86_64_32);
            saa_write32(parangesrel, (uint32_t) 0);
            /* range table entry */
            saa_write32(paranges,0x0000);		/* range start */
            saa_write32(paranges,sects[psect->section]->len);	/* range length */
            highaddr += sects[psect->section]->len;
            /* done with this entry */
            psect = psect->next;
        }
        saa_write32(paranges,0);		/* null address */
        saa_write32(paranges,0);		/* null length */
        saalen = paranges->datalen;
        arangeslen = saalen + 4;
        arangesbuf = pbuf = nasm_malloc(arangeslen);
        WRITELONG(pbuf,saalen);			/* initial length */
        saa_rnbytes(paranges, pbuf, saalen);
        saa_free(paranges);
    } else {
        nasm_assert(is_elf64());
        /* write epilogues for each line program range */
        /* and build aranges section */
        paranges = saa_init(1L);
        parangesrel = saa_init(1L);
        saa_write16(paranges, dwfmt->sect_version[DWARF_ARANGES]);
        saa_write64(parangesrel, paranges->datalen+4);
        saa_write64(parangesrel, (dwarf_infosym << 32) +  R_X86_64_32); /* reloc to info */
        saa_write64(parangesrel, 0);
        saa_write32(paranges,0);            /* offset into info */
        saa_write8(paranges,8);             /* pointer size */
        saa_write8(paranges,0);             /* not segmented */
        saa_write32(paranges,0);            /* padding */
        /* iterate though sectlist entries */
        psect = dwarf_fsect;
        totlen = 0;
        highaddr = 0;
        for (indx = 0; indx < dwarf_nsections; indx++) {
            plinep = psect->psaa;
            /* Line Number Program Epilogue */
            saa_write8(plinep,2);			/* std op 2 */
            saa_write8(plinep,(sects[psect->section]->len)-psect->offset);
            saa_write8(plinep,DW_LNS_extended_op);
            saa_write8(plinep,1);			/* operand length */
            saa_write8(plinep,DW_LNE_end_sequence);
            totlen += plinep->datalen;
            /* range table relocation entry */
            saa_write64(parangesrel, paranges->datalen + 4);
            saa_write64(parangesrel, ((uint64_t) (psect->section + 2) << 32) +  R_X86_64_64);
            saa_write64(parangesrel, (uint64_t) 0);
            /* range table entry */
            saa_write64(paranges,0x0000);		/* range start */
            saa_write64(paranges,sects[psect->section]->len);	/* range length */
            highaddr += sects[psect->section]->len;
            /* done with this entry */
            psect = psect->next;
        }
        saa_write64(paranges,0);		/* null address */
        saa_write64(paranges,0);		/* null length */
        saalen = paranges->datalen;
        arangeslen = saalen + 4;
        arangesbuf = pbuf = nasm_malloc(arangeslen);
        WRITELONG(pbuf,saalen);			/* initial length */
        saa_rnbytes(paranges, pbuf, saalen);
        saa_free(paranges);
    }

    /* build rela.aranges section */
    arangesrellen = saalen = parangesrel->datalen;
    arangesrelbuf = pbuf = nasm_malloc(arangesrellen);
    saa_rnbytes(parangesrel, pbuf, saalen);
    saa_free(parangesrel);

    /* build pubnames section */
    if (0) {
        ppubnames = saa_init(1L);
        saa_write16(ppubnames,dwfmt->sect_version[DWARF_PUBNAMES]);
        saa_write32(ppubnames,0);   /* offset into info */
        saa_write32(ppubnames,0);   /* space used in info */
        saa_write32(ppubnames,0);   /* end of list */
        saalen = ppubnames->datalen;
        pubnameslen = saalen + 4;
        pubnamesbuf = pbuf = nasm_malloc(pubnameslen);
        WRITELONG(pbuf,saalen);     /* initial length */
        saa_rnbytes(ppubnames, pbuf, saalen);
        saa_free(ppubnames);
    } else {
        /* Don't write a section without actual information */
        pubnameslen = 0;
    }

    if (is_elf32()) {
        /* build info section */
        pinfo = saa_init(1L);
        pinforel = saa_init(1L);
        saa_write16(pinfo, dwfmt->sect_version[DWARF_INFO]);
        saa_write32(pinforel, pinfo->datalen + 4);
        saa_write32(pinforel, (dwarf_abbrevsym << 8) +  R_386_32); /* reloc to abbrev */
        saa_write32(pinforel, 0);
        saa_write32(pinfo,0);       /* offset into abbrev */
        saa_write8(pinfo,4);        /* pointer size */
        saa_write8(pinfo,1);        /* abbrviation number LEB128u */
        saa_write32(pinforel, pinfo->datalen + 4);
        saa_write32(pinforel, ((dwarf_fsect->section + 2) << 8) +  R_386_32);
        saa_write32(pinforel, 0);
        saa_write32(pinfo,0);       /* DW_AT_low_pc */
        saa_write32(pinforel, pinfo->datalen + 4);
        saa_write32(pinforel, ((dwarf_fsect->section + 2) << 8) +  R_386_32);
        saa_write32(pinforel, 0);
        saa_write32(pinfo,highaddr);    /* DW_AT_high_pc */
        saa_write32(pinforel, pinfo->datalen + 4);
        saa_write32(pinforel, (dwarf_linesym << 8) +  R_386_32); /* reloc to line */
        saa_write32(pinforel, 0);
        saa_write32(pinfo,0);       /* DW_AT_stmt_list */
        saa_wbytes(pinfo, elf_module, strlen(elf_module)+1);
        saa_wbytes(pinfo, nasm_signature(), nasm_signature_len()+1);
        saa_write16(pinfo,DW_LANG_Mips_Assembler);
        saa_write8(pinfo,2);        /* abbrviation number LEB128u */
        saa_write32(pinforel, pinfo->datalen + 4);
        saa_write32(pinforel, ((dwarf_fsect->section + 2) << 8) +  R_386_32);
        saa_write32(pinforel, 0);
        saa_write32(pinfo,0);       /* DW_AT_low_pc */
        saa_write32(pinfo,0);       /* DW_AT_frame_base */
        saa_write8(pinfo,0);        /* end of entries */
        saalen = pinfo->datalen;
        infolen = saalen + 4;
        infobuf = pbuf = nasm_malloc(infolen);
        WRITELONG(pbuf,saalen);     /* initial length */
        saa_rnbytes(pinfo, pbuf, saalen);
        saa_free(pinfo);
    } else if (is_elfx32()) {
        /* build info section */
        pinfo = saa_init(1L);
        pinforel = saa_init(1L);
        saa_write16(pinfo, dwfmt->sect_version[DWARF_INFO]);
        saa_write32(pinforel, pinfo->datalen + 4);
        saa_write32(pinforel, (dwarf_abbrevsym << 8) + R_X86_64_32); /* reloc to abbrev */
        saa_write32(pinforel, 0);
        saa_write32(pinfo,0);			/* offset into abbrev */
        saa_write8(pinfo,4);			/* pointer size */
        saa_write8(pinfo,1);			/* abbrviation number LEB128u */
        saa_write32(pinforel, pinfo->datalen + 4);
        saa_write32(pinforel, ((dwarf_fsect->section + 2) << 8) + R_X86_64_32);
        saa_write32(pinforel, 0);
        saa_write32(pinfo,0);			/* DW_AT_low_pc */
        saa_write32(pinforel, pinfo->datalen + 4);
        saa_write32(pinforel, ((dwarf_fsect->section + 2) << 8) + R_X86_64_32);
        saa_write32(pinforel, 0);
        saa_write32(pinfo,highaddr);		/* DW_AT_high_pc */
        saa_write32(pinforel, pinfo->datalen + 4);
        saa_write32(pinforel, (dwarf_linesym << 8) + R_X86_64_32); /* reloc to line */
        saa_write32(pinforel, 0);
        saa_write32(pinfo,0);			/* DW_AT_stmt_list */
        saa_wbytes(pinfo, elf_module, strlen(elf_module)+1);
        saa_wbytes(pinfo, nasm_signature(), nasm_signature_len()+1);
        saa_write16(pinfo,DW_LANG_Mips_Assembler);
        saa_write8(pinfo,2);			/* abbrviation number LEB128u */
        saa_write32(pinforel, pinfo->datalen + 4);
        saa_write32(pinforel, ((dwarf_fsect->section + 2) << 8) +  R_X86_64_32);
        saa_write32(pinforel, 0);
        saa_write32(pinfo,0);			/* DW_AT_low_pc */
        saa_write32(pinfo,0);			/* DW_AT_frame_base */
        saa_write8(pinfo,0);			/* end of entries */
        saalen = pinfo->datalen;
        infolen = saalen + 4;
        infobuf = pbuf = nasm_malloc(infolen);
        WRITELONG(pbuf,saalen);     /* initial length */
        saa_rnbytes(pinfo, pbuf, saalen);
        saa_free(pinfo);
    } else {
        nasm_assert(is_elf64());
        /* build info section */
        pinfo = saa_init(1L);
        pinforel = saa_init(1L);
        saa_write16(pinfo, dwfmt->sect_version[DWARF_INFO]);
        saa_write64(pinforel, pinfo->datalen + 4);
        saa_write64(pinforel, (dwarf_abbrevsym << 32) +  R_X86_64_32); /* reloc to abbrev */
        saa_write64(pinforel, 0);
        saa_write32(pinfo,0);			/* offset into abbrev */
        saa_write8(pinfo,8);			/* pointer size */
        saa_write8(pinfo,1);			/* abbrviation number LEB128u */
        saa_write64(pinforel, pinfo->datalen + 4);
        saa_write64(pinforel, ((uint64_t)(dwarf_fsect->section + 2) << 32) +  R_X86_64_64);
        saa_write64(pinforel, 0);
        saa_write64(pinfo,0);			/* DW_AT_low_pc */
        saa_write64(pinforel, pinfo->datalen + 4);
        saa_write64(pinforel, ((uint64_t)(dwarf_fsect->section + 2) << 32) +  R_X86_64_64);
        saa_write64(pinforel, 0);
        saa_write64(pinfo,highaddr);		/* DW_AT_high_pc */
        saa_write64(pinforel, pinfo->datalen + 4);
        saa_write64(pinforel, (dwarf_linesym << 32) +  R_X86_64_32); /* reloc to line */
        saa_write64(pinforel, 0);
        saa_write32(pinfo,0);			/* DW_AT_stmt_list */
        saa_wbytes(pinfo, elf_module, strlen(elf_module)+1);
        saa_wbytes(pinfo, nasm_signature(), nasm_signature_len()+1);
        saa_write16(pinfo,DW_LANG_Mips_Assembler);
        saa_write8(pinfo,2);			/* abbrviation number LEB128u */
        saa_write64(pinforel, pinfo->datalen + 4);
        saa_write64(pinforel, ((uint64_t)(dwarf_fsect->section + 2) << 32) +  R_X86_64_64);
        saa_write64(pinforel, 0);
        saa_write64(pinfo,0);			/* DW_AT_low_pc */
        saa_write64(pinfo,0);			/* DW_AT_frame_base */
        saa_write8(pinfo,0);			/* end of entries */
        saalen = pinfo->datalen;
        infolen = saalen + 4;
        infobuf = pbuf = nasm_malloc(infolen);
        WRITELONG(pbuf,saalen);     /* initial length */
        saa_rnbytes(pinfo, pbuf, saalen);
        saa_free(pinfo);
    }

    /* build rela.info section */
    inforellen = saalen = pinforel->datalen;
    inforelbuf = pbuf = nasm_malloc(inforellen);
    saa_rnbytes(pinforel, pbuf, saalen);
    saa_free(pinforel);

    /* build abbrev section */
    pabbrev = saa_init(1L);
    saa_write8(pabbrev,1);      /* entry number LEB128u */
    saa_write8(pabbrev,DW_TAG_compile_unit);    /* tag LEB128u */
    saa_write8(pabbrev,1);      /* has children */
    /* the following attributes and forms are all LEB128u values */
    saa_write8(pabbrev,DW_AT_low_pc);
    saa_write8(pabbrev,DW_FORM_addr);
    saa_write8(pabbrev,DW_AT_high_pc);
    saa_write8(pabbrev,DW_FORM_addr);
    saa_write8(pabbrev,DW_AT_stmt_list);
    saa_write8(pabbrev,DW_FORM_data4);
    saa_write8(pabbrev,DW_AT_name);
    saa_write8(pabbrev,DW_FORM_string);
    saa_write8(pabbrev,DW_AT_producer);
    saa_write8(pabbrev,DW_FORM_string);
    saa_write8(pabbrev,DW_AT_language);
    saa_write8(pabbrev,DW_FORM_data2);
    saa_write16(pabbrev,0);     /* end of entry */
    /* LEB128u usage same as above */
    saa_write8(pabbrev,2);      /* entry number */
    saa_write8(pabbrev,DW_TAG_subprogram);
    saa_write8(pabbrev,0);      /* no children */
    saa_write8(pabbrev,DW_AT_low_pc);
    saa_write8(pabbrev,DW_FORM_addr);
    saa_write8(pabbrev,DW_AT_frame_base);
    saa_write8(pabbrev,DW_FORM_data4);
    saa_write16(pabbrev,0);     /* end of entry */
    /* Terminal zero entry */
    saa_write8(pabbrev,0);
    abbrevlen = saalen = pabbrev->datalen;
    abbrevbuf = pbuf = nasm_malloc(saalen);
    saa_rnbytes(pabbrev, pbuf, saalen);
    saa_free(pabbrev);

    /* build line section */
    /* prolog */
    plines = saa_init(1L);
    saa_write8(plines,1);           /* Minimum Instruction Length */
    saa_write8(plines,1);           /* Initial value of 'is_stmt' */
    saa_write8(plines,line_base);   /* Line Base */
    saa_write8(plines,line_range);  /* Line Range */
    saa_write8(plines,opcode_base); /* Opcode Base */
    /* standard opcode lengths (# of LEB128u operands) */
    saa_write8(plines,0);           /* Std opcode 1 length */
    saa_write8(plines,1);           /* Std opcode 2 length */
    saa_write8(plines,1);           /* Std opcode 3 length */
    saa_write8(plines,1);           /* Std opcode 4 length */
    saa_write8(plines,1);           /* Std opcode 5 length */
    saa_write8(plines,0);           /* Std opcode 6 length */
    saa_write8(plines,0);           /* Std opcode 7 length */
    saa_write8(plines,0);           /* Std opcode 8 length */
    saa_write8(plines,1);           /* Std opcode 9 length */
    saa_write8(plines,0);           /* Std opcode 10 length */
    saa_write8(plines,0);           /* Std opcode 11 length */
    saa_write8(plines,1);           /* Std opcode 12 length */
    /* Directory Table */
    saa_write8(plines,0);           /* End of table */
    /* File Name Table */
    ftentry = dwarf_flist;
    for (indx = 0; indx < dwarf_numfiles; indx++) {
        saa_wbytes(plines, ftentry->filename, (int32_t)(strlen(ftentry->filename) + 1));
        saa_write8(plines,0);       /* directory  LEB128u */
        saa_write8(plines,0);       /* time LEB128u */
        saa_write8(plines,0);       /* size LEB128u */
        ftentry = ftentry->next;
    }
    saa_write8(plines,0);           /* End of table */
    linepoff = plines->datalen;
    linelen = linepoff + totlen + 10;
    linebuf = pbuf = nasm_malloc(linelen);
    WRITELONG(pbuf,linelen-4);      /* initial length */
    WRITESHORT(pbuf,dwfmt->sect_version[DWARF_LINE]);
    WRITELONG(pbuf,linepoff);       /* offset to line number program */
    /* write line header */
    saalen = linepoff;
    saa_rnbytes(plines, pbuf, saalen);   /* read a given no. of bytes */
    pbuf += linepoff;
    saa_free(plines);
    /* concatonate line program ranges */
    linepoff += 13;
    plinesrel = saa_init(1L);
    psect = dwarf_fsect;
    if (is_elf32()) {
        for (indx = 0; indx < dwarf_nsections; indx++) {
            saa_write32(plinesrel, linepoff);
            saa_write32(plinesrel, ((uint32_t) (psect->section + 2) << 8) +  R_386_32);
            saa_write32(plinesrel, (uint32_t) 0);
            plinep = psect->psaa;
            saalen = plinep->datalen;
            saa_rnbytes(plinep, pbuf, saalen);
            pbuf += saalen;
            linepoff += saalen;
            saa_free(plinep);
            /* done with this entry */
            psect = psect->next;
        }
    } else if (is_elfx32()) {
        for (indx = 0; indx < dwarf_nsections; indx++) {
            saa_write32(plinesrel, linepoff);
            saa_write32(plinesrel, ((psect->section + 2) << 8) + R_X86_64_32);
            saa_write32(plinesrel, 0);
            plinep = psect->psaa;
            saalen = plinep->datalen;
            saa_rnbytes(plinep, pbuf, saalen);
            pbuf += saalen;
            linepoff += saalen;
            saa_free(plinep);
            /* done with this entry */
            psect = psect->next;
        }
    } else {
        nasm_assert(is_elf64());
        for (indx = 0; indx < dwarf_nsections; indx++) {
            saa_write64(plinesrel, linepoff);
            saa_write64(plinesrel, ((uint64_t) (psect->section + 2) << 32) +  R_X86_64_64);
            saa_write64(plinesrel, (uint64_t) 0);
            plinep = psect->psaa;
            saalen = plinep->datalen;
            saa_rnbytes(plinep, pbuf, saalen);
            pbuf += saalen;
            linepoff += saalen;
            saa_free(plinep);
            /* done with this entry */
            psect = psect->next;
        }
    }

    /* build rela.lines section */
    linerellen =saalen = plinesrel->datalen;
    linerelbuf = pbuf = nasm_malloc(linerellen);
    saa_rnbytes(plinesrel, pbuf, saalen);
    saa_free(plinesrel);

    /* build .debug_frame section */
    if (0) {
        framelen = 4;
        framebuf = pbuf = nasm_malloc(framelen);
        WRITELONG(pbuf,framelen-4); /* initial length */
    } else {
        /* Leave .debug_frame empty if not used! */
        framelen = 0;
    }

    /* build .debug_loc section */
    if (0) {
        loclen = 16;
        locbuf = pbuf = nasm_malloc(loclen);
        if (is_elf32() || is_elfx32()) {
            WRITELONG(pbuf,0);  /* null  beginning offset */
            WRITELONG(pbuf,0);  /* null  ending offset */
        } else {
            nasm_assert(is_elf64());
            WRITEDLONG(pbuf,0);  /* null  beginning offset */
            WRITEDLONG(pbuf,0);  /* null  ending offset */
        }
    } else {
        /* Leave .debug_frame empty if not used! */
        loclen = 0;
    }
}

static void dwarf_cleanup(void)
{
    nasm_free(arangesbuf);
    nasm_free(arangesrelbuf);
    nasm_free(pubnamesbuf);
    nasm_free(infobuf);
    nasm_free(inforelbuf);
    nasm_free(abbrevbuf);
    nasm_free(linebuf);
    nasm_free(linerelbuf);
    nasm_free(framebuf);
    nasm_free(locbuf);
}

static void dwarf_findfile(const char * fname)
{
    int finx;
    struct linelist *match;

    /* return if fname is current file name */
    if (dwarf_clist && !(strcmp(fname, dwarf_clist->filename)))
        return;

    /* search for match */
    match = 0;
    if (dwarf_flist) {
        match = dwarf_flist;
        for (finx = 0; finx < dwarf_numfiles; finx++) {
            if (!(strcmp(fname, match->filename))) {
                dwarf_clist = match;
                return;
            }
            match = match->next;
        }
    }

    /* add file name to end of list */
    dwarf_clist = nasm_malloc(sizeof(struct linelist));
    dwarf_numfiles++;
    dwarf_clist->line = dwarf_numfiles;
    dwarf_clist->filename = nasm_malloc(strlen(fname) + 1);
    strcpy(dwarf_clist->filename,fname);
    dwarf_clist->next = 0;
    if (!dwarf_flist) {     /* if first entry */
        dwarf_flist = dwarf_elist = dwarf_clist;
        dwarf_clist->last = 0;
    } else {                /* chain to previous entry */
        dwarf_elist->next = dwarf_clist;
        dwarf_elist = dwarf_clist;
    }
}

static void dwarf_findsect(const int index)
{
    int sinx;
    struct sectlist *match;
    struct SAA *plinep;

    /* return if index is current section index */
    if (dwarf_csect && (dwarf_csect->section == index))
        return;

    /* search for match */
    match = 0;
    if (dwarf_fsect) {
        match = dwarf_fsect;
        for (sinx = 0; sinx < dwarf_nsections; sinx++) {
            if (match->section == index) {
                dwarf_csect = match;
                return;
            }
            match = match->next;
        }
    }

    /* add entry to end of list */
    dwarf_csect = nasm_malloc(sizeof(struct sectlist));
    dwarf_nsections++;
    dwarf_csect->psaa = plinep = saa_init(1L);
    dwarf_csect->line = 1;
    dwarf_csect->offset = 0;
    dwarf_csect->file = 1;
    dwarf_csect->section = index;
    dwarf_csect->next = 0;
    /* set relocatable address at start of line program */
    saa_write8(plinep,DW_LNS_extended_op);
    saa_write8(plinep,is_elf64() ? 9 : 5);   /* operand length */
    saa_write8(plinep,DW_LNE_set_address);
    if (is_elf64())
        saa_write64(plinep,0);  /* Start Address */
    else
        saa_write32(plinep,0);  /* Start Address */

    if (!dwarf_fsect) { /* if first entry */
        dwarf_fsect = dwarf_esect = dwarf_csect;
        dwarf_csect->last = 0;
    } else {            /* chain to previous entry */
        dwarf_esect->next = dwarf_csect;
        dwarf_esect = dwarf_csect;
    }
}

#endif /* defined(OF_ELF32) || defined(OF_ELF64) || defined(OF_ELFX32) */