/* -*- Mode: C; c-basic-offset:4 ; indent-tabs-mode:nil ; -*- */
/*
* (C) 2003 by Argonne National Laboratory.
* See COPYRIGHT in top-level directory.
*/
#include "mpi.h"
#include "mpitestconf.h"
#ifdef HAVE_IOSTREAM
// Not all C++ compilers have iostream instead of iostream.h
#include <iostream>
#ifdef HAVE_NAMESPACE_STD
// Those that do often need the std namespace; otherwise, a bare "cout"
// is likely to fail to compile
using namespace std;
#endif
#else
#include <iostream.h>
#endif
#include "mpitestcxx.h"
#include <assert.h>
static char MTEST_Descrip[] = "Test MPI_Allreduce with non-commutative user-defined operations";
/* We make the error count global so that we can easily control the output
of error information (in particular, limiting it after the first 10
errors */
int errs = 0;
/* This implements a simple matrix-matrix multiply. This is an associative
but not commutative operation. The matrix size is set in matSize;
the number of matrices is the count argument. The matrix is stored
in C order, so that
c(i,j) is cin[j+i*matSize]
*/
#define MAXCOL 256
static int matSize = 0; /* Must be < MAXCOL */
static int max_offset = 0;
void uop(const void *cinPtr, void *coutPtr, int count, const MPI::Datatype & dtype)
{
const int *cin = (const int *) cinPtr;
int *cout = (int *) coutPtr;
int i, j, k, nmat;
int tempcol[MAXCOL];
int offset1, offset2;
int matsize2 = matSize * matSize;
for (nmat = 0; nmat < count; nmat++) {
for (j = 0; j < matSize; j++) {
for (i = 0; i < matSize; i++) {
tempcol[i] = 0;
for (k = 0; k < matSize; k++) {
/* col[i] += cin(i,k) * cout(k,j) */
offset1 = k + i * matSize;
offset2 = j + k * matSize;
assert(offset1 < max_offset);
assert(offset2 < max_offset);
tempcol[i] += cin[offset1] * cout[offset2];
}
}
for (i = 0; i < matSize; i++) {
offset1 = j + i * matSize;
assert(offset1 < max_offset);
cout[offset1] = tempcol[i];
}
}
cin += matsize2;
cout += matsize2;
}
}
/* Initialize the integer matrix as a permutation of rank with rank+1.
If we call this matrix P_r, we know that product of P_0 P_1 ... P_{size-2}
is the the matrix representing the permutation that shifts left by one.
As the final matrix (in the size-1 position), we use the matrix that
shifts RIGHT by one
*/
static void initMat(MPI::Intracomm comm, int mat[])
{
int i, j, size, rank;
int offset;
rank = comm.Get_rank();
size = comm.Get_size();
for (i = 0; i < size * size; i++) {
assert(i < max_offset);
mat[i] = 0;
}
if (rank < size - 1) {
/* Create the permutation matrix that exchanges r with r+1 */
for (i = 0; i < size; i++) {
if (i == rank) {
offset = ((i + 1) % size) + i * size;
assert(offset < max_offset);
mat[offset] = 1;
} else if (i == ((rank + 1) % size)) {
offset = ((i + size - 1) % size) + i * size;
assert(offset < max_offset);
mat[offset] = 1;
} else {
offset = i + i * size;
assert(offset < max_offset);
mat[offset] = 1;
}
}
} else {
/* Create the permutation matrix that shifts right by one */
for (i = 0; i < size; i++) {
for (j = 0; j < size; j++) {
offset = j + i * size; /* location of c(i,j) */
mat[offset] = 0;
if (((j - i + size) % size) == 1)
mat[offset] = 1;
}
}
}
}
/* Compare a matrix with the identity matrix */
static int isIdentity(MPI::Intracomm comm, int mat[])
{
int i, j, size, rank, lerrs = 0;
int offset;
rank = comm.Get_rank();
size = comm.Get_size();
for (i = 0; i < size; i++) {
for (j = 0; j < size; j++) {
if (i == j) {
offset = j + i * size;
assert(offset < max_offset);
if (mat[offset] != 1) {
lerrs++;
if (errs + lerrs < 10) {
cerr << "[" << rank << "] mat[" << i << "," << j << "] = " << mat[offset] <<
", expected 1 for comm " << MTestGetIntracommName() << endl;
}
}
} else {
offset = j + i * size;
assert(offset < max_offset);
if (mat[offset] != 0) {
lerrs++;
if (errs + lerrs < 10) {
cerr << "[" << rank << "] mat[" << i << "," << j << "] = " << mat[offset] <<
", expected 0 for comm " << MTestGetIntracommName() << endl;
}
}
}
}
}
return lerrs;
}
int main(int argc, char *argv[])
{
int size;
int minsize = 2, count;
MPI::Intracomm comm;
int *buf, *bufout;
MPI::Op op;
MPI::Datatype mattype;
MTest_Init();
op.Init(uop, false);
while (MTestGetIntracommGeneral(comm, minsize, 1)) {
if ((MPI::Intracomm) comm == (MPI::Intracomm) MPI_COMM_NULL) {
continue;
}
size = comm.Get_size();
matSize = size;
/* Only one matrix for now */
count = 1;
/* A single matrix, the size of the communicator */
mattype = MPI::INT.Create_contiguous(size * size);
mattype.Commit();
max_offset = count * size * size;
buf = new int[max_offset];
if (!buf) {
MPI::COMM_WORLD.Abort(1);
}
bufout = new int[max_offset];
if (!bufout) {
MPI::COMM_WORLD.Abort(1);
}
initMat(comm, buf);
comm.Allreduce(buf, bufout, count, mattype, op);
errs += isIdentity(comm, bufout);
/* Try the same test, but using MPI_IN_PLACE */
initMat(comm, bufout);
comm.Allreduce(MPI_IN_PLACE, bufout, count, mattype, op);
errs += isIdentity(comm, bufout);
delete[]buf;
delete[]bufout;
mattype.Free();
MTestFreeComm(comm);
}
op.Free();
MTest_Finalize(errs);
return 0;
}