AC_PREREQ(2.63)
#
# (C) 2006 by Argonne National Laboratory.
# See COPYRIGHT in top-level directory.
#
dnl Process this file with autoconf to produce a configure script.
dnl
dnl aclocal_cache.m4, included by sowing/confdb/aclocal.m4, fixes
dnl bugs in autoconf caching.
dnl
dnl This is a large configure script and it is important to keep it
dnl clearly organized. In addition, this script must coordinate with
dnl the other modules that can be used to construct MPICH, such as
dnl the communication device and the process manager. Each of these
dnl may have special features or limitations that other modules or
dnl this configure may need to take into account. To handle this, there
dnl are xx major steps in this configure script:
dnl
dnl 1. Identify major modules and source any prerequisite scripts
dnl 2. Determine compiler characteristics
dnl 3. Setup and configure the other modules
dnl 4. Determine MPI features and characteristics (such as datatype values)
dnl
dnl Each of these is described in more detail below.
dnl
dnl 1. Identify the modules (most are specified by
dnl --with-<modulename>=instance,
dnl for example, --with-pm=hydra or --with-device=ch3:nemesis).
dnl For each module, source the file mpichprereq if present (in the
dnl module's top-level directory). This
dnl must be a bourne (sh) shell script; it can access any of the variables
dnl in the configure script. In addition, there are a few variables that
dnl are defined and provided to allow the modules to communicate their
dnl needs or limitations to the other modules. These are:
dnl MPID_MAX_THREAD_LEVEL - thread level supported by device.
dnl if unset, is MPI_THREAD_FUNNELED
dnl MPID_NO_LONG_LONG - if yes, the device does not support the
dnl long long integer type
dnl MPID_NO_LONG_DOUBLE - if yes, the device does not support the
dnl long double type
dnl MPID_PM_NAMESERVER - if set, provides the name of the nameserver
dnl that the process manager supports.
dnl This name server will be used if the
dnl default name server is selected.
dnl MPID_NO_PM - If yes, the device does not require any
dnl PM implementation.
dnl MPID_NO_PMI - If yes, the device does not require any
dnl PMI implementation.
dnl MPID_MAX_PROCESSOR_NAME - The maximum number of character in a processor
dnl name. If not set, 128 will be used.
dnl MPID_MAX_ERROR_STRING - The maximum number of character in an error
dnl string. If not set, 1024 will be used.
dnl MPID_LIBTOOL_STATIC_FLAG - The static compilation flag to use
dnl for the example executables within
dnl mpich. If not set, -static will be
dnl used.
dnl PMI_REQUIRES_READABLE_TOKENS - if yes, define the C-preprocessor
dnl value USE_HUMAN_READABLE_TOKENS, which is
dnl used in src/include/mpimem.h to define token
dnl separators used in src/util/mem/argstr.c
dnl PM_REQUIRES_PMI - if set, provides the name of the PMI
dnl interface implementation. If not set,
dnl the "simple" PMI implementation is used.
dnl A process manager that needs a particular
dnl process manager should check that this is
dnl not set to an incompatible value.
dnl MPID_NO_SPAWN - if yes, the device does not support the
dnl dynamic process routines (spawn, connect
dnl attach, join, plus port and publish
dnl routines). The major effect of this
dnl is to let the test codes know that
dnl spawn is not implemented.
dnl MPID_NO_RMA - if yes, the device does not support the
dnl MPI RMA routines (MPI_Win_create and
dnl MPI_Put etc.). The major effect of this
dnl is to let the test codes know that
dnl RMA is not implemented.
dnl
dnl Note that the meanings of these variables are defined so that an
dnl undefined value gives the default. This makes it easy to expand
dnl the set of such variables, since only modules that need the new
dnl variable will need to be changed.
dnl
dnl 2. Determine compiler characteristics
dnl Here is where features of the compilers are determined, including
dnl support for shared libraries and sizes of the basic datatype types.
dnl
dnl 3. Setup and configure the other modules
dnl Before each module configure is executed, the script setup_<module>
dnl is run if present. This is a bourne (sh) shell script and may
dnl access configure variables. It should not make any changes to the
dnl compiler name or flags (e.g., do not add -D_XOPEN_SOURCE to CFLAGS here,
dnl because that may invalidate the determination of the compiler
dnl characteristics in the prior step).
dnl
dnl 4. Determine MPI features
dnl
dnl
dnl Special environment variables
dnl To let other scripts and in particular the configure in test/mpi
dnl know that they are being invoked from within the MPICH configure,
dnl the following environment variables are set and exported:
dnl FROM_MPICH
dnl MPICH_ENABLE_F77
dnl MPICH_ENABLE_FC
dnl MPICH_ENABLE_CXX
dnl
dnl Note that no executable statements are allowed (and any are silently
dnl dropped) before AC_INIT.
m4_include([maint/version.m4])
dnl 2nd arg is intentionally underquoted
AC_INIT([MPICH],
MPICH_VERSION_m4,
[discuss@mpich.org],
[mpich],
[http://www.mpich.org/])
if test "x$prefix" != "xNONE" && test -d "$prefix"; then
if test "x`(cd \"$prefix\"; echo \"$PWD\")`" = "x`(cd \"$srcdir\"; echo \"$PWD\")`" ||\
test "x`(cd \"$prefix\"; echo \"$PWD\")`" = "x$PWD" ; then
AC_MSG_ERROR([The install directory (--prefix=) cannot be the same as the build or src directory.])
fi
fi
CONFIGURE_ARGS_CLEAN=`echo $* | tr '"' ' '`
AC_SUBST(CONFIGURE_ARGS_CLEAN)
# these values come from the m4_include above
MPICH_VERSION=MPICH_VERSION_m4
AC_SUBST([MPICH_VERSION])
MPICH_RELEASE_DATE="MPICH_RELEASE_DATE_m4"
AC_SUBST([MPICH_RELEASE_DATE])
libmpi_so_version="libmpi_so_version_m4"
AC_SUBST([libmpi_so_version])
if test -z "$MPICH_VERSION" ; then
AC_MSG_ERROR([MPICH_VERSION is empty, check maint/version.m4 for errors])
fi
# Produce a numeric version assuming the following format:
# Version: [MAJ].[MIN].[REV][EXT][EXT_NUMBER]
# Example: 1.0.7rc1 has
# MAJ = 1
# MIN = 0
# REV = 7
# EXT = rc
# EXT_NUMBER = 1
#
# Converting to numeric version will convert EXT to a format number:
# ALPHA (a) = 0
# BETA (b) = 1
# RC (rc) = 2
# PATCH (p) = 3
# Regular releases are treated as patch 0
#
# Numeric version will have 1 digit for MAJ, 2 digits for MIN,
# 2 digits for REV, 1 digit for EXT and 2 digits for EXT_NUMBER.
changequote(<<,>>)
V1=`expr $MPICH_VERSION : '\([0-9]*\)\.[0-9]*\.*[0-9]*[a-zA-Z]*[0-9]*'`
V2=`expr $MPICH_VERSION : '[0-9]*\.\([0-9]*\)\.*[0-9]*[a-zA-Z]*[0-9]*'`
V3=`expr $MPICH_VERSION : '[0-9]*\.[0-9]*\.*\([0-9]*\)[a-zA-Z]*[0-9]*'`
V4=`expr $MPICH_VERSION : '[0-9]*\.[0-9]*\.*[0-9]*\([a-zA-Z]*\)[0-9]*'`
V5=`expr $MPICH_VERSION : '[0-9]*\.[0-9]*\.*[0-9]*[a-zA-Z]*\([0-9]*\)'`
changequote([,])
if test "$V2" -le 9 ; then V2=0$V2 ; fi
if test "$V3" = "" ; then V3=0; fi
if test "$V3" -le 9 ; then V3=0$V3 ; fi
if test "$V4" = "a" ; then
V4=0
elif test "$V4" = "b" ; then
V4=1
elif test "$V4" = "rc" ; then
V4=2
elif test "$V4" = "" ; then
V4=3
V5=0
elif test "$V4" = "p" ; then
V4=3
fi
if test "$V5" -le 9 ; then V5=0$V5 ; fi
MPICH_NUMVERSION=`expr $V1$V2$V3$V4$V5 + 0`
AC_SUBST(MPICH_NUMVERSION)
# ABIVERSION is the name used by simplemake, so we reassign the
# libmpi_so_version number to it
ABIVERSION=${libmpi_so_version}
export ABIVERSION
export libmpi_so_version
AC_SUBST(ABIVERSION)
# Print out the configure options
CONFIGURE_ARGUMENTS="$ac_configure_args"
AC_SUBST(CONFIGURE_ARGUMENTS)
if test -n "$ac_configure_args" ; then
echo "Configuring MPICH version $MPICH_VERSION with $ac_configure_args"
else
echo "Configuring MPICH version $MPICH_VERSION"
fi
# Add the information on the system:
echo "Running on system: `uname -a`"
dnl Definitions will be placed in this file rather than in the DEFS variable
AC_CONFIG_HEADER(src/include/mpichconf.h)
AH_TOP([/* -*- Mode: C; c-basic-offset:4 ; -*- */
/*
* (C) 2001 by Argonne National Laboratory.
* See COPYRIGHT in top-level directory.
*/
#ifndef MPICHCONF_H_INCLUDED
#define MPICHCONF_H_INCLUDED
])
# We use an #include strategy here because all of the alternative strategies for
# quashing these variables have various drawbacks. The alternatives are listed
# here to avoid rediscovery of these problems by someone else in the future:
#
# 1) Strategy: Rewrite mpichconf.h.in with sed at autogen.sh time.
# Problem: Automatic remaking of config.status and friends will re-run
# autoheader and blow away our sed changes without an opportunity to
# patch the resulting file again.
# 2) Strategy: Add literal "#undef PACKAGE" lines to the AH_BOTTOM text.
# Problem: These lines get rewritten by config.status to be "#define" lines,
# so the intended quashing never actually occurs.
# 3) Strategy: Use AC_CONFIG_COMMANDS to run a sed rewrite command on
# mpichconf.h at config.status time.
# Problem: Causes mpichconf.h to always be rewritten, first by the normal
# config.status commands and then by sed. This can cause
# unnecessary remaking of object files since nearly every C source
# file includes this header (see the Autoconf Manual, "Automatic
# Remaking")
#
# The only other plausible strategy would seem to be rewriting config.status
# itself via AC_CONFIG_COMMANDS_POST, but that seems error prone. The best
# solution would be to stop all subconfigures from including config.h headers
# from other packages. Then all of this nonsense can be eliminated.
# [goodell@ 2011-08-26]
AH_BOTTOM([
/* Include nopackage.h to undef autoconf-defined macros that cause conflicts in
* subpackages. This should not be necessary, but some packages are too
* tightly intertwined right now (such as ROMIO and the MPICH core) */
#include "nopackage.h"
#endif /* !defined(MPICHCONF_H_INCLUDED) */
])
dnl Set the directory that contains support scripts such as install-sh and
dnl config.guess
AC_CONFIG_AUX_DIR(confdb)
dnl our macro dir is the same as our aux dir
AC_CONFIG_MACRO_DIR([confdb])
# Set the FROM_MPICH variable to tell subconfigures that they are
# built from within MPICH
FROM_MPICH=yes
export FROM_MPICH
# Save a copy of precious flags as USER_* before any of these flags
# are being modified by configure tests.
PAC_PREFIX_ALL_FLAGS(USER)
# WRAPPER_xFLAGS are used by mpicc and friends.
#
# WRAPPER_CFLAGS and other compile flags are used for compile options
# that are added by MPICH, but should be used by applications (such
# as include paths).
#
# All libraries that are detected by MPICH as needed for some of its
# functionality (such as -lpthread) should be added to WRAPPER_LIBS
# so executables built within MPICH use them. If inter-library
# dependencies are not supported on the platform, these libraries are
# added to the MPICH wrappers (mpicc and friends) as well.
PAC_PREFIX_ALL_FLAGS(WRAPPER)
# MPICH_MPIx_FLAGS are used by mpicc and friends. They are like
# WRAPPER flags, but these are provided by the user.
AC_SUBST(MPICH_MPICC_CPPFLAGS)
AC_SUBST(MPICH_MPICC_CFLAGS)
AC_SUBST(MPICH_MPICC_LDFLAGS)
AC_SUBST(MPICH_MPICC_LIBS)
AC_SUBST(MPICH_MPICXX_CPPFLAGS)
AC_SUBST(MPICH_MPICXX_CXXFLAGS)
AC_SUBST(MPICH_MPICXX_LDFLAGS)
AC_SUBST(MPICH_MPICXX_LIBS)
AC_SUBST(MPICH_MPIF77_CPPFLAGS)
AC_SUBST(MPICH_MPIF77_FFLAGS)
AC_SUBST(MPICH_MPIF77_LDFLAGS)
AC_SUBST(MPICH_MPIF77_LIBS)
AC_SUBST(MPICH_MPIFORT_CPPFLAGS)
AC_SUBST(MPICH_MPIFORT_FCFLAGS)
AC_SUBST(MPICH_MPIFORT_LDFLAGS)
AC_SUBST(MPICH_MPIFORT_LIBS)
# Add MPICHLIB_* to the appropriate flags
AC_ARG_VAR(MPICHLIB_CFLAGS,
[extra CFLAGS used in building MPICH libraries])
AC_ARG_VAR(MPICHLIB_CPPFLAGS,
[extra CPPFLAGS used in building MPICH libraries])
AC_ARG_VAR(MPICHLIB_CXXFLAGS,
[extra CXXFLAGS used in building MPICH libraries])
AC_ARG_VAR(MPICHLIB_FFLAGS,
[extra FFLAGS used in building MPICH libraries])
AC_ARG_VAR(MPICHLIB_FCFLAGS,
[extra FCFLAGS used in building MPICH libraries])
CFLAGS="$CFLAGS $MPICHLIB_CFLAGS"
CPPFLAGS="$CPPFLAGS $MPICHLIB_CPPFLAGS"
CXXFLAGS="$CXXFLAGS $MPICHLIB_CXXFLAGS"
FFLAGS="$FFLAGS $MPICHLIB_FFLAGS"
FCFLAGS="$FCFLAGS $MPICHLIB_FCFLAGS"
dnl include all subsystem m4 fragments now that the core autoconf functionality
dnl has been setup. No fragment should do anything except define
dnl PAC_SUBCFG_{PREREQ,BODY} macros which will be expanded later as
dnl appropriate
# begin subsys includes
m4_include([subsys_include.m4])
# end subsys includes
dnl ----------------------------------------------------------------------------
dnl setup top-level argument handling
AC_ARG_ENABLE(echo,
AC_HELP_STRING([--enable-echo], [Turn on strong echoing. The default is enable=no.]),
set -x)
AC_ARG_ENABLE(error-checking,
[ --enable-error-checking=level
Control the amount of error checking.
no - no error checking
runtime - error checking controllable at runtime through environment
variables
all - error checking always enabled (default)
],,enable_error_checking=all)
AC_ARG_ENABLE(error-messages,
[ --enable-error-messages=level - Control the amount of detail in error messages.
all - Maximum amount of information
generic - Only generic messages (no information about the specific
instance)
class - One message per MPI error class
none - No messages
],,enable_error_messages=all)
AC_ARG_ENABLE(timing,
[ --enable-timing=level - Control the amount of timing information
collected by the MPICH implementation.
none - Collect no data (default)
all - Collect lots of data
runtime - Runtime control of data collected
],,enable_timing=default)
AC_ARG_ENABLE(g,
[ --enable-g=option - Control the level of debugging support in the
MPICH implementation. "option" is a list of comma
separated names including. Default is "most".
none - No debugging
handle - Trace handle operations
handlealloc - Trace handle allocations
dbg - Add compiler flag, -g, to all internal
compiler flags, i.e. MPICHLIB_CFLAGS, MPICHLIB_CXXFLAGS,
MPICHLIB_FFLAGS, and MPICHLIB_FCFLAGS.
debug - Synonym for dbg
log - Enable debug event logging
mem - Memory usage tracing
meminit - Preinitialize memory associated structures and unions to
eliminate access warnings from programs like valgrind
memarena - Check for overwrite errors in memory allocation arena
mutex - Enable error checking on pthread mutexes
mutexnesting - Check for non-nesting of mutexes
most - Most of the above options, excluding some with severe
performance impacts. Recommended for typical development.
yes - synonym for "most" (*not* "all")
all - All of the above choices
],,enable_g=none)
AC_ARG_ENABLE([mpit_pvars],
[ --enable-mpit-pvars=list - Selectively enable MPI_T performance variables in
modules. list is a comma-separated module names,
including (Default is "none"):
none - No performance info recorded
recvq - All message queue-related
nem - All nemesis-related
rma - All rma-related
all - All variables above
],[],[enable_mpit_pvars=none])
dnl We may want to force MPI_Aint to be the same size as MPI_Offset,
dnl particularly on 32 bit systems with large (64 bit) file systems.
AC_ARG_WITH(aint-size,
AC_HELP_STRING([--with-aint-size], [Override the size of MPI_AINT (in bytes)]),,
with_aint_size=0)
AC_ARG_ENABLE(fast,
[ --enable-fast=option - Control the level of fast execution in the
MPICH implementation. option is a list of
comma separated names including
O<n> - Appends default optimization flags, -O<n>, to all internal
compiler flags, i.e. MPICHLIB_CFLAGS, MPICHLIB_CXXFLAGS,
MPICHLIB_FFLAGS, and MPICHLIB_FCFLAGS. (default is -O2)
ndebug - Appends -DNDEBUG to MPICHLIB_CFLAGS.
all|yes - "O2" and "ndebug" are enabled
none - None of above options, i.e. --disable-fast
],,enable_fast=O2)
AC_ARG_ENABLE(interlib-deps,
[AC_HELP_STRING([--enable-interlib-deps - Enable interlibrary dependencies])],,enable_interlib_deps=yes)
AC_ARG_ENABLE(check-compiler-flags,
AC_HELP_STRING([--enable-check-compiler-flags], [enable the checks for all compiler
options, xxxFLAGS, MPICH_xxxFLAGS. Default is on.]),,
enable_check_compiler_flags=yes)
dnl We enable f77 and fc if we can find compilers for them.
dnl In addition, we check whether f77 and fc can work together.
AC_ARG_ENABLE(fortran,
[ --enable-fortran=option - Control the level of Fortran support in the MPICH implementation.
yes|all - Enable all available Fortran implementations (F77, F90+)
f77 - Enable Fortran 77 support
fc - Enable Fortran 90 and 2008 support
no|none - No Fortran support
],,[enable_fortran=all])
AC_ARG_ENABLE(f77,
AC_HELP_STRING([--enable-f77],
[DEPRECATED: Use --enable-fortran or --disable-fortran instead]),,[enable_f77=yes])
AC_ARG_ENABLE(fc,
AC_HELP_STRING([--enable-fc],
[DEPRECATED: Use --enable-fortran or --disable-fortran instead]),,[enable_fc=yes])
AC_ARG_ENABLE(cxx,
AC_HELP_STRING([--enable-cxx], [Enable C++ bindings]),,enable_cxx=yes)
AC_ARG_ENABLE(romio,
AC_HELP_STRING([--enable-romio], [Enable ROMIO MPI I/O implementation]),,
enable_romio=yes)
AC_ARG_ENABLE(debuginfo,
AC_HELP_STRING([--enable-debuginfo], [Enable support for debuggers]),,
enable_debuginfo=no)
## Enable creation of libtool-style versioning or no versioning
AC_ARG_ENABLE(versioning,
[AC_HELP_STRING([--enable-versioning],[Enable library versioning])],,
[enable_versioning=yes])
if test "$enable_versioning" = "yes" ; then
ABIVERSIONFLAGS="-version-info \$(ABIVERSION)"
else
ABIVERSIONFLAGS="-avoid-version"
fi
export ABIVERSIONFLAGS
AC_SUBST(ABIVERSIONFLAGS)
dnl The environment variable MPICH_DEBUGLIBNAME may be used to
dnl override the default name of the library that the debugger will
dnl load to access the MPICH internal data structures.
dnl "default" is a special device that allows MPICH to choose one
dnl based on the environment.
AC_ARG_WITH(device,
AC_HELP_STRING([--with-device=name], [Specify the communication device for MPICH]),,
with_device=default)
AC_ARG_WITH(pmi,
AC_HELP_STRING([--with-pmi=name], [Specify the pmi interface for MPICH]),,
with_pmi=default)
AC_ARG_WITH(pm,
AC_HELP_STRING([--with-pm=name],
[Specify the process manager for MPICH. "no" or "none" are
valid values. Multiple process managers may be specified as
long as they all use the same pmi interface by separating them
with colons. The mpiexec for the first named process manager
will be installed. Example: "--with-pm=hydra:gforker"
builds the two process managers hydra, and gforker;
only the mpiexec from hydra is installed into the bin
directory.]),,with_pm=default)
AC_ARG_WITH(logging,
AC_HELP_STRING([--with-logging=name], [Specify the logging library for MPICH]),
[if test -z "$withval" ; then with_logging=rlog ; fi],with_logging=none)
AC_ARG_ENABLE(threads,
[ --enable-threads=level - Control the level of thread support in the
MPICH implementation. The following levels
are supported.
single - No threads (MPI_THREAD_SINGLE)
funneled - Only the main thread calls MPI (MPI_THREAD_FUNNELED)
serialized - User serializes calls to MPI (MPI_THREAD_SERIALIZED)
multiple - Fully multi-threaded (MPI_THREAD_MULTIPLE)
runtime - Alias to "multiple"
See also the --enable-thread-cs option for controlling the granularity of
the concurrency inside of the library
],,enable_threads=default)
AC_ARG_ENABLE(thread-cs,
AC_HELP_STRING([--enable-thread-cs=type],
[Choose the method used for critical sections
and other atomic updates when multiple
threads are present. Values may be global
(default), per-object, lock-free]),,enable_thread_cs=global)
AC_ARG_ENABLE(refcount,
AC_HELP_STRING([--enable-refcount=type],
[Choose the method for ensuring atomic updates
to the reference counts for MPI objects.
Values may be lock-free or none. The
default depends on the thread-cs choice; for
global it is none (because none is required),
for per-object and lock-free, lock-free]),,
enable_refcount=default)
AC_ARG_ENABLE(mutex-timing,
AC_HELP_STRING([--enable-mutex-timing], [calculate the time spent waiting on mutexes]),
AC_DEFINE(MPIU_MUTEX_WAIT_TIME,1,[Define to enable timing mutexes]))
AC_ARG_ENABLE(handle-allocation,
AC_HELP_STRING([--enable-handle-allocation=type],
[Choose the method used for allocating MPI
object handles. Values may be 'tls' for
thread-local storage or 'mutex' for simple
locking. 'mutex' is the default.]),,enable_handle_allocation=default)
AC_ARG_ENABLE([predefined-refcount],
AS_HELP_STRING([--enable-predefined-refcount],
[control whether predefined objects like
MPI_COMM_WORLD are reference counted (default
depends on --enable-thread-cs choice)]),[],
[enable_predefined_refcount=default])
AC_ARG_ENABLE(weak-symbols,
AC_HELP_STRING([--enable-weak-symbols],
[Use weak symbols to implement PMPI routines (default)]),,
enable_weak_symbols=yes)
AC_ARG_ENABLE([two-level-namespace],
[AS_HELP_STRING([--enable-two-level-namespace],
[(Darwin only) Build shared libraries and programs
built with the mpicc/mpifort/etc. compiler
wrappers with '-Wl,-commons,use_dylibs' and
without '-Wl,-flat_namespace'. This may make the
MPICH installation and MPI programs more
compatible with other libraries. Only enable
this option if you really know what these linker
options imply.])],
[],
[enable_two_level_namespace=no])
AC_ARG_ENABLE(multi-aliases,
AC_HELP_STRING([--enable-multi-aliases],
[Multiple aliasing to support multiple fortran compilers (default)]),,
enable_multi_aliases=yes)
AC_ARG_ENABLE([wrapper-rpath],
[AC_HELP_STRING([--enable-wrapper-rpath],
[Determine whether the rpath is set when programs
are linked by mpicc compiler wrappers. This only
applies when shared libraries are built. The
default is yes; use --disable-wrapper-rpath to
turn this feature off. In that case, shared
libraries will be found according to the rules
for your system (e.g., in LD_LIBRARY_PATH)])],
[],[enable_wrapper_rpath=yes])
AC_SUBST([enable_wrapper_rpath])
AC_ARG_ENABLE([long-double],
[AC_HELP_STRING([--disable-long-double],
[Pass --disable-long-double to prevent the MPI
library from supporting the C "long double" type,
even if the C compiler supports it. "long
double" support is enabled by default, provided
the compiler supports it.])],
[],
[enable_long_double=yes])
AC_ARG_WITH(cross,
AC_HELP_STRING([--with-cross=file],
[Specify the values of variables that configure cannot
determine in a cross-compilation environment]),,
with_cross=$MPID_DEFAULT_CROSS_FILE)
if test -z "$with_cross" ; then with_cross=no ; fi
if test "$with_cross" != "no"; then
AC_MSG_NOTICE([Using cross file: $with_cross])
fi
AC_ARG_WITH(namepublisher,
[ --with-namepublisher=name Choose the system that will support
MPI_PUBLISH_NAME and MPI_LOOKUP_NAME. Options
include
pmi (default)
file[:directory] (optional directory)
no (no service available)],,with_namepublisher=default)
AC_ARG_WITH(name-publisher,
[],
with_namepublisher=$with_name_publisher,)
# Find a C compiler.
# We also need to do this before the F77 and FC test to ensure that we
# find the C preprocessor reliably.
PAC_PROG_CC
AM_PROG_CC_C_O dnl needed for automake "silent-rules"
PAC_PUSH_FLAG([CFLAGS])
AC_PROG_CPP
# Bug in autoconf. Restore cross settings
if test "$pac_cross_compiling" = "yes" -a "$ac_cv_prog_cc_cross" = "no" ; then
AC_MSG_RESULT([Resetting cross compilation to yes])
cross_compiling=yes
ac_cv_prog_cc_cross=yes
ac_cv_prog_f77_cross=yes
ac_cv_prog_fc_cross=yes
ac_cv_prog_cxx_cross=yes
fi
PAC_POP_FLAG([CFLAGS])
dnl now that autoconf and core compilers are setup, init automake and libtool
dnl
dnl We would like to pass -Werror, but we are cheating in the "examples/"
dnl directory and overriding the user-flags like CFLAGS, which automake-1.12
dnl warns about. Long-term we may need to use a hand-written Makefile.in or
dnl something else in this special dir.
AM_INIT_AUTOMAKE([-Wall -Wno-portability-recursive foreign 1.12.3 silent-rules subdir-objects])
AM_MAINTAINER_MODE([enable])
AM_PROG_AR
LT_INIT()
# Non-verbose make by default
m4_ifdef([AM_SILENT_RULES], [AM_SILENT_RULES([yes])])
# Disable rpath in the compiler wrappers if shared libraries are disabled, since
# rpath makes no sense in the context of static libraries.
if test "X$enable_shared" = "Xno" ; then
enable_wrapper_rpath=no
fi
INTERLIB_DEPS=yes
# We conservatively disable interlibrary dependencies if the libtool
# support model is anything different from "pass_all"
if test "X$enable_shared" = "Xno" -o "$deplibs_check_method" != "pass_all" -o "$enable_interlib_deps" = "no" ; then
INTERLIB_DEPS=no
fi
export INTERLIB_DEPS
AC_SUBST(INTERLIB_DEPS)
dnl AC_PROG_{CXX,F77,FC} must come early in configure.ac in order to avoid some
dnl esoteric autoconf macro expansion errors
dnl
dnl Also, DO NOT attempt to place shell conditionals (either manually or via
dnl AS_IF) around these macros in an effort to save configure time. It will
dnl lead to weird AM_CONDITIONAL errors and potentially other problems.
# Before attempting to find valid compilers, set the corresponding precious
# shell variable to "no" for any languages that have been disabled by the user
# with "--disable-LANG". Libtool understands this as a request to disable
# support for this language. This should save a bit of configure time and also
# prevent user complaints like ticket #1570.
AS_IF([test "x$enable_f77" = "xno"],[F77=no])
AS_IF([test "x$enable_fc" = "xno"],[FC=no])
AS_IF([test "x$enable_cxx" = "xno"],[CXX=no])
# suppress default "-g -O2" from AC_PROG_CXX
: ${CXXFLAGS=""}
AC_PROG_CXX([PAC_CXX_SEARCH_LIST])
# suppress default "-g -O2" from AC_PROG_FC
: ${FCFLAGS=""}
AC_PROG_FC([PAC_FC_SEARCH_LIST])
save_IFS="$IFS"
IFS=","
enable_f77=no
enable_fc=no
for option in $enable_fortran ; do
case "$option" in
yes|all)
enable_f77=yes
enable_fc=yes
;;
no|none)
;;
f77)
enable_f77=yes
;;
fc)
enable_fc=yes
;;
*)
IFS="$save_IFS"
AC_MSG_WARN([Unknown value $option for --enable-fortran])
IFS=","
;;
esac
done
IFS="$save_IFS"
if test "$enable_f77" = "no" ; then
if test "$enable_fc" = "yes" ; then
AC_MSG_ERROR([Fortran 90 support requires enabling Fortran 77])
fi
fi
if test ! -z "$FC" -a -z "$F77" ; then
F77=$FC
if test ! -z "$FCFLAGS" -a -z "$FFLAGS" ; then
FFLAGS=$FCFLAGS
fi
fi
AM_CONDITIONAL([INSTALL_MPIF77],[test "$F77" != "$FC" -a "$FFLAGS" != "$FCFLAGS"])
# This needs to come after we've potentially set F77=$FC. Otherwise, we could
# override the user's Fortran compiler selection when only specifying FC at configure
# time, as is allowed.
# suppress default "-g -O2" from AC_PROG_F77
: ${FFLAGS=""}
AC_PROG_F77([PAC_F77_SEARCH_LIST])
# compute canonical system types
AC_CANONICAL_BUILD
AC_CANONICAL_HOST
# TARGET not needed, MPICH isn't a compiler
# Enable better caching control
PAC_ARG_CACHING
# Set CFLAGS for enable strict if necessary. Do this *first* because
# it may influence the output of the other tests
PAC_ARG_STRICT
# -----------------------------------------------------------------------------
# First check that we have a clean build if we are doing a VPATH build
PAC_VPATH_CHECK(src/include/mpi.h src/env/mpicc,lib)
# ----------------------------------------------------------------------------
# This test is complicated by the fact that top_srcdir is not set until
# the very end of configure. Instead, we get it ourselves
if test -z "$top_srcdir" ; then
use_top_srcdir=$srcdir
else
use_top_srcdir=$top_srcdir
fi
if test -z "$master_top_srcdir" ; then
# This needs to be an absolute pathname
case "$use_top_srcdir" in
/*) ;;
*)
use_top_srcdir=`(cd $use_top_srcdir && pwd)`
;;
esac
master_top_srcdir=$use_top_srcdir
fi
# Get the directory that we're running in...
if test -z "$master_top_builddir" ; then
master_top_builddir="`pwd`"
fi
AC_SUBST(master_top_builddir)
AC_SUBST(master_top_srcdir)
export master_top_builddir
export master_top_srcdir
# ----------------------------------------------------------------------------
dnl Export important "precious" variables so that any directories configured via
dnl PAC_CONFIG_SUBDIR will agree with the top-level configure about these
dnl critical variables (esp. compiler selection). These exports should come
dnl before any subconfigures in this script.
dnl
dnl This list is arguably incomplete, and should possibly be automatically
dnl generated from "$ac_precious_vars" using code similar to the implementation
dnl of PAC_CONFIG_SUBDIR.
dnl
dnl To be clear, without these exports any variable values determined by this
dnl configure script will not be seen by child scripts. Instead they will dnl
dnl receive the only the original inherited environment and configure args used
dnl when this configure script was invoked.
export AR
export AR_FLAGS
export CC
export CFLAGS
export CPPFLAGS
export CXX
export CXXFLAGS
export F77
export FC
export FCFLAGS
export FFLAGS
export LDFLAGS
export LIBS
export MPILIBNAME
export PMPILIBNAME
export RANLIB
export OPALIBNAME
export MPLLIBNAME
# ----------------------------------------------------------------------------
# with-device
if test "$with_device" = "default" ; then
# Pick the device. For now, always choose ch3
with_device=ch3
fi
# Extract the device name from any options
# Allow the device to specify a directory; if no directory, use the
# included directories
#
DEVICE=$with_device
AC_SUBST(DEVICE)
device_name=`echo $with_device | sed -e 's/:.*$//'`
changequote(<<,>>)
device_args=`echo $with_device | sed -e 's/^[^:]*//' -e 's/^://'`
changequote([,])
devicedir=$use_top_srcdir/src/mpid/$device_name
devicereldir=src/mpid/$device_name
case "$device_name" in
/*)
devicedir=$DEVICE
# Get the name from the leaf
device_name=`echo $device_name ~ sed -e 's%.*/%%'`
# FIXME: should the devicereldir be different (perhaps not -
# this allows use to build within our tree, even when other data
# is outside of the tree)
;;
*)
;;
esac
export device_name
export device_args
export devicedir
# See if the device wants to say something about the compilers
if test -f $devicedir/mpichprereq ; then
. $devicedir/mpichprereq
fi
# expand all of the prereq macros in the correct order
m4_map([PAC_SUBCFG_DO_PREREQ], [PAC_SUBCFG_MODULE_LIST])
# ----------------------------------------------------------------------------
# Set default library names if names haven't already been provided
AC_ARG_VAR([MPILIBNAME],[can be used to override the name of the MPI library (default: "mpi")])
AC_ARG_VAR([PMPILIBNAME],[can be used to override the name of the MPI profiling library (default: "p$MPILIBNAME")])
AC_ARG_VAR([MPICXXLIBNAME],[can be used to override the name of the MPI C++ library (default: "${MPILIBNAME}cxx")])
AC_ARG_VAR([MPIFCLIBNAME],[can be used to override the name of the MPI fortran library (default: "${MPILIBNAME}fort")])
MPILIBNAME=${MPILIBNAME:-"mpi"}
PMPILIBNAME_set=no
if test -n "$PMPILIBNAME" ; then
PMPILIBNAME_set=yes
fi
PMPILIBNAME=${PMPILIBNAME:-"p$MPILIBNAME"}
# Note that the name for this library may be updated after we check for
# enable_shmem
# Fortran names are set later.
# We use a different library for the C++ wrappers to avoid problems when
# creating shared libraries
if test -z "$MPICXXLIBNAME" ; then MPICXXLIBNAME="${MPILIBNAME}cxx" ; fi
if test -z "$MPIFCLIBNAME" ; then MPIFCLIBNAME="${MPILIBNAME}fort" ; fi
export MPICXXLIBNAME
export MPIFCLIBNAME
AC_SUBST(MPICXXLIBNAME)
AC_SUBST(MPIFCLIBNAME)
# We'll set FORTRAN_BINDING to 1 if we support Fortran
FORTRAN_BINDING=0
# enable-fast
# strip off multiple options, separated by commas
save_IFS="$IFS"
IFS=","
for option in $enable_fast ; do
case "$option" in
O*)
enable_fast_opts=$option
;;
ndebug)
enable_fast_ndebug=yes
;;
all|yes)
enable_fast_ndebug=yes
enable_fast_opts=O2
;;
none|no)
enable_fast_ndebug=no
enable_fast_opts=O0
;;
*)
IFS="$save_IFS"
AC_MSG_WARN([Unknown value $option for --enable-fast])
IFS=","
;;
esac
done
IFS="$save_IFS"
if test -n "$enable_fast_opts" ; then
# Allows O<n> where <n> can be [0-9] or ' '.
opt_flags=`echo $enable_fast_opts | sed -e 's%\(O[0-9] \)%\1%g'`
if test -n "$opt_flags" ; then
MPI_DEFAULT_COPTS="-$enable_fast_opts"
MPI_DEFAULT_CXXOPTS="-$enable_fast_opts"
MPI_DEFAULT_FOPTS="-$enable_fast_opts"
MPI_DEFAULT_FCOPTS="-$enable_fast_opts"
else
AC_MSG_WARN([Unknown value $enable_fast_opts for --enable-fast])
fi
fi
if test "$enable_fast_ndebug" = "yes" ; then
CFLAGS="$CFLAGS -DNDEBUG -DNVALGRIND"
CXXFLAGS="$CXXFLAGS -DNDEBUG -DNVALGRIND"
# MPICH does NOT assume any preprocessing support from the Fortran compiler,
# so no Fortran files contain any preprocessing statements.
# Don't set FFLAGS or FCFLAGS with any -D.
fi
# error-checking
# Change default into the specific value of the default
if test "$enable_error_checking" = "yes" ; then
enable_error_checking=all
fi
# glue_romio.h needs the variable HAVE_ERROR_CHECKING to have the value 0 or 1
HAVE_ERROR_CHECKING=0
case "$enable_error_checking" in
no)
# if error checking has been disabled, then automatically disable the error
# checking tests in the test suite
ac_configure_args="${ac_configure_args} --disable-checkerrors"
;;
all|runtime)
error_checking_kind=`echo $enable_error_checking | \
tr 'abcdefghijklmnopqrstuvwxyz' 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'`
error_checking_kind=MPID_ERROR_LEVEL_$error_checking_kind
AC_DEFINE_UNQUOTED(HAVE_ERROR_CHECKING,$error_checking_kind,[Define to enable error checking])
HAVE_ERROR_CHECKING=1
;;
*)
AC_MSG_WARN([Unknown value $enable_error_checking for enable-error-checking])
;;
esac
# permit @HAVE_ERROR_CHECKING@ substitution in glue_romio.h
AC_SUBST([HAVE_ERROR_CHECKING])
# error-messages
case "$enable_error_messages" in
no|none)
error_message_kind="MPICH_ERROR_MSG_NONE"
;;
all|yes)
error_message_kind="MPICH_ERROR_MSG_ALL"
;;
generic)
error_message_kind="MPICH_ERROR_MSG_GENERIC"
;;
class)
error_message_kind="MPICH_ERROR_MSG_CLASS"
;;
*)
AC_MSG_WARN([Unknown value $enable_error_messages for enable-error-messages])
;;
esac
AC_DEFINE_UNQUOTED(MPICH_ERROR_MSG_LEVEL,$error_message_kind,[define to enable error messages])
# ----------------------------------------------------------------------------
#
# enable-timing and with-logging
#
# Still to do: add subsets: e.g., class=pt2pt,class=coll. See mpich doc
#
# Logging and timing are intertwined. If you select logging, you
# may also need to select a timing level. If no timing is selected
# but logging with rlog is selected, make "all" the default timing level.
#
# FIXME: make timing and logging options work more cleanly together,
# particularly when other logging options are selected (e.g., logging is not
# rlog).
# ----------------------------------------------------------------------------
AM_CONDITIONAL([BUILD_LOGGING_RLOG],[test "X$with_logging" = "Xrlog"])
collect_stats=false
logging_required=false
if test "$enable_timing" = "default" ; then
if test "$with_logging" = "rlog" ; then
enable_timing=all
fi
fi
timing_name=$enable_timing
case "$enable_timing" in
no)
timing_name=none
;;
time)
collect_stats=true
;;
log|log_detailed)
logging_required=true
;;
yes)
timing_name=all
collect_stats=true
logging_required=true
;;
all|runtime)
collect_stats=true
logging_required=true
;;
none|default)
timing_name=none
;;
*)
AC_MSG_WARN([Unknown value $enable_timing for enable-timing])
enable_timing=no
timing_name=none
;;
esac
#
# The default logging package is rlog; you can get it by
# specifying --with-logging or --with-logging=rlog
#
case $with_logging in
yes)
logging_name=rlog
;;
no|none)
logging_name=none
;;
default)
if test "$logging_required" = "true" ; then
logging_name=rlog
else
logging_name=none
fi
;;
*)
logging_name=$with_logging
;;
esac
#
# Include the selected logging subsystem
#
# Choices:
# 1) A subdir of src/util/logging
# This directory must contain a configure which will be executed
# to build the
# 2) An external directory
# This directory must contain
# a mpilogging.h file
# It may contain
# a setup_logging script
# a configure
#
#
logging_subsystems=
if test "$logging_name" != "none" ; then
# Check for an external name (directory containing a /)
hasSlash=`echo A$logging_name | sed -e 's%[[^/]]%%g'`
if test -n "$hasSlash" ; then
# Check that the external logging system is complete.
# Any failure will cause configure to abort
if test ! -d $logging_name ; then
AC_MSG_ERROR([External logging directory $logging_name not found. Configure aborted])
logging_name=none
elif test ! -s $logging_name/mpilogging.h ; then
AC_MSG_ERROR([External logging header $logging_name/mpilogging.h not found. Configure aborted])
logging_name=none
fi
logdir=$logging_name
# Force the logdir to be absolute
logdir=`cd $logdir && pwd`
# Switch name to "external" because that is how the MPICH
# code will know it
logging_name=external
# Add the dir to the include paths
#CPPFLAGS="$CPPFLAGS -I$logdir"
CPPFLAGS="$CPPFLAGS -I$logdir"
# Add to the list of external modules to setup
if test -x $logdir/setup_logging ; then
EXTERNAL_SETUPS="$EXTERNAL_SETUPS $logdir/setup_logging"
fi
else
logdir=$srcdir/src/util/logging
logreldir=src/util/logging/$logging_name
logging_subsystems="$logging_subsystems $logreldir"
for dir in $logging_name ; do
if test ! -d $logdir/$dir ; then
AC_MSG_ERROR([$logdir/$dir does not exist. Configure aborted])
logging_name=none
fi
done
for dir in $logging_subsystems ; do
if test ! -x $srcdir/$dir/configure ; then
AC_MSG_ERROR([$srcdir/$dir has no configure (required). Configure aborted])
logging_name=none
fi
done
fi
fi
#
# FIXME: Logging doesn't necessarily require timing (e.g., simply logging the
# sequence of routines).
if test "$logging_name" != "none" ; then
if test "$enable_timing" != "no" ; then
if test "$enable_timing" = "default" -o "$enable_timing" = "none" ; then
enable_timing=log
timing_name=log
fi
subsystems="$subsystems $logging_subsystems"
else
AC_MSG_WARN([Timing was disabled. Logging has been disabled as well.])
with_logging=no
logging_name=none
fi
else
if test "$logging_required" = "true" ; then
AC_MSG_WARN([Timing was enabled with log option but no logging library is available. Timing has been disabled.])
enable_timing=no
timing_name=none
fi
fi
if test "$timing_name" != "none" ; then
timing_kind=`echo $timing_name | \
tr 'abcdefghijklmnopqrstuvwxyz' 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'`
timing_kind=MPID_TIMING_KIND_$timing_kind
AC_DEFINE_UNQUOTED(HAVE_TIMING,$timing_kind,[define to enable timing collection])
if test "$collect_stats" = "true" ; then
AC_DEFINE(COLLECT_STATS,1,[define to enable collection of statistics])
fi
fi
use_logging_variable="MPID_LOGGING_`echo $logging_name | tr 'abcdefghijklmnopqrstuvwxyz' 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'`"
AC_DEFINE_UNQUOTED(USE_LOGGING,$use_logging_variable,[define to choose logging library])
# ----------------------------------------------------------------------------
# End of logging tests
# ----------------------------------------------------------------------------
# ----------------------------------------------------------------------------
# Check to see if the device does not support spawn.
# FIXME: This should provide the option of not building the dynamic
# process routines. It could also allow us to specialize support
# for all processes are members of MPI_COMM_WORLD (only one comm_world).
# ----------------------------------------------------------------------------
if test "$MPID_NO_SPAWN" = yes ; then
AC_MSG_WARN([The device $with_device does not support MPI dynamic process routines])
fi
# MPL
AC_ARG_VAR([MPLLIBNAME],[can be used to override the name of the MPL library (default: "mpl")])
MPLLIBNAME=${MPLLIBNAME:-"mpl"}
export MPLLIBNAME
AC_SUBST(MPLLIBNAME)
AC_ARG_WITH([mpl-prefix],
[AS_HELP_STRING([[--with-mpl-prefix[=DIR]]],
[use the MPL library installed in DIR,
rather than the one included in src/mpl. Pass
"embedded" to force usage of the MPL source
distributed with MPICH.])],
[],dnl action-if-given
[with_mpl_prefix=embedded]) dnl action-if-not-given
mplsrcdir=""
AC_SUBST([mplsrcdir])
mpllibdir=""
AC_SUBST([mpllibdir])
mpllib=""
AC_SUBST([mpllib])
if test "$with_mpl_prefix" = "embedded" ; then
# no need for libtool versioning when embedding MPL
mpl_subdir_args="--disable-versioning"
PAC_CONFIG_SUBDIR_ARGS([src/mpl],[$mpl_subdir_args],[],[AC_MSG_ERROR(MPL configure failed)])
PAC_APPEND_FLAG([-I${master_top_builddir}/src/mpl/include], [CPPFLAGS])
PAC_APPEND_FLAG([-I${use_top_srcdir}/src/mpl/include], [CPPFLAGS])
mplsrcdir="${master_top_builddir}/src/mpl"
mpllibdir="-L${master_top_builddir}/src/mpl"
mpllib="src/mpl/lib${MPLLIBNAME}.la"
else
# The user specified an already-installed MPL; just sanity check, don't
# subconfigure it
AS_IF([test -s "${with_mpl_prefix}/include/mplconfig.h"],
[:],[AC_MSG_ERROR([the MPL installation in "${with_mpl_prefix}" appears broken])])
PAC_APPEND_FLAG([-I${with_mpl_prefix}/include],[CPPFLAGS])
PAC_PREPEND_FLAG([-l${MPLLIBNAME}],[WRAPPER_LIBS])
PAC_APPEND_FLAG([-L${with_mpl_prefix}/lib],[WRAPPER_LDFLAGS])
mpllibdir="-L${with_mpl_prefix}/lib"
fi
# OpenPA
AC_ARG_VAR([OPALIBNAME],[can be used to override the name of the OpenPA library (default: "opa")])
OPALIBNAME=${OPALIBNAME:-"opa"}
export OPALIBNAME
AC_SUBST(OPALIBNAME)
AC_ARG_WITH([openpa-prefix],
[AS_HELP_STRING([[--with-openpa-prefix[=DIR]]],
[use the OpenPA atomics library installed in DIR,
rather than the one included in src/openpa. Pass
"embedded" to force usage of the OpenPA source
distributed with MPICH.])],
[],
[# see if OPA is already installed on the system
PAC_PUSH_FLAG([LIBS])
PAC_PREPEND_FLAG([-l${OPALIBNAME}],[LIBS])
AC_LINK_IFELSE([AC_LANG_PROGRAM([dnl
#include "opa_primitives.h"
],[
OPA_int_t i;
OPA_store_int(i,10);
OPA_fetch_and_incr_int(&i,5);
])dnl
],
[with_openpa_prefix=system],[with_openpa_prefix=embedded])
PAC_POP_FLAG([LIBS])
])
opasrcdir=""
AC_SUBST([opasrcdir])
opalibdir=""
AC_SUBST([opalibdir])
opalib=""
AC_SUBST([opalib])
if test "$with_openpa_prefix" = "embedded" ; then
if test -e "${use_top_srcdir}/src/openpa" ; then
opasrcdir="${master_top_builddir}/src/openpa"
opalib="${master_top_builddir}/src/openpa/src/lib${OPALIBNAME}.la"
PAC_APPEND_FLAG([-I${use_top_srcdir}/src/openpa/src],[CPPFLAGS])
PAC_APPEND_FLAG([-I${master_top_builddir}/src/openpa/src],[CPPFLAGS])
# OPA defaults to "auto", but in MPICH we want "auto_allow_emulation" to
# easily permit using channels like ch3:sock that don't care about atomics
AC_ARG_WITH([atomic-primitives],
[AS_HELP_STRING([--with-atomic-primitives],
[Force OPA to use a specific atomic primitives
implementation. See the src/openpa directory
for more info.])],
[],[with_atomic_primitives=not_specified])
# no need for libtool versioning when embedding OPA
opa_subdir_args="--disable-versioning"
if test "$with_atomic_primitives" = "not_specified" ; then
PAC_APPEND_FLAG([--with-atomic-primitives=auto_allow_emulation], [opa_subdir_args])
fi
PAC_CONFIG_SUBDIR_ARGS([src/openpa],[$opa_subdir_args],[],[AC_MSG_ERROR([OpenPA configure failed])])
else
AC_MSG_WARN([Attempted to use the embedded OpenPA source tree in "src/openpa", but it is missing. Configuration or compilation may fail later.])
fi
elif test "$with_openpa_prefix" = "system" ; then
PAC_PREPEND_FLAG([-l${OPALIBNAME}],[WRAPPER_LIBS])
elif test "$with_openpa_prefix" = "no" ; then
# The user doesn't want to use OPA. This may or may not cause MPICH to
# fail to configure/build, depending on many other factors.
:
else
# The user specified an already-installed OPA; just sanity check, don't
# subconfigure it
AS_IF([test -s "${with_openpa_prefix}/include/opa_primitives.h" -a -s "${with_openpa_prefix}/include/opa_config.h"],
[:],[AC_MSG_ERROR([the OpenPA installation in "${with_openpa_prefix}" appears broken])])
PAC_APPEND_FLAG([-I${with_openpa_prefix}/include],[CPPFLAGS])
PAC_PREPEND_FLAG([-l${OPALIBNAME}],[WRAPPER_LIBS])
if test -d ${with_openpa_prefix}/lib64 ; then
PAC_APPEND_FLAG([-L${with_openpa_prefix}/lib64],[WRAPPER_LDFLAGS])
opalibdir="-L${with_openpa_prefix}/lib64"
else
opalibdir="-L${with_openpa_prefix}/lib"
fi
PAC_APPEND_FLAG([-L${with_openpa_prefix}/lib],[WRAPPER_LDFLAGS])
fi
# ----------------------------------------------------------------------------
# Threads
# ----------------------------------------------------------------------------
#
# Threads must be supported by the device. First, set the default to
# be the highest supported by the device
# "runtime" was an old (now deprecated) option; just map it to multiple
if test "$enable_threads" = "runtime" ; then enable_threads=multiple ; fi
if test "$enable_threads" = "yes" ; then enable_threads=default ; fi
if test "$enable_threads" = "no" ; then enable_threads=single ; fi
if test "$enable_threads" = default ; then
# XXX DJG bug is here, PREREQ is not being used right now
if test -n "$MPID_MAX_THREAD_LEVEL" ; then
case $MPID_MAX_THREAD_LEVEL in
MPI_THREAD_SINGLE) enable_threads=single ;;
MPI_THREAD_FUNNELED) enable_threads=funneled ;;
MPI_THREAD_SERIALIZED) enable_threads=serialized ;;
MPI_THREAD_MULTIPLE) enable_threads=multiple ;;
*) AC_MSG_ERROR([Unrecognized thread level from device $MPID_MAX_THREAD_LEVEL])
;;
esac
else
enable_threads=single
fi
fi
MPICH_THREAD_LEVEL=MPI_THREAD_FUNNELED
case "$enable_threads" in
single)
thread_pkg_required=no
MPICH_THREAD_LEVEL=MPI_THREAD_SINGLE
;;
funneled)
thread_pkg_required=no
MPICH_THREAD_LEVEL=MPI_THREAD_FUNNELED
;;
serialized)
thread_pkg_required=no
MPICH_THREAD_LEVEL=MPI_THREAD_SERIALIZED
;;
multiple)
thread_pkg_required=yes
MPICH_THREAD_LEVEL=MPI_THREAD_MULTIPLE
;;
*)
AC_MSG_ERROR(["$enable_threads" is not a valid value for --enable-threads])
;;
esac
# Check that the requested thread level is available.
threadLevelOK=yes
if test ! -z "$MPID_MAX_THREAD_LEVEL" ; then
# Check that MPID_MAX_THREAD_LEVEL is at least as large as the
# selected MPICH_THREAD_LEVEL
case $MPICH_THREAD_LEVEL in
MPI_THREAD_MULTIPLE)
if test "$MPID_MAX_THREAD_LEVEL" != "MPI_THREAD_MULTIPLE" ; then
threadLevelOK=no
fi
;;
MPI_THREAD_SERIALIZED)
if test "$MPID_MAX_THREAD_LEVEL" != "MPI_THREAD_MULTIPLE" -a \
"$MPID_MAX_THREAD_LEVEL" != "MPI_THREAD_SERIALIZED" ; then
threadLevelOK=no
fi
;;
MPI_THREAD_FUNNELED)
if test "$MPID_MAX_THREAD_LEVEL" = "MPI_THREAD_SINGLE" ; then
threadLevelOK=no
fi
;;
MPI_THREAD_SINGLE)
;;
esac
fi
if test "$threadLevelOK" != yes ; then
AC_MSG_ERROR([The device $with_device does not support $MPICH_THREAD_LEVEL])
fi
export MPICH_THREAD_LEVEL
AC_DEFINE_UNQUOTED(MPICH_THREAD_LEVEL,$MPICH_THREAD_LEVEL,[Level of thread support selected at compile time])
if test "$MPICH_THREAD_LEVEL" = "MPI_THREAD_MULTIPLE" ; then
AC_DEFINE([MPICH_IS_THREADED],[1],[MPICH is configured to require thread safety])
fi
# If not in MPI_THREAD_SINGLE, we need -D_REENTRANT to get thread-safe "errno".
# Most POSIX systems provide this by default when using -lpthread, but we only use it in MPI_THREAD_MULTIPLE.
# Some systems (Solaris) still require an explicit define in any case.
if test "$MPICH_THREAD_LEVEL" != "MPI_THREAD_SINGLE"; then
PAC_APPEND_FLAG([-D_REENTRANT], [CPPFLAGS])
fi
# Check for value thread_cs choice; set the refcount default if necessary
thread_granularity=MPICH_THREAD_GRANULARITY_SINGLE
thread_refcount=MPIU_REFCOUNT_NONE
if test "$enable_threads" = "multiple" ; then
case $enable_thread_cs in
global)
thread_granularity=MPICH_THREAD_GRANULARITY_GLOBAL
if test "$enable_refcount" = "default" ; then enable_refcount=none ; fi
;;
per-object|per_object)
thread_granularity=MPICH_THREAD_GRANULARITY_PER_OBJECT
if test "$enable_refcount" = "default" ; then enable_refcount=lock-free ; fi
;;
lock-free|lock_free|lockfree)
thread_granularity=MPICH_THREAD_GRANULARITY_LOCK_FREE
if test "$enable_refcount" = "default" ; then enable_refcount=lock-free ; fi
if test "$enable_predefined_refcount" = "default" ; then enable_predefined_refcount=no ; fi
AC_MSG_ERROR([--enable-thread-cs=lock-free is not supported yet, please select a different granularity])
;;
*)
AC_MSG_ERROR([Unrecognized value $enable_thread_cs for --enable-thread-cs])
;;
esac
case $enable_refcount in
lock-free|lock_free|lockfree)
thread_refcount=MPIU_REFCOUNT_LOCKFREE
;;
none)
thread_refcount=MPIU_REFCOUNT_NONE
;;
*)
AC_MSG_ERROR([Unrecognized value $enable_refcount for --enable-refcount])
;;
esac
fi
AC_DEFINE_UNQUOTED([MPICH_THREAD_GRANULARITY],$thread_granularity,[Method used to implement atomic updates and access])
if test "$enable_predefined_refcount" = "no" ; then
AC_DEFINE([MPIU_THREAD_SUPPRESS_PREDEFINED_REFCOUNTS],[1],[define to disable reference counting predefined objects like MPI_COMM_WORLD])
fi
case $enable_handle_allocation in
mutex|default)
handle_allocation_method=MPIU_HANDLE_ALLOCATION_MUTEX
;;
tls)
handle_allocation_method=MPIU_HANDLE_ALLOCATION_THREAD_LOCAL
;;
*)
AC_MSG_ERROR([Unrecognized value $enable_handle_allocation for --enable-handle-allocation])
;;
esac
AC_DEFINE_UNQUOTED([MPIU_HANDLE_ALLOCATION_METHOD],$handle_allocation_method,[Method used to allocate MPI object handles])
AC_DEFINE_UNQUOTED([MPIU_THREAD_REFCOUNT],$thread_refcount,[Method used to implement refcount updates])
# enable-g
# strip off multiple options, separated by commas
save_IFS="$IFS"
IFS=","
for option in $enable_g ; do
case "$option" in
debug|dbg)
enable_append_g=yes
;;
no|none)
;;
handlealloc)
perform_handlealloc=yes
;;
handle)
perform_handle=yes
;;
meminit)
perform_meminit=yes
;;
memarena)
perform_memarena=yes
perform_memtracing=yes
;;
mem)
perform_memtracing=yes
;;
log)
perform_dbglog=yes
;;
mutex)
perform_dbgmutex=yes
;;
mutexnesting)
perform_mutexnesting=yes
;;
most|yes)
perform_memtracing=yes
perform_dbglog=yes
enable_append_g=yes
perform_meminit=yes
perform_dbgmutex=yes
perform_mutexnesting=yes
perform_handlealloc=yes
perform_handle=yes
;;
all)
perform_memarena=yes
perform_memtracing=yes
perform_dbglog=yes
enable_append_g=yes
perform_meminit=yes
perform_dbgmutex=yes
perform_mutexnesting=yes
perform_handlealloc=yes
perform_handle=yes
;;
*)
IFS=$save_IFS
AC_MSG_WARN([Unknown value $option for enable-g])
IFS=","
;;
esac
done
IFS="$save_IFS"
if test "$enable_append_g" = "yes" ; then
PAC_APPEND_FLAG([-g],[CFLAGS])
PAC_APPEND_FLAG([-g],[CXXFLAGS])
PAC_APPEND_FLAG([-g],[FFLAGS])
PAC_APPEND_FLAG([-g],[FCFLAGS])
PAC_APPEND_FLAG([-g],[WRAPPER_CFLAGS])
PAC_APPEND_FLAG([-g],[WRAPPER_CXXFLAGS])
PAC_APPEND_FLAG([-g],[WRAPPER_FFLAGS])
PAC_APPEND_FLAG([-g],[WRAPPER_FCFLAGS])
fi
if test -n "$perform_meminit" ; then
AC_DEFINE(MPICH_DEBUG_MEMINIT,1,[Define to enable preinitialization of memory used by structures and unions])
fi
if test "$perform_handlealloc" = yes ; then
AC_DEFINE(MPICH_DEBUG_HANDLEALLOC,1,[Define to enable checking of handles still allocated at MPI_Finalize])
fi
AS_IF([test "X$perform_handle" = "Xyes"],
[AC_DEFINE(MPICH_DEBUG_HANDLES,1,[Define to enable handle checking])])
if test -n "$perform_memtracing" ; then
enable_g_mem=yes
AC_DEFINE(USE_MEMORY_TRACING,1,[Define to enable memory tracing])
if test -n "$perform_memarena" ; then
AC_DEFINE(MPICH_DEBUG_MEMARENA,1,[Define if each function exit should confirm memory arena correctness])
fi
fi
USE_DBG_LOGGING=0
if test -n "$perform_dbglog" ; then
if test "$with_logging" != "none" ; then
AC_MSG_WARN([--with-logging overrides --enable-g=log])
else
AC_DEFINE(USE_DBG_LOGGING,1,[Define to enable logging macros])
USE_DBG_LOGGING=1
fi
fi
# allow @USE_DBG_LOGGING@ substitution in glue_romio.h
AC_SUBST([USE_DBG_LOGGING])
if test -n "$perform_dbgmutex" ; then
AC_DEFINE(MPICH_DEBUG_MUTEX,1,[Define to enable mutex debugging])
fi
pac_cross_compiling=no
if test "$with_cross" != "no" ; then
if test -s "$with_cross" ; then
AC_MSG_RESULT([Reading values from cross-compilation file $with_cross])
. $with_cross
# Autoconf 2.52 no longer sets cross_compiling except with the
# awkward "targethost" options.
pac_cross_compiling=yes
cross_compiling=yes
ac_cv_prog_cc_cross=yes
ac_cv_prog_f77_cross=yes
ac_cv_prog_fc_cross=yes
ac_cv_prog_cxx_cross=yes
export cross_compiling
# Export all cross variables. Any subsidiary configure should also
# export CROSS_xxx
rm -f confcross
(set) 2>&1 | grep CROSS_ | \
sed -e 's/^/export /g' -e 's/=.*//g' > confcross
. confcross
rm -f confcross
fi
fi
# This goes here because we need the top_srcdir
if test "$enable_romio" = "yes" ; then
if test -d $use_top_srcdir/src/mpi/romio ; then
subsystems="$subsystems src/mpi/romio"
AC_DEFINE(HAVE_ROMIO,1,[Define if ROMIO is enabled])
# make it possible to "#include" mpio.h at build time
#
# This ought to be sufficient, but there is also a symlink setup in
# src/include to accomodate current mpicc limitations. See
# src/mpi/Makefile.mk for more info.
PAC_APPEND_FLAG([-I${master_top_builddir}/src/mpi/romio/include],[CPPFLAGS])
# Set environment variables that the romio configure expects
export use_top_srcdir
top_build_dir=`pwd`
export top_build_dir
# if there is no $top_build_dir/lib, romio puts lib in wrong place
# This test used -e under Linux, but not all test programs understand
# -e
if test ! -d lib ; then mkdir lib ; fi
# tell mpi.h to include mpio.h
PAC_HAVE_ROMIO
else
AC_MSG_WARN([ROMIO src directory is not available])
fi
fi
AM_CONDITIONAL([BUILD_ROMIO], [test x$enable_romio = xyes])
#
# FIXME: If an external device, don't necessarily complain (e.g.,
# if the device is already built)
if test ! -d $devicedir ; then
AC_MSG_ERROR([Device $device_name is unknown])
elif test -f $devicedir/subconfigure.m4 ; then
# this is a new-style subconfigure device, don't add it as a subsystem
:
elif test ! -x $devicedir/configure ; then
if test -s $devicedir/configure ; then
AC_MSG_WARN([The configure in $devicedir exists but is not executable])
else
AC_MSG_WARN([Device $device_name has no configure])
fi
device_name=""
else
# Add the device to the configure list
devsubsystems="$devsubsystems $devicereldir"
# Make device_name available to subdirs
fi
# with-pm
if test "$with_pm" = "none" ; then
# add "none" as synonym for "no" to agree with older erroneous docs
with_pm="no"
fi
if test "$MPID_NO_PM" = yes ; then
if test "$with_pm" != "default" -a "$with_pm" != no ; then
AC_MSG_ERROR([The PM chosen ($with_pm) is is not valid for the selected device ($with_device)])
fi
# This is used to change with_pm=default to with_pm=no in the case
# where the device does not want a PM
with_pm=no
fi
if test -z "$with_pm" ; then
with_pm="no"
fi
if test "$with_pmi" = "uni" -a "$with_pm" = "default" ; then
with_pm="no"
fi
if test "$with_pm" = "default" -o "$with_pm" = "yes" ; then
if test ! -z "$MPID_DEFAULT_PM" ; then
with_pm=${MPID_DEFAULT_PM}
else
with_pm=hydra
fi
fi
# We allow multiple pm names, separated by : or ,
if test "$with_pm" != "no" ; then
pm_names="`echo $with_pm | sed -e 's/:/ /g' -e 's/,/ /g'`"
else
pm_names=""
fi
#
hasError=no
# We need to be careful about PM's that have either conflicting
# requirements (e.g., different PMI implementations) or different
# optional features (e.g., MPID_PM_NAMESERVER).
# In addition, we need to interleave the setup of the PMI and PM
# modules. The order is as follows:
#
# For each PM, execute the mpichprereq script for that pm (if present).
# This script provides information about the PM, including which PMI
# implementations are supported.
#
# Then, for the selected PMI, the setup script (if any) is run. This is
# necessary because the setup of the PM may require information discovered
# or provided duing the PMI setup step.
#
# Finally, for each PM, the setup script is executed.
#
# Step 1: invoke the mpichprereq for each PM
for pm_name in $pm_names ; do
if test -z "$first_pm_name" ; then
first_pm_name=$pm_name
export first_pm_name
fi
if test ! -d $use_top_srcdir/src/pm/$pm_name ; then
AC_MSG_WARN([$use_top_srcdir/src/pm/$pm_name does not exist. PM is unknown])
hasError=yes
elif test ! -x $use_top_srcdir/src/pm/$pm_name/configure -a \
! -f $use_top_srcdir/src/pm/$pm_name/subconfigure.m4 ; then
if test -s $use_top_srcdir/src/pm/$pm_name/configure ; then
AC_MSG_WARN([The configure in $use_top_srcdir/src/pm/$pm_name exists but is not executable])
else
AC_MSG_WARN([pm $pm_name has no configure or subconfigure.m4])
fi
pm_name=""
hasError=yes
else
nameserver=$MPID_PM_NAMESERVER
if test -f $use_top_srcdir/src/pm/$pm_name/mpichprereq ; then
echo sourcing $use_top_srcdir/src/pm/$pm_name/mpichprereq
. $use_top_srcdir/src/pm/$pm_name/mpichprereq
fi
# Check for a change; if found, we'll take the default
if test "$MPID_PM_NAMESERVER" != "$nameserver" ; then
if test "$first_pm_name" != "$pm_name" ; then
# Reject suggestion (use the default, common mode)
MPID_PM_NAMESERVER=""
fi
fi
fi
done
if test "$hasError" != no ; then
AC_MSG_ERROR([Aborting configure because an error was seen in the selection of process managers])
fi
#
# pm_name is the *primary* pm
pm_name=$first_pm_name
AC_SUBST(pm_name)
# Some versions of PM and PMI require a special definition
if test "$PMI_REQUIRES_READABLE_TOKENS" = "yes" ; then
AC_DEFINE(USE_HUMAN_READABLE_TOKENS,1,[Define to use ='s and spaces in the string utilities.])
fi
# Step 2:
# Once we've selected the process manager (or managers), we can
# check that we have a compatible PMI implemenatation.
# with-pmi
if test "$MPID_NO_PMI" = yes ; then
if test "$with_pmi" != "default" -a "$with_pmi" != no ; then
AC_MSG_ERROR([The PMI chosen ($with_pmi) is is not valid for the selected device ($with_device)])
fi
# This is used to change with_pmi=default to with_pmi=no in the case
# where the device does not want a PMI
with_pmi=no
elif test "$with_pmi" != "no" ; then
if test "$with_pmi" = "default" -o "$with_pmi" = "yes" ; then
if test -n "$PM_REQUIRES_PMI" ; then
with_pmi=$PM_REQUIRES_PMI
else
with_pmi=simple
fi
elif test -n "$PM_REQUIRES_PMI" ; then
# Test for compatibility between pm and pmi choices
if test "$PM_REQUIRES_PMI" != "$with_pmi" ; then
AC_MSG_ERROR([The PM chosen ($with_pm) requires the PMI implementation $PM_REQUIRES_PMI but $with_pmi was selected as the PMI implementation.])
fi
fi
pmi_name=$with_pmi
if test ! -d $use_top_srcdir/src/pmi/$pmi_name ; then
AC_MSG_WARN([$use_top_srcdir/src/pmi/$pmi_name does not exist. PMI is unknown])
elif test ! -x $use_top_srcdir/src/pmi/$pmi_name/configure ; then
if test ! -f $use_top_srcdir/src/pmi/$pmi_name/subconfigure.m4 ; then
AC_MSG_WARN([pmi $pmi_name has no configure or subconfigure.m4])
pmi_name=""
fi
else
# only add to subsystems if a full configure is present
subsystems="$subsystems src/pmi/$pmi_name"
fi
else
AC_MSG_ERROR([A PMI implementation must be selected or the default used.])
fi
# Step 3: complete pm setup.
# Note that checks for errors have already been performed, so this
# loop does not need to perform any extra error checks.
# Note that this uses this_pm_name because pm_name must be the *first*
# of the PM names
for this_pm_name in $pm_names ; do
# only add the PM to the subsystems if it has a full configure to be
# executed
if test -f $use_top_srcdir/src/pm/$this_pm_name/configure ; then
subsystems="$subsystems src/pm/$this_pm_name"
fi
if test -f $use_top_srcdir/src/pm/$this_pm_name/setup_pm ; then
echo sourcing $use_top_srcdir/src/pm/$this_pm_name/setup_pm
. $use_top_srcdir/src/pm/$this_pm_name/setup_pm
fi
done
# Check for whether the compiler defines a symbol that contains the
# function name. The MPICH code, for greater portability, defines
# its own symbols, FCNAME (a string) and FUNCNAME (a token that is not a
# string). Code should use these symbols where possible. However,
# some debugging macros may want to use a compiler-provided symbol
# for the function name, and this check makes it possible to
# define such macros in a way that is always correct.
PAC_CC_FUNCTION_NAME_SYMBOL
# Check if $MPI_DEFAULT_COPTS is valid with $CC
if test -n "$MPI_DEFAULT_COPTS" ; then
if test "$enable_check_compiler_flags" = "yes" ; then
PAC_C_CHECK_COMPILER_OPTION( [$MPI_DEFAULT_COPTS], [
CFLAGS="$CFLAGS $MPI_DEFAULT_COPTS"
] )
else
CFLAGS="$CFLAGS $MPI_DEFAULT_COPTS"
fi
fi
# Set NEEDSPLIB to yes if link commands need both -l$MPILIBNAME
# and -lp$MPILIBNAME.
NEEDSPLIB=yes
if test $enable_weak_symbols = yes ; then
# Turn off weak symbols if they aren't available
PAC_PROG_C_WEAK_SYMBOLS(,enable_weak_symbols=no)
fi
if test $enable_weak_symbols = "yes" ; then
AC_DEFINE(USE_WEAK_SYMBOLS,1,[Define if weak symbols should be used])
NEEDSPLIB=no
# Check for the ability to support multiple weak symbols
if test "$pac_cv_prog_c_weak_symbols" = "pragma weak" ; then
PAC_PROG_C_MULTIPLE_WEAK_SYMBOLS(AC_DEFINE(HAVE_MULTIPLE_PRAGMA_WEAK,1,[Define if multiple weak symbols may be defined]))
fi
fi
export NEEDSPLIB
AM_CONDITIONAL([BUILD_PROFILING_LIB],[test "$NEEDSPLIB" = "yes"])
# ---------------------------------------------------------------------------
# determine rpath and other shared library flags for CC
# src/env may not exist yet in a vpath build
$MKDIR_P src/env
cc_shlib_conf=src/env/cc_shlib.conf
PAC_COMPILER_SHLIB_FLAGS([CC],[$cc_shlib_conf])
AC_SUBST_FILE([cc_shlib_conf])
# output rpath flags in a usable format for mpich.pc (pkg-config)
if test "X$enable_wrapper_rpath" = "Xyes"; then
eval WRAPPER_RPATH_LDFLAGS=\"$hardcode_libdir_flag_spec\"
fi
AC_SUBST(WRAPPER_RPATH_LDFLAGS)
# ---------------------------------------------------------------------------
# Support for MPI_T performance variables
# enable-mpit-pvars
# strip off multiple options, separated by commas
save_IFS="$IFS"
IFS=","
for var in $enable_mpit_pvars ; do
AS_CASE(["$var"],
[nem],[enable_pvar_nem=yes],
[recvq],[enable_pvar_recvq=yes],
[rma],[enable_pvar_rma=yes],
[all|yes],
[enable_pvar_nem=yes
enable_pvar_recvq=yes
enable_pvar_rma=yes],
[no|none],[],
[IFS=$save_IFS
AC_MSG_WARN([Unknown value ($option) for enable-mpit-pvars])
IFS=","])
done
IFS="$save_IFS"
if test -n "$enable_pvar_nem" ; then
status_nem_pvars=1
else
status_nem_pvars=0
fi
AC_DEFINE_UNQUOTED(ENABLE_PVAR_NEM,$status_nem_pvars,
[Define to 1 to enable nemesis-related MPI_T performance variables])
if test -n "$enable_pvar_recvq" ; then
status_recvq_pvars=1
else
status_recvq_pvars=0
fi
AC_DEFINE_UNQUOTED(ENABLE_PVAR_RECVQ,$status_recvq_pvars,
[Define to 1 to enable message receive queue-related MPI_T performance variables])
if test -n "$enable_pvar_rma" ; then
status_rma_pvars=1
else
status_rma_pvars=0
fi
AC_DEFINE_UNQUOTED(ENABLE_PVAR_RMA,$status_rma_pvars,
[Define to 1 to enable rma-related MPI_T performance variables])
# ---------------------------------------------------------------------------
# Support for the language bindings: Fortran 77, Fortran 90, and C++
#
# First, we handle the case of no explicit enable/disable option. In that
# case, we look for a usable compiler. We cannot use the ac macros for this
# because they abort the configure step if they fail to find a compiler
# (earlier versions of autoconf did not have this behavior!).
#
# Second, we perform the langugage-specific tests, if necessary. This may
# be relatively simple (C++) or complex (Fortran 77, including formation of
# the encoded MPI handles).
#
# Note that the bindings support needs to know some of the properties of
# the C compiler, so those tests (particularly for weak symbols)
# must come first.
# ----------------------------------------------------------------------------
#
# First, determine whether we are/can support the language bindings
#
# Since F90/F90FLAGS are replaced by FC/FCFLAGS, rather than silently
# substituting them, i.e. FC=$F90 and FCFLAGS=$F90FLAGS, we choose to emit
# an error message and abort to avoid any ambiguous/hidden bug in choosing
# Fortran90 compilers.
if test -n "$F90" -o -n "$F90FLAGS" ; then
AC_MSG_ERROR([F90 and F90FLAGS are replaced by FC and FCFLAGS respectively in this configure, please unset F90/F90FLAGS and set FC/FCFLAGS instead and rerun configure again.])
fi
# ----------------------------------------------------------------------------
# Handle default choices for the Fortran compilers
# Note that these have already been set above
if test "$enable_f77" = "yes"; then
if test "$F77" = "" -o "$F77" = "no"; then
# No Fortran 77 compiler found; abort
AC_MSG_ERROR([No Fortran 77 compiler found. If you don't need to
build any Fortran programs, you can disable Fortran support using
--disable-fortran. If you do want to build Fortran
programs, you need to install a Fortran compiler such as gfortran
or ifort before you can proceed.])
fi
fi
if test "$enable_f77" = yes ; then
# Check if $MPI_DEFAULT_FOPTS is valid with $F77
if test -n "$MPI_DEFAULT_FOPTS" ; then
if test "$enable_check_compiler_flags" = "yes" ; then
PAC_F77_CHECK_COMPILER_OPTION( [$MPI_DEFAULT_FOPTS], [
FFLAGS="$FFLAGS $MPI_DEFAULT_FOPTS"
] )
else
FFLAGS="$FFLAGS $MPI_DEFAULT_FOPTS"
fi
fi
fi
#
# We need to know the name mangling for Fortran before testing for FC
# compatibility (we need this because of the way we decide to generate
# the Fortran 77 bindings)
if test "$enable_f77" = yes ; then
FLIBS_save="$FLIBS"
FLIBS=""
AC_F77_LIBRARY_LDFLAGS
# The autoconf macro for finding FLIBS sometimes makes mistakes
# (particularly with the Fujitsu frt compiler). This next step
# first sees if the FLIBS is valid with the Fortran compiler
PAC_PROG_F77_FLIBS_VALID
# Now see if FLIBS works with the C compiler
PAC_PROG_F77_CHECK_FLIBS
# Check F77+FLAGS is compatible with CC+CFLAGS before using F77+CC.
PAC_PROG_F77_OBJ_LINKS_WITH_C
PAC_PROG_F77_LINKER_WITH_C
# For name mangle, we need the library flags
PAC_PROG_F77_NAME_MANGLE
# Check whether additional libraries are needed when linking with C
PAC_PROG_F77_AND_C_STDIO_LIBS
AC_SUBST(F77_OTHER_LIBS)
# Warn about mixed name mangling, since many of the tests will fail
if test "$pac_cv_prog_f77_name_mangle" = "mixed" ; then
AC_MSG_WARN([The compiler $F77 uses mixed case names. Fortran is monocase
and many Fortran programs may use either upper or lower case names for MPI
calls. Consider specifying a particular parameter to your Fortran compiler
to select either upper or lower case names. For the Absoft compiler,
-f selects lower case and -N109 selects upper case (if you use -f, also use
-B108 to enable the iargc and getarg routines, which are needed for some
tests and by many user programs). Specify new command
line options by setting the environment variable FFLAGS to include
the options (e.g., setenv FFLAGS "-f -B108"). In addition, make sure that your
Fortran 90 compiler uses a compatible naming choice. For the
Absoft Fortran 90, -YALL_NAMES=LCS selects lower case names and -B108
adds underscores to names, as required for iargc and getarg. Pass this
information to configure with the FCFLAGS environment variable.])
# If Fortran implicitly enabled, disable it now. Otherwise,
# abort the configure since warning messages are often lost in
# the output.
AC_MSG_ERROR([Aborting configure because of mixed case names in Fortran. Either select --disable-fortran or set FCFLAGS to force the compiler to select monocase names])
fi
# The MPI standard requires that MPI_Init in any language initialize
# MPI in all languages. This can be a problem when objects produced
# by the Fortran compiler require symbols from the Fortran runtime
# (making linking C-only programs unnecessarily difficult). What we test
# here is whether the much more restricted needs of the Fortran
# initialize can be met with no special use of the Fortran runtime
PAC_F77_INIT_WORKS_WITH_C
if test "$pac_f_init_works_with_c" = "yes" ; then
AC_DEFINE(HAVE_MPI_F_INIT_WORKS_WITH_C,1,[Define if the Fortran init code for MPI works from C programs without special libraries])
fi
#
# Some Fortran compilers now pass CHARACTER length as a size_t instead
# of as an int. This is hard to test for, since the data is passed by
# value and for characters less than about 2GB long, the correct
# value will be used. In this case, we must use an approach similar to
# the one used by libtool for shared library options - look at the
# compiler name or vendor.
# Known compilers that use size_t instead of int:
# Intel Fortran
# gfortran
# Add others as they become known
AC_ARG_ENABLE(f77characterlen,
AC_HELP_STRING([--enable-f77characterlen],
[Select between int and size_t for the length of a Fortran CHARACTER, depending on the F77 compiler. If --enable-f77characterlen=size_t is given, force the use of size_t. This is used for passing Fortran CHARACTER data between C and Fortran, and is provided for experts. Note that the documentation provided by compiler vendors on the calling convention may not be accurate.]),,enable_f77characterlen=no)
# Set the default
f77_uses_int_for_str=default
case "$enable_f77characterlen" in
yes|no)
;;
size_t)
f77_uses_int_for_str=no
enable_f77characterlen=yes
;;
int)
f77_uses_int_for_str=yes
enable_f77characterlen=yes
;;
*)
AC_MSG_ERROR([Invalid value provided for --enable-f77characterlen])
;;
esac
# If we might change the size (enable) and we haven't set the choice,
# attempt to determine it from the compiler name. Risky, but we haven't
# found a reliable way to do this with test codes.
if test "$enable_f77characterlen" = "yes" -a \
"$f77_uses_int_for_str" = "default" ; then
f77_uses_int_for_str=yes
f77Basename=`basename $F77`
case $f77Basename in
ifort*)
f77_uses_int_for_str=no
;;
gfortran*)
f77_uses_int_for_str=no
;;
esac
fi
# This test is disabled for now. Despite information in documentation
# on gfortran, it appears to pass lengths as int, at least in some
# builds (it used movl when tested in 2/2013). Tests that failed
# included infotestf.f, in a call to mpi_info_get.
# Leave this as a place holder until a proper test can be determined.
if test "$enable_f77characterlen" = "yes" -a \
"$f77_uses_int_for_str" = "no" ; then
AC_DEFINE(USE_FORT_STR_LEN_SIZET,1,[Define if the length of a CHARACTER*(*) string in Fortran should be passed as size_t instead of int] )
fi
fi
# FC requires F77 as well. If the user disabled f77, do not run the
# next test; instead, drop into the warning message
# Set a default value for fc works with f77. This value is
# set to no *only* if fc was selected but was not compatible with f77
fc_with_f77=yes
if test "$enable_fc" = "yes" -a "$enable_f77" = yes ; then
enable_fc=no
if test "$FC" != "no" ; then
# If we allow multiple weak symbols, we should test a name
# that does not contain an underscore. The Fortran binding uses
# this rule for enabling multiple weak symbols:
# if defined(USE_WEAK_SYMBOLS) && !defined(USE_ONLY_MPI_NAMES) &&
# defined(HAVE_MULTIPLE_PRAGMA_WEAK) &&
# defined(F77_NAME_LOWER_2USCORE)
#
testRoutine="t1_2"
if test "$pac_cv_prog_c_multiple_weak_symbols" = "yes" -a \
"$enable_weak_symbols" = "yes" -a \
"$pac_cv_prog_f77_name_mangle" = "lower doubleunderscore" ; then
testRoutine="t12"
fi
PAC_FC_AND_F77_COMPATIBLE(fc_with_f77=yes,fc_with_f77=no,$testRoutine)
if test "$fc_with_f77" != yes ; then
enable_fc=no
AC_MSG_ERROR([The selected Fortran 90 compiler $FC does not work with the selected Fortran 77 compiler $F77. Use the environment variables FC and F77 respectively to select compatible Fortran compilers. The check here tests to see if a main program compiled with the Fortran 90 compiler can link with a subroutine compiled with the Fortran 77 compiler.])
elif test "$fc_with_f77" = "yes" ; then
# If we got here, there is a Fortran 90 compiler that we can use
enable_fc=yes
fi
elif test "$pac_cv_prog_fc_works" = no; then
AC_MSG_WARN([Use --disable-fc to keep configure from searching for a Fortran 90 compiler])
fi
if test "$enable_fc" = "yes"; then
if test "$FC" = "no" -o "$FC" = ""; then
# No Fortran 90 compiler found; abort
AC_MSG_ERROR([No Fortran 90 compiler found. If you don't need
to build any Fortran 90 programs, you can disable Fortran 90
support using --disable-fc. If you do want to build Fortran 90
programs, you need to install a Fortran 90 compiler such as
gfortran or ifort before you can proceed.])
fi
fi
fi
if test "$enable_fc" = "yes" -a "$enable_f77" != "yes" ; then
# Fortran 90 support requires compatible Fortran 77 support
AC_MSG_ERROR([
Fortran 90 support requires compatible Fortran 77 support.
To force the use of the Fortran 90 compiler for Fortran 77,
do not use configure option --disable-fortran, and set the environment
variable F77 to the name of the Fortran 90 compiler, or \$FC.
If you do not want any Fortran support, use configure options
--disable-fortran.])
# We should probably do the compatibility test as well
enable_f77=yes
fi
# ----------------------------------------------------------------------------
# Now test for Fortran compiler characteristics
# ----------------------------------------------------------------------------
if test "$enable_f77" = "yes" ; then
# determine rpath and other shared library flags for F77
f77_shlib_conf=src/env/f77_shlib.conf
PAC_COMPILER_SHLIB_FLAGS([F77],[$f77_shlib_conf])
AC_SUBST_FILE([f77_shlib_conf])
AC_LANG_FORTRAN77
PAC_PROG_F77_EXCLAIM_COMMENTS(has_exclaim="yes",has_exclaim="no")
PAC_PROG_F77_HAS_INCDIR(src)
PAC_PROG_F77_LIBRARY_DIR_FLAG
AC_SUBST(MPIFPMPI)
if test "$MPI_WITH_PMPI" = "no" ; then
# If the PMPI routines are not in the same library with the MPI
# routines, we may need to remove the pmpi declarations
PAC_PROG_F77_ALLOWS_UNUSED_EXTERNALS([MPIFPMPI=",PMPI_WTIME,PMPI_WTICK"],[
MPIFPMPI="";
AC_MSG_WARN([Removed PMPI_WTIME and PMPI_WTICK from mpif.h])])
else
MPIFPMPI=",PMPI_WTIME,PMPI_WTICK"
fi
# Once we have name mangle, we can try to limit the number of needed libs
dnl F77_IN_C_LIBS is not needed currently because mpirinitf_() in setbotf.f
dnl is called in initthread.c only when FLIBS is not needed to initialize
dnl Fortran constants from a C main, See PAC_F77_INIT_WORKS_WITH_C.
dnl PAC_PROG_F77_IN_C_LIBS
dnl AC_SUBST(F77_IN_C_LIBS)
# Most systems allow the Fortran compiler to process .F and .F90 files
# using the C preprocessor. However, some systems either do not
# allow this or have serious bugs (OSF Fortran compilers have a bug
# that generates an error message from cpp). The following test
# checks to see if .F works, and if not, whether "cpp -P -C" can be used
# This is needed for Mac OSX 10.5
PAC_F77_WORKS_WITH_CPP([F77CPP])
AC_SUBST(F77CPP)
# Check that the Fortran compiler will allow us to pass arguments
# of different types (e.g., for MPI_Send)
PAC_PROG_F77_MISMATCHED_ARGS(addarg,yes)
if test "X$addarg" != "X" ; then
# We could add the names of all of the MPI routines that
# accept different types. Instead, we fail cleanly.
# Some Fortran compilers allow you to turn off checking for
# mismatched arguments for *all* routines. Adding an argument
# that turns off checking for *everything* is not something that
# configure should do - if the user wants this, they can follow
# the instructions in the following error message.
AC_MSG_ERROR([The Fortran compiler $F77 does not accept programs that call the same routine with arguments of different types without the option $addarg. Rerun configure with FFLAGS=$addarg])
fi
bindings="$bindings f77"
AC_DEFINE(HAVE_FORTRAN_BINDING,1,[Define if Fortran is supported])
# Also define the name FORTRAN_BINDING for use in #if @FORTRAN_BINDING@..
FORTRAN_BINDING=1
fi
dnl By modifying mpif.h to use ! for comments, it can work with many f90
dnl compilers without creating a separate version.
dnl Note that this is run AFTER the AC_OUTPUT actions
AC_OUTPUT_COMMANDS([if test "$enable_f77" = yes ; then
if test "$has_exclaim" = "yes" ; then
sed -e 's/^C/\!/g' src/binding/fortran/mpif_h/mpif.h > src/include/mpif.h
cp src/include/mpif.h src/binding/fortran/mpif_h/mpif.h
else
cp src/binding/fortran/mpif_h/mpif.h src/include
fi
if test "$has_fort_real8" = "yes" ; then
sed -e 's/DOUBLE PRECISION/REAL*8/g' src/include/mpif.h > src/include/mpif.h.new
mv src/include/mpif.h.new src/include/mpif.h
cp src/include/mpif.h src/binding/fortran/mpif_h/mpif.h
fi
fi],
master_top_srcdir=$master_top_srcdir
enable_f77=$enable_f77
enable_fc=$enable_fc
has_exclaim=$has_exclaim
has_fort_real8=$pac_cv_fort_real8
includebuild_dir=$includebuild_dir
libbuild_dir=$libbuild_dir
bashWorks=$bashWorks)
if test "$enable_fc" = "yes" ; then
if test "$enable_f77" != "yes" ; then
AC_MSG_WARN([Fortran 90 requires Fortran 77])
enable_fc=no
else
bindingsubsystems="$bindingsubsystems src/binding/fortran/use_mpi"
bindings="$bindings f90"
fi
fi
f08_works=no
if test "$enable_fc" = "yes" ; then
PAC_FC_2008_SUPPORT([f08_works=yes],[f08_works=no])
fi
AM_CONDITIONAL([BUILD_F08_BINDING], [test "$f08_works" = "yes"])
if test "$f08_works" = "yes" ; then
status_f08_works=1
bindings="$bindings f08"
else
status_f08_works=0
fi
AC_DEFINE_UNQUOTED(HAVE_F08_BINDING, $status_f08_works, [Define to 1 to enable Fortran 2008 binding])
# Set defaults for these values so that the Makefile in src/bindings/f90
# is valid even if fc is not enabled (this is necessary for the
# distclean target)
MPIMODNAME=mpi
MPICONSTMODNAME=mpi_constants
MPISIZEOFMODNAME=mpi_sizeofs
MPIBASEMODNAME=mpi_base
# F08 binding stuff
MPI_F08_LINK_CONSTANTS_NAME=mpi_f08_link_constants
PMPI_F08_NAME=pmpi_f08
MPI_F08_CALLBACKS_NAME=mpi_f08_callbacks
MPI_C_INTERFACE_NAME=mpi_c_interface
MPI_C_INTERFACE_GLUE_NAME=mpi_c_interface_glue
MPI_F08_TYPES_NAME=mpi_f08_types
MPI_C_INTERFACE_NOBUF_NAME=mpi_c_interface_nobuf
MPI_F08_COMPILE_CONSTANTS_NAME=mpi_f08_compile_constants
MPI_F08_NAME=mpi_f08
MPI_C_INTERFACE_TYPES_NAME=mpi_c_interface_types
MPI_C_INTERFACE_CDESC_NAME=mpi_c_interface_cdesc
if test "$enable_fc" = "yes" ; then
# determine rpath and other shared library flags for FC
fc_shlib_conf=src/env/fc_shlib.conf
PAC_COMPILER_SHLIB_FLAGS([FC],[$fc_shlib_conf])
AC_SUBST_FILE([fc_shlib_conf])
# Determine characteristics of the Fortran 90 compiler
# Find a Fortran 90 compiler. Sets FC
# Work around bug in autoconf that adds -g to FCFLAGS
saveFCFLAGS="$FCFLAGS"
dnl FIXME XXX DJG this needs to be reconciled with our separate use of
dnl AC_PROG_FC earlier
dnl PAC_PROG_FC
PAC_PROG_FC_WORKS
FCFLAGS=$saveFCFLAGS
if test "$pac_cv_prog_fc_works" = no ; then
# Reject this compiler
if test "$FC" != "no" ; then
fc_rejected=yes
oldFC="$FC"
FC="no"
fi
fi
# Determine the extension for Fortran 90 files (it isn't always .f90)
FCEXT=$ac_fc_srcext
AC_SUBST(FCEXT)
if test "$FC" = "no" ; then
if test "$fc_rejected" = "yes" ; then
AC_MSG_ERROR([Could not find a usable Fortran 90 compiler. The compiler $oldFC may be incompatible with the Fortran 77 compiler $F77; check the output of configure and consult the installation manuals])
else
AC_MSG_ERROR([Could not find a usable Fortran 90 compiler.])
fi
fi
# Find the extension that this compiler uses for modules.
# Sets FCMODEXT (and adds it to the list substed)
# Sets FCMODINCFLAG (and adds it to the list substed)
PAC_FC_MODULE
AC_SUBST(FCMODINCSPEC)
if test -z "$FCMODOUTFLAG" ; then
AC_MSG_ERROR([FCMODOUTFLAG could not be determined but is critical for the current Fortran build system])
fi
if test "$pac_cv_fc_module_case" = "upper" ; then
MPIMODNAME=MPI
MPICONSTMODNAME=MPI_CONSTANTS
MPISIZEOFMODNAME=MPI_SIZEOFS
MPIBASEMODNAME=MPI_BASE
MPI_F08_NAME=MPI_F08
MPI_F08_LINK_CONSTANTS_NAME=MPI_F08_LINK_CONSTANTS
MPI_F08_CALLBACKS_NAME=MPI_F08_CALLBACKS
MPI_F08_TYPES_NAME=MPI_F08_TYPES
MPI_F08_COMPILE_CONSTANTS_NAME=MPI_F08_COMPILE_CONSTANTS
PMPI_F08_NAME=PMPI_F08
MPI_C_INTERFACE_NAME=MPI_C_INTERFACE
MPI_C_INTERFACE_NOBUF_NAME=MPI_C_INTERFACE_NOBUF
MPI_C_INTERFACE_GLUE_NAME=MPI_C_INTERFACE_GLUE
MPI_C_INTERFACE_TYPES_NAME=MPI_C_INTERFACE_TYPES
MPI_C_INTERFACE_CDESC_NAME=MPI_C_INTERFACE_CDESC
else
MPIMODNAME=mpi
MPICONSTMODNAME=mpi_constants
MPISIZEOFMODNAME=mpi_sizeofs
MPIBASEMODNAME=mpi_base
MPI_F08_NAME=mpi_f08
MPI_F08_LINK_CONSTANTS_NAME=mpi_f08_link_constants
MPI_F08_CALLBACKS_NAME=mpi_f08_callbacks
MPI_F08_TYPES_NAME=mpi_f08_types
MPI_F08_COMPILE_CONSTANTS_NAME=mpi_f08_compile_constants
PMPI_F08_NAME=pmpi_f08
MPI_C_INTERFACE_NAME=mpi_c_interface
MPI_C_INTERFACE_NOBUF_NAME=mpi_c_interface_nobuf
MPI_C_INTERFACE_GLUE_NAME=mpi_c_interface_glue
MPI_C_INTERFACE_TYPES_NAME=mpi_c_interface_types
MPI_C_INTERFACE_CDESC_NAME=mpi_c_interface_cdesc
fi
AC_SUBST(MPIMODNAME)
AC_SUBST(MPICONSTMODNAME)
AC_SUBST(MPISIZEOFMODNAME)
AC_SUBST(MPIBASEMODNAME)
AC_SUBST(MPI_F08_NAME)
AC_SUBST(MPI_F08_LINK_CONSTANTS_NAME)
AC_SUBST(MPI_F08_CALLBACKS_NAME)
AC_SUBST(MPI_F08_TYPES_NAME)
AC_SUBST(MPI_F08_COMPILE_CONSTANTS_NAME)
AC_SUBST(PMPI_F08_NAME)
AC_SUBST(MPI_C_INTERFACE_NAME)
AC_SUBST(MPI_C_INTERFACE_NOBUF_NAME)
AC_SUBST(MPI_C_INTERFACE_GLUE_NAME)
AC_SUBST(MPI_C_INTERFACE_TYPES_NAME)
AC_SUBST(MPI_C_INTERFACE_CDESC_NAME)
# Assume that all Fortran 90 compilers accept -I for include directories
FCINC=-I
AC_SUBST(FCINC)
FCINCFLAG=-I
AC_SUBST(FCINCFLAG)
# Check if $MPI_DEFAULT_FCOPTS is valid with $F90
if test -n "$MPI_DEFAULT_FCOPTS" ; then
if test "$enable_check_compiler_flags" = "yes" ; then
PAC_FC_CHECK_COMPILER_OPTION( [$MPI_DEFAULT_FCOPTS], [
FCFLAGS="$FCFLAGS $MPI_DEFAULT_FCOPTS"
] )
else
FCFLAGS="$FCFLAGS $MPI_DEFAULT_FCOPTS"
fi
fi
# Most systems allow the Fortran compiler to process .F and .F90 files
# using the C preprocessor. However, some systems either do not
# allow this or have serious bugs (OSF Fortran compilers have a bug
# that generates an error message from cpp). The following test
# checks to see if .F works, and if not, whether "cpp -P -C" can be used
PAC_FC_WORKS_WITH_CPP([FCCPP])
AC_SUBST(FCCPP)
# Check whether additional libraries are needed when linking with C
PAC_PROG_FC_AND_C_STDIO_LIBS
AC_SUBST(FC_OTHER_LIBS)
# ------------------------------------------------
fi
if test "X$modincdir" = "X" ; then
modincdir=$includedir
fi
export modincdir
AC_SUBST(modincdir)
AC_LANG_PUSH([C])
AC_MSG_CHECKING([whether TRUE has been defined])
AC_COMPILE_IFELSE([AC_LANG_PROGRAM(,[return TRUE;])],
[has_true_upper_case=yes],
[has_true_upper_case=no])
AC_MSG_RESULT($has_true_upper_case)
if test "$has_true_upper_case" = "no" ; then
AC_DEFINE(TRUE,1,[Define TRUE])
AC_DEFINE(FALSE,0,[Define FALSE])
fi
AC_LANG_POP([C])
# ----------------------------------------------------------------------------
# We previously allowed "default" as a valid value for $enable_cxx. Now we
# assume its available by default and error out if it doesn't work (just like
# F77 & FC). The user must pass "--disable-cxx" in order to successfully
# complete configure in this case.
if test "$enable_cxx" = "default" ; then
AC_MSG_ERROR([aborting because "--enable-cxx=default" is no longer a supported value])
fi
if test "$enable_cxx" = "yes" ; then
# Another bug in autoconf. The checks for the C++ compiler do not
# ensure that you can link a program that is built with the C++
# compiler. We've seen this error with gcc and icc, particularly
# when those compilers accept C++ language elements but are unable
# to link programs that are really C++. For that reason,
# we've added a test to see if the C++ compiler can produce
# an executable.
AC_CACHE_CHECK([whether the C++ compiler $CXX can build an executable],
pac_cv_cxx_builds_exe,[
AC_LANG_PUSH([C++])
AC_TRY_LINK([
class mytest {
int a;
public:
mytest(void) : a(1) {}
~mytest(void) {}
};],[mytest a;],
pac_cv_cxx_builds_exe=yes, pac_cv_cxx_builds_exe=no)
AC_LANG_POP([C++])
])
if test "$pac_cv_cxx_builds_exe" != yes ; then
AC_MSG_ERROR([Aborting because C++ compiler does not work. If you do not need a C++ compiler, configure with --disable-cxx])
fi
# Recent failures have come when a standard header is loaded
# The Intel icpc 10.x compiler fails with <string> if gcc 4.2 is installed.
AC_CACHE_CHECK([whether C++ compiler works with string],pac_cv_cxx_compiles_string,[
AC_LANG_PUSH([C++])
AC_TRY_COMPILE([#include <string>],[return 0;],pac_cv_cxx_compiles_string=yes,pac_cv_cxx_compiles_string=no)
AC_LANG_POP([C++])
])
if test "$pac_cv_cxx_compiles_string" != yes ; then
AC_MSG_WARN([The C++ compiler $CXX cannot compile a program containing the <string> header - this may indicate a problem with the C++ installation. Consider configuing with --disable-cxx])
fi
AC_LANG_CPLUSPLUS
AX_CXX_EXCEPTIONS
AX_CXX_BOOL
AX_CXX_NAMESPACES
if test "$ac_cv_cxx_namespaces" != "yes" ; then
AC_MSG_ERROR([Namespaces are required for the MPI C++ interface])
fi
HAVE_CXX_EXCEPTIONS=0
AC_SUBST(HAVE_CXX_EXCEPTIONS)
if test "$ac_cv_cxx_exceptions" = "yes" ; then
HAVE_CXX_EXCEPTIONS=1
fi
# iostream and math are needed for examples/cxx/cxxpi.cxx
AC_CACHE_CHECK([whether <iostream> available],pac_cv_cxx_has_iostream,[
AC_TRY_COMPILE([
#include <iostream>
],[using namespace std;],pac_cv_cxx_has_iostream=yes,pac_cv_cxx_has_iostream=no)])
AX_CXX_NAMESPACE_STD
AC_CACHE_CHECK([whether <math> available],pac_cv_cxx_has_math,[
AC_TRY_COMPILE([
#include <math>
],[using namespace std;],pac_cv_cxx_has_math=yes,pac_cv_cxx_has_math=no)])
# GNU changed the calling conventions between minor releases (!!!)
# This is too hard to detect, but we should be able to detect
# the version mismatch. By default, we set the GNU version to 0.
# In a cross-compiling environment, these can be set with environment
# variables, either directly or through the standard "CROSS" variable.
if test -z "$GNUCXX_VERSION" ; then
if test -n "$CROSS_GNUCXX_VERSION" ; then
GNUCXX_VERSION=$CROSS_GNUCXX_VERSION
else
GNUCXX_VERSION=0
fi
fi
if test -z "$GNUCXX_MINORVERSION" ; then
if test -n "$CROSS_GNUCXX_MINORVERSION" ; then
GNUCXX_MINORVERSION=$CROSS_GNUCXX_MINORVERSION
else
GNUCXX_MINORVERSION=0
fi
fi
if test "$cross_compiling" = "no" -a "$ac_compiler_gnu" = "yes" -a \
"$GNUCXX_VERSION" = 0 -a "$GNUCXX_MINORVERSION" = 0 ; then
ac_vals=""
AC_MSG_CHECKING([for GNU g++ version])
AC_TRY_RUN([#include <stdio.h>
int main() {
int v = -1, m = -1;
FILE *fp = fopen("conftest.out","w");
#ifdef __GNUC_MINOR__
m = __GNUC_MINOR__;
#endif
#ifdef __GNUC__
v = __GNUC__;
#endif
fprintf( fp, "v=%d, m=%d\n", v, m );
fclose( fp );
return 0;
}],ac_vals=`cat conftest.out`)
if test -n "$ac_vals" ; then
v=`echo "$ac_vals" | sed -e 's/v=\(.*\),.*/\1/'`
m=`echo "$ac_vals" | sed -e 's/.*m=\(.*\)/\1/'`
AC_MSG_RESULT([$v . $m])
GNUCXX_VERSION=$v
GNUCXX_MINORVERSION=$m
else
AC_MSG_RESULT([unknown])
fi
fi
AC_SUBST(GNUCXX_VERSION)
AC_SUBST(GNUCXX_MINORVERSION)
bindings="$bindings cxx"
AC_DEFINE(HAVE_CXX_BINDING,1,[Define if C++ is supported])
INCLUDE_MPICXX_H='#include "mpicxx.h"'
AC_SUBST(INCLUDE_MPICXX_H)
# In order to support the Fortran datatypes within C++,
#
# FORTRAN_BINDING always has a CPP-time value of either 0 or 1,
# so that it may be used in #if statements without adding to
# the CPP name space
AC_SUBST(FORTRAN_BINDING)
# Special C++ datatypes. Set to DATATYPE NULL first; we'll
# replace the ones that we have later, after we have determined
# the C datatypes
MPIR_CXX_BOOL=0x0c000000
MPIR_CXX_COMPLEX=0x0c000000
MPIR_CXX_DOUBLE_COMPLEX=0x0c000000
MPIR_CXX_LONG_DOUBLE_COMPLEX=0x0c000000
AC_SUBST(MPIR_CXX_BOOL)
AC_SUBST(MPIR_CXX_COMPLEX)
AC_SUBST(MPIR_CXX_DOUBLE_COMPLEX)
AC_SUBST(MPIR_CXX_LONG_DOUBLE_COMPLEX)
# determine rpath and other shared library flags for CXX
cxx_shlib_conf=src/env/cxx_shlib.conf
PAC_COMPILER_SHLIB_FLAGS([CXX],[$cxx_shlib_conf])
AC_SUBST_FILE([cxx_shlib_conf])
fi
if test "$enable_cxx" = yes; then
# Check if $MPI_DEFAULT_CXXOPTS is valid with $CXX
if test -n "$MPI_DEFAULT_CXXOPTS" ; then
if test "$enable_check_compiler_flags" = "yes" ; then
PAC_CXX_CHECK_COMPILER_OPTION( [$MPI_DEFAULT_CXXOPTS], [
CXXFLAGS="$CXXFLAGS $MPI_DEFAULT_CXXOPTS"
] )
else
CXXFLAGS="$CXXFLAGS $MPI_DEFAULT_CXXOPTS"
fi
fi
fi
AC_SUBST(bindings)
# ----------------------------------------------------------------------------
# End of the bindings support
# ----------------------------------------------------------------------------
AC_LANG_C
#
# ----------------------------------------------------------------------------
# Done with the basic argument processing and decisions about which
# subsystems to build
# ----------------------------------------------------------------------------
# Look for perl. Perl is used *only* in the tests of the commands such as
# mpiexec, mpicc, etc, in test/commands, and in some of the utility
# programs for processing log files . If perl is not found,
# MPICH may still be built and used.
# We need the full path to perl since we'll use it as the interpreter for
# a shell script.
AC_PATH_PROG(PERL,perl)
# Look for ar. If we fail, abort
AC_CHECK_PROGS(AR,ar)
if test -z "$AR" ; then
AC_MSG_ERROR([The program ar is required for building MPICH. Make sure that your path includes ar])
fi
# FIXME: this is probably unnecessary now that we only do one "ar" at the end
# (via libtool). If anything, it's likely to cause problems instead.
# AR_FLAGS provides a way to potentially improve build performance on Mac OSX
AR_FLAGS=cr
# this logic is lame, should really write a real test at some point
AS_CASE([$host],
# Barry proposes AR_FLAGS="Scq" in trac#754, but that won't work correctly for re-builds
[*-*-darwin*], [AR_FLAGS=Scr]
)
AC_ARG_VAR(AR_FLAGS,[AR command flags]) # causes AC_SUBST too
# Note that we set RANLIB to true if we don't find it (some systems neither
# need it nor provide it)
AC_CHECK_PROGS(RANLIB,ranlib,true)
# Check for the killall program; this can be used in some of the tests
# in test/commands
AC_CHECK_PROGS(KILLALL,killall,true)
# Does xargs need the -r option to handle the case where the input
# is empty (gnu utils do, Mac OSX does not accept -r)
xargs_out=`echo "" | xargs ls | wc -l | sed -e 's/ //g'`
if test "$xargs_out" != "0" ; then
XARGS_NODATA_OPT=-r
fi
AC_SUBST(XARGS_NODATA_OPT)
AC_PROG_INSTALL
PAC_PROG_CHECK_INSTALL_WORKS
#
# On Mac OS/X, install breaks libraries unless used with the -p switch
dnl FIXME not necessary now that we are using libtool
dnl PAC_PROG_INSTALL_BREAKS_LIBS
# We also need mkdir -p.
PAC_PROG_MKDIR_P
PAC_PROG_MAKE
#
# Check for bash to allow more robust shell scripts
AC_PATH_PROG(BASH_SHELL,bash)
#
# Confirm that bash has working arrays. We can use this to
# build more robust versions of the scripts (particularly the
# compliation scripts) by taking advantage of the array features in
# bash.
bashWorks=no
if test -x "$BASH_SHELL" ; then
changequote(%%,::)dnl
cat >>conftest <<EOF
#! $BASH_SHELL
A[0]="b"
A[1]="c"
rc=1
if test \${A[1]} != "c" ; then rc=2 ; else rc=0 ; fi
exit \$rc
EOF
changequote([,])dnl
AC_MSG_CHECKING([whether $BASH_SHELL supports arrays])
chmod +x conftest
if ./conftest 2>&1 >/dev/null ; then
bashWorks=yes
else
bashWorks=no
fi
rm -f conftest*
AC_MSG_RESULT($bashWorks)
fi
dnl BUILD_BASH_SCRIPTS used to be an AC_SUBST
AM_CONDITIONAL([BUILD_BASH_SCRIPTS], [test "x$bashWorks" = xyes])
# ----------------------------------------------------------------------------
# At this point, we've finally settled on the value of PMPILIBNAME. We
# can now set NEEDSPLIB.
if test "$NEEDSPLIB" = yes -a "$PMPILIBNAME" = "$MPILIBNAME" ; then
NEEDSPLIB=no
fi
# We are cheating a bit here and reaching inside of the libtool macros to
# extract the correct shared library extension. It would be nice if this
# were publicly available in at least the same way that $libext is.
eval SHLIB_EXT='"'$shrext_cmds'"'
export SHLIB_EXT
AC_SUBST(SHLIB_EXT)
# ----------------------------------------------------------------------------
#
# Add the steps for debugger support
BUILD_TVDLL=no
if test "$enable_debuginfo" = "yes" ; then
# We can build the Totalview interface DLL only if we know how to build
# shared libraries.
# FIXME is this really the right test?
# No. Before MPICH 1.5, there was the capability to build the debugger
# libraries without forcing the build of shared libraries for everything.
# There may be some way to restore this capability, but until then, we
# at least cause the configure to cleanly fail with a clear error message
if test "X$enable_shared" = "Xyes" ; then
BUILD_TVDLL=yes
else
AC_MSG_ERROR([Building with --enable-debuginfo now requires building with shared library support. Add --enable-shared and reconfigure])
fi
# One more nasty problem. Totalview relies on debugger symbols
# being present in the executable. Some experimental versions of
# gcc (3.2 20020329 for ia64) do *not* include the object symbols
# when debugging. For HPUX, the necessary linking options are
# +noobjdebug
# for C, Fortran, and C++. We don't have a good test for this yet,
# so we add a warning
if test "$ac_cv_prog_gcc" = "yes" ; then
AC_MSG_WARN([Some versions of gcc do not include debugging information
within the executable. Totalview requires this information to detect
an MPICH code. If you have trouble, try linking with the additional
option
+noobjdebug
on all link lines (consider adding it to LDFLAGS)])
fi
# The debugger library name cannot be set until we know the extension
# of shared libraries - the name is so on most Unix system, dylib on OS X.
AC_DEFINE(HAVE_DEBUGGER_SUPPORT,1,[Define if debugger support is included])
# The debugger support requires a shared library. This is handled
# below, after we check for compiler support for shared libraries
# Note: if libdir contains exec_prefix, handle the fact that the
# default exec_prefix is NONE, which (much later in configure)
# gets turned into the value of prefix
##ENVVAR: MPICH_DEBUGLIBNAME - Set this environment variable to
## override the default name of the debugger support library.
## The default name is libtvmpich.$SHLIB_EXT (e.g., libtvmpich.so for
## most Unix versions, libtvmpich.dylib for Mac OSX).
##ENVVAR END:
if test -z "$MPICH_DEBUGLIBNAME" ; then
DEBUGLIBNAME=libtvmpich$SHLIB_EXT
else
# FIXME DJG I don't think this can be supported arbitrarily by the new
# build system (I'm not sure it was supported correctly by the old
# system either)
AC_MSG_WARN([overriding MPICH_DEBUGLIBNAME is currently untested and probably does not work])
DEBUGLIBNAME=$MPICH_DEBUGLIBNAME
fi
if test "x$exec_prefix" = xNONE ; then
saveExecPrefix=$exec_prefix
exec_prefix=$prefix
eval dlldir=$libdir/$DEBUGLIBNAME
exec_prefix=$saveExecPrefix
else
eval dlldir=$libdir/$DEBUGLIBNAME
fi
dlldir='"'$dlldir'"'
AC_DEFINE_UNQUOTED(MPICH_INFODLL_LOC,$dlldir,[Define as the name of the debugger support library])
fi
# used by automakefiles to conditionally build the DLL
AM_CONDITIONAL([BUILD_DEBUGGER_DLL], [test x$BUILD_TVDLL = xyes])
# ----------------------------------------------------------------------------
nameserv_name=""
# Get the default nameserver, if no nameserver was selected. A process
# manager may advertise a nameserver name by setting the variable
# MPID_PM_NAMESERVER.
if test "$with_namepublisher" = "default" ; then
if test -n "$MPID_PM_NAMESERVER" ; then
with_namepublisher=$MPID_PM_NAMESERVER
else
# The default is to use pmi to communicate published names
with_namepublisher=pmi
fi
fi
if test "$with_namepublisher" != no -a "$with_namepublisher" != "none" ; then
case "$with_namepublisher" in
none|no) ;;
# Removed ldap namepublisher hook - we no longer support or distribute
# the ldap-based name server
file*)
# Note that we always build the Makefile for the file version because
# this name publisher is really too simple to require a
# separate configure, and we might as well include a basic
# name publisher with any MPICH distribution
# We DO need to extract the directory name that is used for writing
# the files, with the User's home directory as the default
nameserv_name="file"
basedir=`echo $with_namepublisher | sed -e 's/file://'`
if test "$basedir" = "$with_namepublisher" ; then
# Reset since no directory was set.
basedir='"."';
fi
AC_DEFINE_UNQUOTED(FILE_NAMEPUB_BASEDIR,$basedir,[Directory to use in namepub])
AC_DEFINE(USE_FILE_FOR_NAMEPUB,1,[Define if file should be used for name publisher])
;;
*)
# Check for a new namepublisher
dir=$with_namepublisher
# If we later need args, here is where we can strip them off of the
# with argument
if test -d "$use_top_srcdir/src/nameserv/$dir" ; then
if test -x "$use_top_srcdir/src/nameserv/$dir/configure" ; then
# Run the configure in this directory if necessary
subsystems="$subsystems src/nameserv/$dir"
fi
nameserv_name=$dir
else
AC_MSG_WARN([Unknown name publisher $with_namepublisher])
fi
;;
esac
fi
if test -n "$nameserv_name" ; then
AC_DEFINE(HAVE_NAMEPUB_SERVICE,1,[Define if a name publishing service is available])
fi
export nameserv_name
AM_CONDITIONAL([BUILD_NAMEPUB_FILE],[test "X$nameserv_name" = "Xfile"])
AM_CONDITIONAL([BUILD_NAMEPUB_PMI],[test "X$nameserv_name" = "Xpmi"])
# In case the documentation targets are used, find doctext and attempt to
# find the source for the doctext LaTeX style files. Use "false" if
# doctext is not found
AC_PATH_PROG(DOCTEXT,doctext,false)
export DOCTEXT
AC_SUBST(DOCTEXT)
# ----------------------------------------------------------------------------
# Check for C compiler characteristics
AC_C_CONST
AC_C_VOLATILE
AC_C_RESTRICT
AC_C_INLINE
PAC_C_GNU_ATTRIBUTE
PAC_C_BUILTIN_EXPECT
# We need to check for the endianess in order to implement the
# "external32" representations. This defines "WORDS_BIGENDIAN when
# the system is bigendian.
# As of autoconf 2.62, this macro takes an additional argument for systems
# that can produce object files for either endianess.
# With the as-always-incompatible-with-every-version autoconf, the
# arguments for this macro *changed* in 2.62 to
# (if-bigendian,if-littleendian,unknown,universal)
# The fourth argument is new.
# Also note that the definition emitted by autoheader requires that gcc
# be used to compile the programs - other compilers may not define the
# non-standard __BIG_ENDIAN__ or __LITTLE_ENDIAN__ CPP names on which
# autoconf 2.62 now depends.
byteOrdering=unknown
AC_C_BIGENDIAN(byteOrdering=big,byteOrdering=little,,byteOrdering=universal)
case $byteOrdering in
big)
# Nothing to do - the c_bigendian macro takes care of it
:
;;
little)
AC_DEFINE(WORDS_LITTLEENDIAN,1,[Define if words are little endian])
;;
universal)
AC_DEFINE(WORDS_UNIVERSAL_ENDIAN,1,[Define if configure will not tell us, for universal binaries])
;;
unknown)
AC_MSG_ERROR([Unable to determine endianess])
;;
esac
# We only need this test if we are using Fortran
if test "$enable_f77" ; then
PAC_PROG_C_UNALIGNED_DOUBLES(,
[AC_MSG_WARN(Your C compiler $CC does not support unaligned accesses
to doubles. This is required for interoperation with
Fortran (the Fortran standard requires it).
You may need to specify an additional argument to your C compiler to
force it to allow unaligned accesses.)])
fi
# Check for __func__ (defined in C99) or __FUNCTION__ (defined in older GCC)
AC_CACHE_CHECK([whether $CC supports __func__],pac_cv_cc_has___func__,
[AC_TRY_COMPILE([],
[const char *cp = __func__; ],pac_cv_cc_has___func__=yes,
pac_cv_cc_has___func__=no)])
if test "$pac_cv_cc_has___func__" != "yes" ; then
AC_CACHE_CHECK([whether $CC supports __FUNCTION__],pac_cv_cc_has___FUNCTION__,
[AC_TRY_COMPILE([],
[const char *cp = __FUNCTION__;],pac_cv_cc_has___FUNCTION__=yes,
pac_cv_cc_has___FUNCTION__=no)])
fi
# ----------------------------------------------------------------------------
# Check on support for long double and long long types. Do this before the
# structure alignment test because it will test for including those
# types as well. In addition, allow the device to suppress support for these
# optional C types by setting MPID_NO_LONG_DOUBLE and/or MPID_NO_LONG_LONG
# to yes.
if test "$MPID_NO_LONG_DOUBLE" != "yes" && test "X$enable_long_double" != "Xno" ; then
AC_CACHE_CHECK([whether long double is supported],
pac_cv_have_long_double,[
AC_TRY_COMPILE(,[long double a;],
pac_cv_have_long_double=yes,pac_cv_have_long_double=no)])
if test "$pac_cv_have_long_double" = "yes" ; then
AC_DEFINE(HAVE_LONG_DOUBLE,1,[Define if long double is supported])
fi
fi
if test "$MPID_NO_LONG_LONG" != "yes" ; then
AC_CACHE_CHECK([whether long long is supported],
pac_cv_have_long_long,[
AC_TRY_COMPILE(,[long long a;],
pac_cv_have_long_long=yes,pac_cv_have_long_long=no)])
if test "$pac_cv_have_long_long" = "yes" ; then
AC_DEFINE(HAVE_LONG_LONG_INT,1,[Define if long long is supported])
fi
fi
# ----------------------------------------------------------------------------
# Get default structure alignment for integers
dnl PAC_C_MAX_INTEGER_ALIGN places the default alignment into
dnl pac_cv_c_max_integer_align, with possible values including
dnl packed (byte), largest, two, four, eight (or other failure message).
PAC_C_MAX_INTEGER_ALIGN
if test "$pac_cv_c_max_integer_align" = "packed" ; then
pac_cv_c_struct_align_nr=1
elif test "$pac_cv_c_max_integer_align" = "two" ; then
pac_cv_c_struct_align_nr=2
elif test "$pac_cv_c_max_integer_align" = "four" ; then
pac_cv_c_struct_align_nr=4
elif test "$pac_cv_c_max_integer_align" = "eight" ; then
pac_cv_c_struct_align_nr=8
fi
if test -n "$pac_cv_c_struct_align_nr" ; then
AC_DEFINE_UNQUOTED(HAVE_MAX_INTEGER_ALIGNMENT,$pac_cv_c_struct_align_nr,[Controls byte alignment of integer structures (for MPI structs)])
AC_DEFINE_UNQUOTED(HAVE_MAX_STRUCT_ALIGNMENT,$pac_cv_c_struct_align_nr,[Controls byte alignment of structures (for aligning allocated structures)])
fi
# Get default structure alignment for floating point types
dnl PAC_C_MAX_FP_ALIGN places the default alignment into
dnl pac_cv_c_max_fp_align, with possible values including
dnl packed (byte), largest, two, four, eight (or other failure message).
PAC_C_MAX_FP_ALIGN
if test "$pac_cv_c_max_fp_align" = "packed" ; then
pac_cv_c_fp_align_nr=1
elif test "$pac_cv_c_max_fp_align" = "two" ; then
pac_cv_c_fp_align_nr=2
elif test "$pac_cv_c_max_fp_align" = "four" ; then
pac_cv_c_fp_align_nr=4
elif test "$pac_cv_c_max_fp_align" = "eight" ; then
pac_cv_c_fp_align_nr=8
elif test "$pac_cv_c_max_fp_align" = "sixteen" ; then
pac_cv_c_fp_align_nr=16
elif test "$pac_cv_c_max_fp_align" = "largest" ; then
AC_MSG_ERROR([Configure detected unsupported structure alignment rules.])
fi
if test -n "$pac_cv_c_fp_align_nr" ; then
AC_DEFINE_UNQUOTED(HAVE_MAX_FP_ALIGNMENT,$pac_cv_c_fp_align_nr,[Controls byte alignment of structures with floats, doubles, and long doubles (for MPI structs)])
fi
# Test for the alignment of structs containing only long doubles.
if test "$pac_cv_have_long_double" = yes ; then
# Check for alignment of just float and double (no long doubles)
PAC_C_MAX_DOUBLE_FP_ALIGN
PAC_C_MAX_LONGDOUBLE_FP_ALIGN
# FIXME: If this alignment is not the same as that for all float types,
# we need to do something else in the alignment rule code.
if test "$pac_cv_c_max_fp_align" != "$pac_cv_c_max_longdouble_fp_align" -o \
"$pac_cv_c_max_fp_align" != "$pac_cv_c_max_double_fp_align" ; then
AC_MSG_WARN([Structures containing long doubles may be aligned differently from structures with floats or longs. MPICH does not handle this case automatically and you should avoid assumed extents for structures containing float types.])
double_align=-1
case $pac_cv_c_max_double_fp_align in
packed) double_align=1 ;;
two) double_align=2 ;;
four) double_align=4 ;;
eight) double_align=8 ;;
esac
longdouble_align=-1
case $pac_cv_c_max_longdouble_fp_align in
packed) longdouble_align=1 ;;
two) longdouble_align=2 ;;
four) longdouble_align=4 ;;
eight) longdouble_align=8 ;;
sixteen)longdouble_align=16 ;;
esac
AC_DEFINE_UNQUOTED(HAVE_MAX_DOUBLE_FP_ALIGNMENT,$double_align,[Controls byte alignment of structs with doubles])
AC_DEFINE_UNQUOTED(HAVE_MAX_LONG_DOUBLE_FP_ALIGNMENT,$longdouble_align,[Controls byte alignment of structs with long doubles])
fi
fi
# Test for weird struct alignment rules that vary padding based on
# size of leading type only.
PAC_C_DOUBLE_POS_ALIGN
if test "$pac_cv_c_double_pos_align" = "yes" ; then
AC_DEFINE_UNQUOTED(HAVE_DOUBLE_POS_ALIGNMENT,1,[Controls how alignment is applied based on position of doubles in the structure])
fi
# Test for same weird issues with long long int.
PAC_C_LLINT_POS_ALIGN
if test "$pac_cv_c_llint_pos_align" = "yes" ; then
AC_DEFINE_UNQUOTED(HAVE_LLINT_POS_ALIGNMENT,1,[Controls how alignment is applied based on position of long long ints in the structure])
fi
# Test for double alignment not following all our other carefully constructed rules
PAC_C_DOUBLE_ALIGNMENT_EXCEPTION
if test "$pac_cv_c_double_alignment_exception" = "four" ; then
AC_DEFINE_UNQUOTED(HAVE_DOUBLE_ALIGNMENT_EXCEPTION,4,[Controls how alignment of doubles is performed, separate from other FP values])
fi
# Test whether pointers can be aligned on a int boundary or require
# a pointer boundary.
AC_MSG_CHECKING([for alignment restrictions on pointers])
AC_TRY_RUN(
changequote(<<,>>)
struct foo { int a; void *b; };
int main() {
int buf[10];
struct foo *p1;
p1=(struct foo*)&buf[0];
p1->b = (void *)0;
p1=(struct foo*)&buf[1];
p1->b = (void *)0;
return 0;
changequote([,])
},pac_cv_pointers_have_int_alignment=yes,pac_cv_pointers_have_int_alignment=no,pac_cv_pointers_have_int_alignment=unknown)
if test "$pac_cv_pointers_have_int_alignment" != "yes" ; then
AC_DEFINE(NEEDS_POINTER_ALIGNMENT_ADJUST,1,[define if pointers must be aligned on pointer boundaries])
AC_MSG_RESULT([pointer])
else
AC_MSG_RESULT([int or better])
fi
# Require strict alignment memory access for alignment-sensitive platform (e.g., SPARC)
if test "$host_cpu" = "sparc" ; then
AC_DEFINE(NEEDS_STRICT_ALIGNMENT,1,[Define if strict alignment memory access is required])
fi
# There are further alignment checks after we test for int64_t etc. below.
# Get the size of the C types for encoding in the basic datatypes and for
# the specific-sized integers
AC_CHECK_SIZEOF(char)
AC_CHECK_SIZEOF(unsigned char)
AC_CHECK_SIZEOF(short)
AC_CHECK_SIZEOF(unsigned short)
AC_CHECK_SIZEOF(int)
AC_CHECK_SIZEOF(unsigned int)
AC_CHECK_SIZEOF(long)
AC_CHECK_SIZEOF(unsigned long)
AC_CHECK_SIZEOF(long long)
AC_CHECK_SIZEOF(unsigned long long)
AC_CHECK_SIZEOF(float)
AC_CHECK_SIZEOF(double)
AC_CHECK_SIZEOF(long double)
AC_CHECK_SIZEOF(void *)
AC_HEADER_STDC
AC_CHECK_HEADERS([stddef.h])
AC_CHECK_SIZEOF(wchar_t, 0, [
#ifdef HAVE_STDDEF_H
#include <stddef.h>
#endif
])
AC_CHECK_SIZEOF(float_int, 0, [typedef struct { float a; int b; } float_int; ])
AC_CHECK_SIZEOF(double_int, 0, [typedef struct { double a; int b; } double_int; ])
AC_CHECK_SIZEOF(long_int, 0, [typedef struct { long a; int b; } long_int; ])
AC_CHECK_SIZEOF(short_int, 0, [typedef struct { short a; int b; } short_int; ])
AC_CHECK_SIZEOF(two_int, 0, [typedef struct { int a; int b; } two_int; ])
AC_CHECK_SIZEOF(long_double_int, 0, [typedef struct { long double a; int b;} long_double_int; ])
# sys/bitypes.h defines the int16_t etc. on some systems (e.g., OSF1).
# Include it when testing for these types
AC_CHECK_HEADER(sys/bitypes.h,[use_bitypes="#include <sys/bitypes.h>"
AC_DEFINE(HAVE_SYS_BITYPES_H,1,[Define if sys/bitypes.h exists])])
# A C99 compliant compiler should have inttypes.h for fixed-size int types
AC_CHECK_HEADERS(inttypes.h stdint.h)
# Check for types
AC_TYPE_INT8_T
AC_TYPE_INT16_T
AC_TYPE_INT32_T
AC_TYPE_INT64_T
# Temporary issue in autoconf integer type checking (remove when
# autoconf fixes this or provides a workaround for it)
if test "$ac_cv_c_int8_t" != no ; then
AC_DEFINE(HAVE_INT8_T,1,[Define if int8_t is supported by the C compiler])
fi
if test "$ac_cv_c_int16_t" != no ; then
AC_DEFINE(HAVE_INT16_T,1,[Define if int16_t is supported by the C compiler])
fi
if test "$ac_cv_c_int32_t" != no ; then
AC_DEFINE(HAVE_INT32_T,1,[Define if int32_t is supported by the C compiler])
fi
if test "$ac_cv_c_int64_t" != no ; then
AC_DEFINE(HAVE_INT64_T,1,[Define if int64_t is supported by the C compiler])
fi
# The following make these definitions:
# define _UINT<n>_T 1
# if uint<n>_t is available. E.g., define _UINT8_T as 1 if uint8_t is available
# if not available, define uint<n>_t as the related C type, e.g.,
# define uint8_t unsigned char
#
AC_TYPE_UINT8_T
AC_TYPE_UINT16_T
AC_TYPE_UINT32_T
AC_TYPE_UINT64_T
# Temporary issue in autoconf integer type checking (remove when
# autoconf fixes this or provides a workaround for it)
if test "$ac_cv_c_uint8_t" != no ; then
AC_DEFINE(HAVE_UINT8_T,1,[Define if uint8_t is supported by the C compiler])
fi
if test "$ac_cv_c_uint16_t" != no ; then
AC_DEFINE(HAVE_UINT16_T,1,[Define if uint16_t is supported by the C compiler])
fi
if test "$ac_cv_c_uint32_t" != no ; then
AC_DEFINE(HAVE_UINT32_T,1,[Define if uint32_t is supported by the C compiler])
fi
if test "$ac_cv_c_uint64_t" != no ; then
AC_DEFINE(HAVE_UINT64_T,1,[Define if uint64_t is supported by the C compiler])
fi
# Other C99 types.
AC_CHECK_HEADERS([stdbool.h complex.h])
AC_CHECK_SIZEOF([_Bool],0,[
#ifdef HAVE_STDBOOL_H
#include <stdbool.h>
#endif
])
AC_CHECK_SIZEOF([float _Complex],0,[
#ifdef HAVE_COMPLEX_H
#include <complex.h>
#endif
])
AC_CHECK_SIZEOF([double _Complex],0,[
#ifdef HAVE_COMPLEX_H
#include <complex.h>
#endif
])
AS_IF([test "X$pac_cv_have_long_double" = "Xyes"],[
AC_CHECK_SIZEOF([long double _Complex],0,[
#ifdef HAVE_COMPLEX_H
#include <complex.h>
#endif
])
])
# we need really could just use the result of AC_CHECK_SIZEOF, but having a
# HAVE_typename macro is useful for consistency
AC_CHECK_TYPES([_Bool, float _Complex, double _Complex])
AS_IF([test "X$pac_cv_have_long_double" = "Xyes"],[
AC_CHECK_TYPES([long double _Complex])
])
# Generate a hex version of the size of each type
for type in short int long long_long float double long_double wchar_t \
float_int double_int long_int short_int two_int long_double_int \
_Bool float__Complex double__Complex long_double__Complex ; do
eval len=\$ac_cv_sizeof_$type
if test -z "$len" ; then
len=0
# Check for sizes from the CHECK_SIZEOF_DERIVED macro
eval pclen=\$ac_cv_sizeof_$type
if test -n "$pclen" ; then
len=$pclen
else
# check for a non-optional type
if test $type != long_long -a \
$type != long_double -a \
$type != long_double_int -a \
$type != _Bool -a \
$type != float__Complex -a \
$type != double__Complex -a \
$type != long_double__Complex ; then
AC_MSG_ERROR([Configure was unable to determine the size of $type ; if cross compiling,
use the environment variables CROSS_SIZEOF_typename, e.g., CROSS_SIZEOF_SHORT,
or use the --with-cross=file configure option to specify a file containing
Bourne (sh) shell assignments to CROSS_SIZEOF_typename for all datatype
types. The program maint/getcross.c can be compiled and run on the target
system; this program outputs an appropriate file for the --with-cross option])
fi
fi
fi
#
# Take len and turn it into two hex digits (there are 8 bits available
# in the built-in datatype handle for the length; see
# src/mpid/common/datatype/mpid_datatype.h)
if test "$len" -gt 255 ; then
AC_MSG_ERROR([Type sizes greater than 255 bytes are not supported (type $type is $len bytes)])
fi
tmplen=$len
hexlen=""
while test $tmplen -gt 0 ; do
lowdigit=`expr $tmplen - 16 \* \( $tmplen / 16 \)`
case $lowdigit in
10) char=a ;;
11) char=b ;;
12) char=c ;;
13) char=d ;;
14) char=e ;;
15) char=f ;;
*) char=$lowdigit ;;
esac
hexlen="$char$hexlen"
tmplen=`expr $tmplen / 16`
done
if test $len -lt 16 ; then
hexlen="0$hexlen"
fi
if test $len = 0 ; then
# This sometimes happens for wchar_t
hexlen="00";
fi
eval len_$type=$hexlen
done
# By definition, sizeof char is 1
MPI_CHAR="0x4c000101"
MPI_UNSIGNED_CHAR="0x4c000102"
MPI_SHORT="0x4c00${len_short}03"
MPI_UNSIGNED_SHORT="0x4c00${len_short}04"
MPI_INT="0x4c00${len_int}05"
MPI_UNSIGNED_INT="0x4c00${len_int}06"
MPI_LONG="0x4c00${len_long}07"
MPI_UNSIGNED_LONG="0x4c00${len_long}08"
if test "$len_long_long" != 0 -a "$MPID_NO_LONG_LONG" != yes ; then
MPI_LONG_LONG="0x4c00${len_long_long}09"
else
MPI_LONG_LONG=MPI_DATATYPE_NULL;
fi
MPI_FLOAT="0x4c00${len_float}0a"
MPI_DOUBLE="0x4c00${len_double}0b"
if test "$len_long_double" != 0 -a "$MPID_NO_LONG_DOUBLE" != yes ; then
MPI_LONG_DOUBLE="0x4c00${len_long_double}0c"
else
MPI_LONG_DOUBLE=MPI_DATATYPE_NULL
fi
# If you change MPI_BYTE, you must change it in src/binding/fortran/mpif_h/buildiface
MPI_BYTE="0x4c00010d"
MPI_WCHAR="0x4c00${len_wchar_t}0e"
MPI_PACKED="0x4c00010f"
MPI_LB="0x4c000010"
MPI_UB="0x4c000011"
#
# These should define the mixed types *only* for contiguous data.
# For example, MPI_SHORT_INT may have a gap; it will need to be defined
# as a derived type instead. For IA32, this only affects short_int.
MPI_2INT="0x4c00${len_two_int}16"
#
# For now we aren't being too clever about figuring out which of these
# are in fact contiguous, so these are all allocated as "real" types.
#
# These values correspond to direct types 0..5.
#
dnl MPI_FLOAT_INT="0x4c00${len_float_int}12"
dnl MPI_DOUBLE_INT="0x4c00${len_double_int}13"
dnl MPI_LONG_INT="0x4c00${len_long_int}14"
dnl MPI_SHORT_INT="0x4c00${len_short_int}15"
dnl MPI_LONG_DOUBLE_INT="0x4c00${len_long_double_int}17"
MPI_FLOAT_INT="0x8c000000"
MPI_DOUBLE_INT="0x8c000001"
MPI_LONG_INT="0x8c000002"
MPI_SHORT_INT="0x8c000003"
if test "$MPID_NO_LONG_DOUBLE" != yes ; then
MPI_LONG_DOUBLE_INT="0x8c000004"
else
MPI_LONG_DOUBLE_INT=MPI_DATATYPE_NULL
fi
# 2 additional predefined types named in MPI-2
MPI_SIGNED_CHAR="0x4c000118"
if test "$len_long_long" != 0 -a "$MPID_NO_LONG_LONG" != yes ; then
MPI_UNSIGNED_LONG_LONG="0x4c00${len_long_long}19"
else
MPI_UNSIGNED_LONG_LONG=MPI_DATATYPE_NULL
fi
AC_SUBST(MPI_CHAR)
AC_SUBST(MPI_UNSIGNED_CHAR)
AC_SUBST(MPI_SHORT)
AC_SUBST(MPI_UNSIGNED_SHORT)
AC_SUBST(MPI_INT)
AC_SUBST(MPI_UNSIGNED_INT)
AC_SUBST(MPI_LONG)
AC_SUBST(MPI_UNSIGNED_LONG)
AC_SUBST(MPI_LONG_LONG)
AC_SUBST(MPI_FLOAT)
AC_SUBST(MPI_DOUBLE)
AC_SUBST(MPI_LONG_DOUBLE)
AC_SUBST(MPI_BYTE)
AC_SUBST(MPI_WCHAR)
AC_SUBST(MPI_PACKED)
AC_SUBST(MPI_LB)
AC_SUBST(MPI_UB)
AC_SUBST(MPI_FLOAT_INT)
AC_SUBST(MPI_DOUBLE_INT)
AC_SUBST(MPI_LONG_INT)
AC_SUBST(MPI_SHORT_INT)
AC_SUBST(MPI_2INT)
AC_SUBST(MPI_LONG_DOUBLE_INT)
AC_SUBST(MPI_SIGNED_CHAR)
AC_SUBST(MPI_UNSIGNED_LONG_LONG)
#
# FIXME: Leftover from separate fortran system
## Export the basic C types so that the Fortran system can use them
#export MPI_CHAR
#export MPI_SHORT
#export MPI_INT
#export MPI_LONG
#export MPI_LONG_LONG
#export MPI_FLOAT
#export MPI_DOUBLE
#export MPI_LONG_DOUBLE
#
# Size-specific types. Initialize as NULL
MPI_REAL4=MPI_DATATYPE_NULL
MPI_REAL8=MPI_DATATYPE_NULL
MPI_REAL16=MPI_DATATYPE_NULL
MPI_COMPLEX8=MPI_DATATYPE_NULL
MPI_COMPLEX16=MPI_DATATYPE_NULL
MPI_COMPLEX32=MPI_DATATYPE_NULL
MPI_INTEGER1=MPI_DATATYPE_NULL
MPI_INTEGER2=MPI_DATATYPE_NULL
MPI_INTEGER4=MPI_DATATYPE_NULL
MPI_INTEGER8=MPI_DATATYPE_NULL
MPI_INTEGER16=MPI_DATATYPE_NULL
AC_SUBST(MPI_REAL4)
AC_SUBST(MPI_REAL8)
AC_SUBST(MPI_REAL16)
AC_SUBST(MPI_COMPLEX8)
AC_SUBST(MPI_COMPLEX16)
AC_SUBST(MPI_COMPLEX32)
AC_SUBST(MPI_INTEGER1)
AC_SUBST(MPI_INTEGER2)
AC_SUBST(MPI_INTEGER4)
AC_SUBST(MPI_INTEGER8)
AC_SUBST(MPI_INTEGER16)
export MPI_REAL4
export MPI_REAL8
export MPI_REAL16
export MPI_COMPLEX8
export MPI_COMPLEX16
export MPI_COMPLEX32
export MPI_INTEGER1
export MPI_INTEGER2
export MPI_INTEGER4
export MPI_INTEGER8
export MPI_INTEGER16
#
# Try to find corresponding types for the size-specific types.
#
# Assume that the float/double/long double are simply spaced
# Datatypes used up through 26 in Fortran
# 27,28,29,2a,2b,2c
if test "$ac_cv_sizeof_float" = "4" ; then
MPI_REAL4="0x4c000427"
MPI_COMPLEX8="0x4c000828"
MPIR_REAL4_CTYPE=float
fi
if test "$ac_cv_sizeof_double" = "8" ; then
MPI_REAL8="0x4c000829"
MPI_COMPLEX16="0x4c00102a"
MPIR_REAL8_CTYPE=double
fi
if test "$ac_cv_sizeof_long_double" = "16" -a "$MPID_NO_LONG_DOUBLE" != yes ; then
MPI_REAL16="0x4c00102b"
MPI_COMPLEX32="0x4c00202c"
MPIR_REAL16_CTYPE="long double"
fi
if test -n "$MPIR_REAL4_CTYPE" ; then
AC_DEFINE_UNQUOTED(MPIR_REAL4_CTYPE,$MPIR_REAL4_CTYPE,[C type to use for MPI_REAL4])
fi
if test -n "$MPIR_REAL8_CTYPE" ; then
AC_DEFINE_UNQUOTED(MPIR_REAL8_CTYPE,$MPIR_REAL8_CTYPE,[C type to use for MPI_REAL8])
fi
if test -n "$MPIR_REAL16_CTYPE" ; then
AC_DEFINE_UNQUOTED(MPIR_REAL16_CTYPE,$MPIR_REAL16_CTYPE,[C type to use for MPI_REAL16])
fi
# For complex 8/16/32, we assume that these are 2 consequetive real4/8/16
#
# Search for the integer types
for type in char short int long long_long ; do
# ctype is a valid C type which we can use to declare a C version of
# this item
ctype=`echo $type | sed 's/_/ /'`
eval len=\$ac_cv_sizeof_$type
if test -n "$len" ; then
case $len in
1) if test "$MPI_INTEGER1" = "MPI_DATATYPE_NULL" ; then
MPI_INTEGER1="0x4c00012d"
MPIR_INTEGER1_CTYPE="$ctype"
fi
;;
2) if test "$MPI_INTEGER2" = "MPI_DATATYPE_NULL" ; then
MPI_INTEGER2="0x4c00022f"
MPIR_INTEGER2_CTYPE="$ctype"
fi
;;
4) if test "$MPI_INTEGER4" = "MPI_DATATYPE_NULL" ; then
MPI_INTEGER4="0x4c000430"
MPIR_INTEGER4_CTYPE="$ctype"
fi
;;
8) if test "$MPI_INTEGER8" = "MPI_DATATYPE_NULL" ; then
MPI_INTEGER8="0x4c000831"
MPIR_INTEGER8_CTYPE="$ctype"
fi
;;
16) if test "$MPI_INTEGER16" = "MPI_DATATYPE_NULL" ; then
MPI_INTEGER16="0x4c001032"
MPIR_INTEGER16_CTYPE="$ctype"
fi
;;
*)
;;
esac
fi
done
#
# Add the definitions of these types
if test -n "$MPIR_INTEGER1_CTYPE" ; then
AC_DEFINE_UNQUOTED(MPIR_INTEGER1_CTYPE,$MPIR_INTEGER1_CTYPE,[C type to use for MPI_INTEGER1])
fi
if test -n "$MPIR_INTEGER2_CTYPE" ; then
AC_DEFINE_UNQUOTED(MPIR_INTEGER2_CTYPE,$MPIR_INTEGER2_CTYPE,[C type to use for MPI_INTEGER2])
fi
if test -n "$MPIR_INTEGER4_CTYPE" ; then
AC_DEFINE_UNQUOTED(MPIR_INTEGER4_CTYPE,$MPIR_INTEGER4_CTYPE,[C type to use for MPI_INTEGER4])
fi
if test -n "$MPIR_INTEGER8_CTYPE" ; then
AC_DEFINE_UNQUOTED(MPIR_INTEGER8_CTYPE,$MPIR_INTEGER8_CTYPE,[C type to use for MPI_INTEGER8])
fi
if test -n "$MPIR_INTEGER16_CTYPE" ; then
AC_DEFINE_UNQUOTED(MPIR_INTEGER16_CTYPE,$MPIR_INTEGER16_CTYPE,[C type to use for MPI_INTEGER16])
fi
# ----------------------------------------------------------------------------
# C99 types
# The predefined types must be distinct types (as opposed to aliases to MPI_INT
# or MPI_WHATEVER) in order to correctly support MPI_Type_{get,set}_name.
#
# FIXME the "basic id" portion should be automatically assigned. It's too easy
# to have a conflict when this is done by hand.
#
# Because we make up a matching type for the fixed-width types if one doesn't
# exist, we don't ever set these to MPI_DATATYPE_NULL. If we come across a
# platform where 64-bit sizes aren't supported just add a test like the other
# types.
MPI_INT8_T=0x4c000137
MPI_INT16_T=0x4c000238
MPI_INT32_T=0x4c000439
MPI_INT64_T=0x4c00083a
MPI_UINT8_T=0x4c00013b
MPI_UINT16_T=0x4c00023c
MPI_UINT32_T=0x4c00043d
MPI_UINT64_T=0x4c00083e
# The compiler may or may not support these types, depending on its level of C99
# compliance. We check for each one individually before assigning a handle
# number.
MPI_C_BOOL=MPI_DATATYPE_NULL
MPI_C_FLOAT_COMPLEX=MPI_DATATYPE_NULL
MPI_C_DOUBLE_COMPLEX=MPI_DATATYPE_NULL
MPI_C_LONG_DOUBLE_COMPLEX=MPI_DATATYPE_NULL
if test ${len__Bool} != 0 ; then
MPI_C_BOOL=0x4c00${len__Bool}3f
fi
if test ${len_float__Complex} != 0 ; then
MPI_C_FLOAT_COMPLEX=0x4c00${len_float__Complex}40
fi
if test ${len_double__Complex} != 0 ; then
MPI_C_DOUBLE_COMPLEX=0x4c00${len_double__Complex}41
fi
if test ${len_long_double__Complex} != 0 ; then
MPI_C_LONG_DOUBLE_COMPLEX=0x4c00${len_long_double__Complex}42
fi
AC_SUBST(MPI_INT8_T)
AC_SUBST(MPI_INT16_T)
AC_SUBST(MPI_INT32_T)
AC_SUBST(MPI_INT64_T)
AC_SUBST(MPI_UINT8_T)
AC_SUBST(MPI_UINT16_T)
AC_SUBST(MPI_UINT32_T)
AC_SUBST(MPI_UINT64_T)
AC_SUBST(MPI_C_BOOL)
AC_SUBST(MPI_C_FLOAT_COMPLEX)
AC_SUBST(MPI_C_DOUBLE_COMPLEX)
AC_SUBST(MPI_C_LONG_DOUBLE_COMPLEX)
export MPI_INT8_T
export MPI_INT16_T
export MPI_INT32_T
export MPI_INT64_T
export MPI_UINT8_T
export MPI_UINT16_T
export MPI_UINT32_T
export MPI_UINT64_T
export MPI_C_BOOL
export MPI_C_FLOAT_COMPLEX
export MPI_C_DOUBLE_COMPLEX
export MPI_C_LONG_DOUBLE_COMPLEX
# ----------------------------------------------------------------------------
# We can now create the Fortran versions of the datatype values, along with
# some of the other datatype-dependent sizes
# There are two parts to handling the datatypes:
# Convert the C datatype values to their Fortran equivalent. This
# involves converting the hex values for the C version into decimal
# since standard Fortran does not have hex constants
#
# Determine the existence of the Fortran 'sized' types and set those
# values.
#
# In addition, we need to look at a few additional constants that depend
# on how the compiler sizes some datatypes. These are:
# STATUS_SIZE, INTEGER_KIND, ADDRESS_KIND, and OFFSET_KIND
#
# ----------------------------------------------------------------------------
if test "$enable_f77" = yes ; then
# Up to size checking code in master configure.ac (where it tries to
# find the matching C sizes) as part of defining mpi_integer8 etc.
# The results are available in pac_cv_sizeof_f77_<type>
# Size is 0 if unknown or unavailable (or cross-compiling)
# Due to limitations in autoconf, we cannot put these into a loop.
# We also check integer to find the type of MPI_Fint
#
# Cross-compilation results can be included with the --with-cross=file
# option.
CROSS_F77_SIZEOF_INTEGER=${CROSS_F77_SIZEOF_INTEGER:-0}
CROSS_F77_SIZEOF_REAL=${CROSS_F77_SIZEOF_REAL:-0}
CROSS_F77_SIZEOF_DOUBLE_PRECISION=${CROSS_F77_SIZEOF_DOUBLE_PRECISION:-0}
PAC_PROG_F77_CHECK_SIZEOF_EXT(integer,$CROSS_F77_SIZEOF_INTEGER)
PAC_PROG_F77_CHECK_SIZEOF_EXT(real,$CROSS_F77_SIZEOF_REAL)
PAC_PROG_F77_CHECK_SIZEOF_EXT(double precision,$CROSS_F77_SIZEOF_DOUBLE_PRECISION)
AC_LANG_FORTRAN77
# If we have sizes for real and double, we do not need to call
# mpir_get_fsize at run time.
# For the size-defined types (e.g., integer*2), we assume that if the
# compiler allows it, it has the stated size.
AC_CACHE_CHECK([whether integer*1 is supported],pac_cv_fort_integer1,[
AC_COMPILE_IFELSE([AC_LANG_PROGRAM(,[ integer*1 i])],
pac_cv_fort_integer1=yes,
pac_cv_fort_integer1=no)])
AC_CACHE_CHECK([whether integer*2 is supported],pac_cv_fort_integer2,[
AC_COMPILE_IFELSE([AC_LANG_PROGRAM(,[ integer*2 i])],
pac_cv_fort_integer2=yes,
pac_cv_fort_integer2=no)])
AC_CACHE_CHECK([whether integer*4 is supported],pac_cv_fort_integer4,[
AC_COMPILE_IFELSE([AC_LANG_PROGRAM(,[ integer*4 i])],
pac_cv_fort_integer4=yes,
pac_cv_fort_integer4=no)])
AC_CACHE_CHECK([whether integer*8 is supported],pac_cv_fort_integer8,[
AC_COMPILE_IFELSE([AC_LANG_PROGRAM(,[ integer*8 i])],
pac_cv_fort_integer8=yes,
pac_cv_fort_integer8=no)])
AC_CACHE_CHECK([whether integer*16 is supported],pac_cv_fort_integer16,[
AC_COMPILE_IFELSE([AC_LANG_PROGRAM(,[ integer*16 i])],
pac_cv_fort_integer16=yes,
pac_cv_fort_integer16=no)])
AC_CACHE_CHECK([whether real*4 is supported],pac_cv_fort_real4,[
AC_COMPILE_IFELSE([AC_LANG_PROGRAM(,[ real*4 a])],
pac_cv_fort_real4=yes,
pac_cv_fort_real4=no)])
AC_CACHE_CHECK([whether real*8 is supported],pac_cv_fort_real8,[
AC_COMPILE_IFELSE([AC_LANG_PROGRAM(,[ real*8 a])],
pac_cv_fort_real8=yes,
pac_cv_fort_real8=no)])
AC_CACHE_CHECK([whether real*16 is supported],pac_cv_fort_real16,[
AC_COMPILE_IFELSE([AC_LANG_PROGRAM(,[ real*16 a])],
pac_cv_fort_real16=yes,
pac_cv_fort_real16=no)])
# Create the default datatype names for the standard MPI Fortran types
MPI_CHARACTER=0x4c00011a
AC_SUBST(MPI_CHARACTER)
if test -z "$pac_cv_f77_sizeof_integer" -o \
"X$pac_cv_f77_sizeof_integer" = "X0" ; then
AC_MSG_ERROR([Unable to configure with Fortran support because configure could not determine the size of a Fortran INTEGER. Consider setting CROSS_F77_SIZEOF_INTEGER to the length in bytes of a Fortran INTEGER])
fi
len_integer=$pac_cv_f77_sizeof_integer
# Convert to two digit hex
len=$len_integer
#
# Take len and turn it into two hex digits (there are 8 bits available
# in the built-in datatype handle for the length; see
# src/mpid/common/datatype/mpid_datatype.h). This code is taken
# from the code in mpich/configure.ac
if test "$len" -gt 255 ; then
AC_MSG_ERROR([Type sizes greater than 255 bytes are not supported (type INTEGER is $len bytes)])
fi
tmplen=$len
hexlen=""
while test $tmplen -gt 0 ; do
lowdigit=`expr $tmplen - 16 \* \( $tmplen / 16 \)`
case $lowdigit in
10) char=a ;;
11) char=b ;;
12) char=c ;;
13) char=d ;;
14) char=e ;;
15) char=f ;;
*) char=$lowdigit ;;
esac
hexlen="$char$hexlen"
tmplen=`expr $tmplen / 16`
done
if test $len -lt 16 ; then
hexlen="0$hexlen"
fi
len_integer=$hexlen
if test "$len_integer" = 0 ; then
# We have a problem
AC_MSG_WARN([Unable to determine size of an INTEGER type; using 4])
# We make the length 4
len_integer="04"
fi
MPI_INTEGER=0x4c00${len_integer}1b
MPI_REAL=0x4c00${len_integer}1c
MPI_LOGICAL=0x4c00${len_integer}1d
AC_SUBST(MPI_INTEGER)
AC_SUBST(MPI_REAL)
AC_SUBST(MPI_LOGICAL)
if test -z "$pac_cv_f77_sizeof_double_precision" ; then
AC_MSG_ERROR([Unable to configure with Fortran support because configure could not determine the size of a Fortran DOUBLE PRECISION. Consider setting CROSS_F77_SIZEOF_DOUBLE_PRECISION to the length in bytes of a Fortran DOUBLE PRECISION])
fi
len_double=$pac_cv_f77_sizeof_double_precision
# Convert to two digit hex
len=$len_double
#
# Take len and turn it into two hex digits (there are 8 bits available
# in the built-in datatype handle for the length; see
# src/mpid/common/datatype/mpid_datatype.h). This code is taken
# from the code in mpich/configure.ac
if test "$len" -gt 255 ; then
AC_MSG_ERROR([Type sizes greater than 255 bytes are not supported (type DOUBLE is $len bytes)])
fi
tmplen=$len
hexlen=""
while test $tmplen -gt 0 ; do
lowdigit=`expr $tmplen - 16 \* \( $tmplen / 16 \)`
case $lowdigit in
10) char=a ;;
11) char=b ;;
12) char=c ;;
13) char=d ;;
14) char=e ;;
15) char=f ;;
*) char=$lowdigit ;;
esac
hexlen="$char$hexlen"
tmplen=`expr $tmplen / 16`
done
if test $len -lt 16 ; then
hexlen="0$hexlen"
fi
len_double=$hexlen
if test "$len_double" = 0 ; then
# We have a problem
AC_MSG_WARN([Unable to determine size of a DOUBLE PRECISION type; using 8])
# We make the length 8
len_double="08"
fi
# Provide the corresponding C types for MPI_REAL and MPI_DOUBLE
AC_MSG_CHECKING([for C type matching Fortran real])
noval=yes
for c_type in float double "long_double" ; do
eval ctypelen=\$"ac_cv_sizeof_$c_type"
if test "$pac_cv_f77_sizeof_real" = "$ctypelen" -a \
"$ctypelen" -gt 0 ; then
c_type=`echo $c_type | sed -e 's/_/ /g'`
AC_MSG_RESULT($c_type)
MPIR_FC_REAL_CTYPE=$c_type
noval="no"
break
fi
done
if test "$noval" = "yes" ; then
# Set a default
MPIR_FC_REAL_CTYPE="float"
AC_MSG_RESULT([unavailable])
fi
noval=yes
AC_MSG_CHECKING([for C type matching Fortran double])
for c_type in double "long_double" float ; do
eval ctypelen=\$"ac_cv_sizeof_$c_type"
if test "$pac_cv_f77_sizeof_double_precision" = "$ctypelen" -a \
"$ctypelen" -gt 0 ; then
c_type=`echo $c_type | sed -e 's/_/ /g'`
AC_MSG_RESULT($c_type)
MPIR_FC_DOUBLE_CTYPE=$c_type
noval="no"
break
fi
done
if test "$noval" = "yes" ; then
# Set a default
MPIR_FC_DOUBLE_CTYPE="double"
AC_MSG_RESULT([unavailable])
fi
# These are needed to correctly implement the MPI reduction operations
AC_DEFINE_UNQUOTED([MPIR_FC_REAL_CTYPE],[$MPIR_FC_REAL_CTYPE],
[The C type for FORTRAN REAL])
AC_DEFINE_UNQUOTED([MPIR_FC_DOUBLE_CTYPE],[$MPIR_FC_DOUBLE_CTYPE],
[The C type for FORTRAN DOUBLE PRECISION])
# Use the proper length values for these items in case we are building
# with Fortran integers that are not the same size as C ints and
# reals and double precision that are the same size (not valid Fortran,
# but used by some applications)
len_2integer=`expr 2 \* $len_integer`
len_2real=`expr 2 \* $len_integer`
len_doublecplx=`expr $pac_cv_f77_sizeof_double_precision \* 2`
if test "$len_doublecplx" = 0 ; then
# We have a problem
AC_MSG_WARN([Unable to determine size of a DOUBLE PRECISION type; using 8])
# We make the length 8*2 (in hex)
len_doublecplx="16"
fi
for lenname in len_2integer len_2real len_doublecplx ; do
eval len=\$$lenname
if test "$len" -gt 255 ; then
AC_MSG_ERROR([Type sizes greater than 255 bytes are not supported (type $lenname is $len bytes)])
fi
tmplen=$len
hexlen=""
while test $tmplen -gt 0 ; do
lowdigit=`expr $tmplen - 16 \* \( $tmplen / 16 \)`
case $lowdigit in
10) char=a ;;
11) char=b ;;
12) char=c ;;
13) char=d ;;
14) char=e ;;
15) char=f ;;
*) char=$lowdigit ;;
esac
hexlen="$char$hexlen"
tmplen=`expr $tmplen / 16`
done
if test $len -lt 16 ; then
hexlen="0$hexlen"
fi
eval ${lenname}=$hexlen
if test "$hexlen" = 0 ; then
# We have a problem
AC_MSG_WARN([Unable to determine size of a $lenname type; using 8])
# We make the length 8
eval ${lenname}=$hexlen
fi
done
MPI_DOUBLE_PRECISION=0x4c00${len_double}1f
MPI_2INTEGER=0x4c00${len_2integer}20
MPI_2REAL=0x4c00${len_2real}21
MPI_COMPLEX=0x4c00${len_2real}1e
AC_SUBST(MPI_COMPLEX)
AC_SUBST(MPI_DOUBLE_PRECISION)
AC_SUBST(MPI_2INTEGER)
AC_SUBST(MPI_2REAL)
dnl len=$len_doublecplx
dnl #
dnl # Take len and turn it into two hex digits (there are 8 bits available
dnl # in the built-in datatype handle for the length; see
dnl # src/mpid/common/datatype/mpid_datatype.h). This code is taken
dnl # from the code in mpich/configure.ac
dnl if test "$len" -gt 255 ; then
dnl AC_MSG_ERROR([Type sizes greater than 255 bytes are not supported (type DOUBLE COMPLEX is $len bytes)])
dnl fi
dnl tmplen=$len
dnl hexlen=""
dnl while test $tmplen -gt 0 ; do
dnl lowdigit=`expr $tmplen - 16 \* \( $tmplen / 16 \)`
dnl case $lowdigit in
dnl 10) char=a ;;
dnl 11) char=b ;;
dnl 12) char=c ;;
dnl 13) char=d ;;
dnl 14) char=e ;;
dnl 15) char=f ;;
dnl *) char=$lowdigit ;;
dnl esac
dnl hexlen="$char$hexlen"
dnl tmplen=`expr $tmplen / 16`
dnl done
dnl if test $len -lt 16 ; then
dnl hexlen="0$hexlen"
dnl fi
dnl len_doublecplx=$hexlen
MPI_DOUBLE_COMPLEX=0x4c00${len_doublecplx}22
MPI_2DOUBLE_PRECISION=0x4c00${len_doublecplx}23
MPI_2COMPLEX=0x4c00${len_doublecplx}24
AC_SUBST(MPI_DOUBLE_COMPLEX)
AC_SUBST(MPI_2DOUBLE_PRECISION)
AC_SUBST(MPI_2COMPLEX)
#
# Temporary for the vast majority of systems that use 4 byte reals and
# 8 byte doubles
# Lengths at this point are in hex, hence "10" = 10 base 16 = 16 base 10.
if test "$len_double" = "08" ; then
F77_COMPLEX8=$MPI_COMPLEX
fi
if test "$len_doublecplx" = "10" ; then
F77_COMPLEX16=$MPI_DOUBLE_COMPLEX
fi
if test "$len_long_double" = "10" -a "$MPID_NO_LONG_DOUBLE" != "yes" ; then
F77_COMPLEX32="0x4c002025"
else
F77_COMPLEX32="MPI_DATATYPE_NULL"
fi
len_2dc=`expr $pac_cv_f77_sizeof_double_precision \* 4`
firstdigit=0
seconddigit=0
while test $len_2dc -ge 16 ; do
firstdigit=`expr $firstdigit + 1`
len_2dc=`expr $len_2dc - 16`
done
case $len_2dc in
10) seconddigit=a ;;
11) seconddigit=b ;;
12) seconddigit=c ;;
13) seconddigit=d ;;
14) seconddigit=e ;;
15) seconddigit=f ;;
*) seconddigit=$len_2dc ;;
esac
len_2dc="$firstdigit$seconddigit"
#echo "2double complex = $len_2dc"
MPI_2DOUBLE_COMPLEX=0x4c00${len_2dc}25
AC_SUBST(MPI_2DOUBLE_COMPLEX)
MPI_F77_PACKED=$MPI_PACKED
MPI_F77_UB=$MPI_UB
MPI_F77_LB=$MPI_LB
MPI_F77_BYTE=$MPI_BYTE
AC_SUBST(MPI_F77_PACKED)
AC_SUBST(MPI_F77_UB)
AC_SUBST(MPI_F77_LB)
AC_SUBST(MPI_F77_BYTE)
#
# We must convert all hex values to decimal (!)
# It would be nice to use expr to extract the next character rather than
# the heavier-weight sed, but expr under Tru64 Unix discards leading zeros,
# even when used only with the match (:) command. Rather than have
# configure figure out if expr works, we just use sed. Sigh.
for var in CHARACTER INTEGER REAL LOGICAL DOUBLE_PRECISION COMPLEX \
DOUBLE_COMPLEX 2INTEGER 2REAL 2COMPLEX 2DOUBLE_PRECISION \
2DOUBLE_COMPLEX F77_PACKED F77_UB F77_LB F77_BYTE; do
fullvar="MPI_$var"
eval fullvarvalue=\$$fullvar
#echo "$fullvar = $fullvarvalue"
value=0
fullvarvalue=`echo $fullvarvalue | sed -e 's/..\(.*\)/\1/'`
for pos in 3 4 5 6 7 8 9 10 ; do
# This works, even for Tru64, because only a single character
# is extracted
char=`expr $fullvarvalue : '\(.\)'`
# FIXME: Tru64 Unix eliminates leading zeros (!)
# How do we fix something that broken?
fullvarvalue=`echo $fullvarvalue | sed -e 's/.\(.*\)/\1/'`
case $char in
a) char=10 ;;
b) char=11 ;;
c) char=12 ;;
d) char=13 ;;
e) char=14 ;;
f) char=15 ;;
esac
value=`expr $value \* 16 + $char`
done
#echo "$fullvar = $value"
if test "X$value" = "X"; then
eval origvarvalue=\$$fullvar
AC_MSG_ERROR([Internal Error: Failed to convert $fullvar value to hex! Original value was $origvarvalue])
fi
eval $fullvar=$value
done
AC_LANG_C
# Now, handle the sized types
#
# Preload the C mpi types
# THESE MUST MATCH THE DEFINITIONS IN MPI.H and MPIF.H
# We use these to match the optional Fortran types
char_mpi=${MPI_CHAR:-0}
short_mpi=${MPI_SHORT:-0}
int_mpi=${MPI_INT:-0}
long_mpi=${MPI_LONG:-0}
long_long_mpi=${MPI_LONG_LONG:-0}
float_mpi=${MPI_FLOAT:-0}
double_mpi=${MPI_DOUBLE:-0}
long_double_mpi=${MPI_LONG_DOUBLE:-0}
#
# The following code was correct for MPI-1, which allowed these datatypes
# to be an alias for another MPI type. MPI-2 requires these to
# be distinct types, so these are enumerated
if test "$use_alias_types" = yes ; then
for len in 1 2 4 8 16 ; do
eval F77_INTEGER$len=0
#eval testval=\$"pac_cv_f77_sizeof_integer_$len"
eval testval=\$"pac_cv_fort_integer$len"
if test "$testval" = no ; then continue ; fi
testval=$len
noval="yes"
AC_MSG_CHECKING([for C type matching Fortran integer*$len])
for c_type in char short int long "long_long" ; do
eval ctypelen=\$"ac_cv_sizeof_$c_type"
if test "$testval" = "$ctypelen" -a "$ctypelen" -gt 0 ; then
AC_MSG_RESULT($c_type)
eval F77_INTEGER$len=\$"${c_type}_mpi"
noval="no"
break
fi
done
if test "$noval" = "yes" ; then
AC_MSG_RESULT([unavailable])
fi
done
# Complex is set separately above
for len in 4 8 16 ; do
len2=`expr $len + $len`
eval F77_REAL$len=0
#eval F77_COMPLEX$len2=0
#eval testval=\$"pac_cv_f77_sizeof_real_$len"
eval testval=\$"pac_cv_fort_real$len"
if test "$testval" = no ; then continue ; fi
testval=$len
noval="yes"
AC_MSG_CHECKING([for C type matching Fortran real*$len])
for c_type in float double "long_double" ; do
eval ctypelen=\$"ac_cv_sizeof_$c_type"
if test "$testval" = "$ctypelen" -a "$ctypelen" -gt 0 ; then
AC_MSG_RESULT($c_type)
eval F77_REAL$len=\$"${c_type}_mpi"
#eval F77_COMPLEX$len2=\$"${c_type}_cplx_mpi"
noval="no"
break
fi
done
if test "$noval" = "yes" ; then
AC_MSG_RESULT([unavailable])
fi
done
else
# Simply determine which types exist. These may have been set by the
# toplevel configure
for var in INTEGER1 INTEGER2 INTEGER4 INTEGER8 INTEGER16 \
REAL4 REAL8 REAL16 COMPLEX8 COMPLEX16 COMPLEX32 ; do
eval varname=MPI_$var
eval varvalue=\$$varname
#echo "$varname = $varvalue"
if test "$varvalue" = MPI_DATATYPE_NULL ; then
eval F77_$var=0
else
eval F77_$var=\$$varname
fi
done
fi
# We must convert all hex values to decimal (!)
for var in INTEGER1 INTEGER2 INTEGER4 INTEGER8 INTEGER16 \
REAL4 REAL8 REAL16 COMPLEX8 COMPLEX16 COMPLEX32 ; do
fullvar="F77_$var"
eval fullvarvalue=\$$fullvar
if test "$fullvarvalue" = 0 -o -z "$fullvarvalue" ; then
eval $fullvar=MPI_DATATYPE_NULL
continue
fi
#echo "$fullvar = $fullvarvalue"
value=0
# See the comments above on why expr with : cannot be used here
fullvarvalue=`echo $fullvarvalue | sed -e 's/..\(.*\)/\1/'`
for pos in 3 4 5 6 7 8 9 10 ; do
#char=`expr substr $fullvarvalue $pos 1`
char=`expr $fullvarvalue : '\(.\)'`
# We don't test for success of expr here because some expr's are
# buggy and set the status to one on expressions like
# expr 00ccc : '\(.\)'
# while both
# expr 00ccc : '\(..\)'
# and
# expr 100cc : '\(.\)'
# return a zero status. So the status is set even on success,
# if the result is a single character that is a zero (!)
#rc=$?
#if test "$rc" != 0 ; then
dnl # AC_MSG_WARN([Failure (status $rc) in extracting first char from $fullvarvalue])
# break
#fi
fullvarvalue=`echo $fullvarvalue | sed -e 's/.\(.*\)/\1/'`
case $char in
a) char=10 ;;
b) char=11 ;;
c) char=12 ;;
d) char=13 ;;
e) char=14 ;;
f) char=15 ;;
esac
value=`expr $value \* 16 + $char`
if test $? != 0 ; then
AC_MSG_WARN([Failure to evaluate $value \* 16 + $char])
fi
done
#echo "$fullvar = $value"
eval $fullvar=$value
done
AC_SUBST(F77_INTEGER1)
AC_SUBST(F77_INTEGER2)
AC_SUBST(F77_INTEGER4)
AC_SUBST(F77_INTEGER8)
AC_SUBST(F77_INTEGER16)
AC_SUBST(F77_REAL4)
AC_SUBST(F77_REAL8)
AC_SUBST(F77_REAL16)
AC_SUBST(F77_COMPLEX8)
AC_SUBST(F77_COMPLEX16)
AC_SUBST(F77_COMPLEX32)
noval="yes"
AC_MSG_CHECKING([for C type matching Fortran integer])
for c_type in char short int long "long_long" ; do
eval ctypelen=\$"ac_cv_sizeof_$c_type"
if test "$pac_cv_f77_sizeof_integer" = "$ctypelen" -a \
"$ctypelen" -gt 0 ; then
c_type=`echo $c_type | sed -e 's/_/ /g'`
AC_MSG_RESULT($c_type)
MPI_FINT=$c_type
noval="no"
break
fi
done
if test "$noval" = "yes" ; then
# Set a default
MPI_FINT="int"
AC_MSG_RESULT([unavailable])
fi
# We also need to check the size of MPI_Aint vs MPI_Fint, and
# define AINT_LARGER_THAN_FINT if aint is larger (this
# affects code in MPI_Address)
if test "$ac_cv_sizeof_void_p" != "0" -a \
"$ac_cv_sizeof_void_p" -gt "$pac_cv_f77_sizeof_integer" ; then
AC_DEFINE(HAVE_AINT_LARGER_THAN_FINT,1,[Define if addresses are larger than Fortran integers])
fi
if test "$ac_cv_sizeof_void_p" != 0 -a \
"$ac_cv_sizeof_void_p" != "$pac_cv_f77_sizeof_integer" ; then
AC_DEFINE(HAVE_AINT_DIFFERENT_THAN_FINT,1,[Define if addresses are a different size than Fortran integers])
fi
# Include a defined value for Fint is int
if test "$MPI_FINT" = "int" ; then
AC_DEFINE(HAVE_FINT_IS_INT,1,[Define if Fortran integer are the same size as C ints])
elif test "$SIZEOF_F77_INTEGER" != "$ac_cv_sizeof_int" ; then
# Make this fatal because we do not want to build a broken fortran
# interface (was error)
# Check to see if the f77 binding has enabled the code to support
# the case of int != fint.
if grep HAVE_FINT_IS_INT $master_top_srcdir/src/binding/fortran/mpif_h/testf.c 2>&1 1>/dev/null ; then
AC_MSG_WARN([Fortran integers and C ints are not the same size. Support for this case is experimental; use at your own risk])
else
AC_MSG_ERROR([Fortran integers and C ints are not the same size. The current Fortran binding does not support this case. Either force the Fortran compiler to use integers of $ac_cv_sizeof_int bytes, or use --disable-fortran on the configure line for MPICH.])
fi
fi
# We must convert all hex values to decimal (!).
# This is for the C types so they are also available in Fortran
for var in CHAR SIGNED_CHAR UNSIGNED_CHAR WCHAR SHORT \
UNSIGNED_SHORT INT UNSIGNED_INT LONG UNSIGNED_LONG \
FLOAT DOUBLE LONG_DOUBLE LONG_LONG_INT \
UNSIGNED_LONG_LONG LONG_LONG FLOAT_INT DOUBLE_INT \
LONG_INT SHORT_INT "2INT" LONG_DOUBLE_INT \
INT8_T INT16_T INT32_T INT64_T \
UINT8_T UINT16_T UINT32_T UINT64_T \
C_BOOL C_FLOAT_COMPLEX C_DOUBLE_COMPLEX \
C_LONG_DOUBLE_COMPLEX AINT OFFSET ; do
fullvar="MPI_$var"
fullf77var="MPI_F77_$var"
eval fullvarvalue=\$$fullvar
#echo "$fullvar = $fullvarvalue"
if test "x$fullvarvalue" = "x" -o \
"x$fullvarvalue" = "xMPI_DATATYPE_NULL" ; then
eval $fullf77var="MPI_DATATYPE_NULL"
continue
fi
value=0
fullvarvalue=`echo $fullvarvalue | sed -e 's/..\(.*\)/\1/'`
offset=0
for pos in 3 4 5 6 7 8 9 10 ; do
# This works, even for Tru64, because only a single character
# is extracted
char=`expr $fullvarvalue : '\(.\)'`
# FIXME: Tru64 Unix eliminates leading zeros (!)
# How do we fix something that broken?
fullvarvalue=`echo $fullvarvalue | sed -e 's/.\(.*\)/\1/'`
case $char in
a) char=10 ;;
b) char=11 ;;
c) char=12 ;;
d) char=13 ;;
e) char=14 ;;
f) char=15 ;;
esac
# For Fortran, if the value is too big for an unsigned int,
# we need to make it a signed (negative) int. Currently, the
# types in this class are the minloc/maxloc types.
if test $pos = 3 -a $char -ge 8 ; then
#echo "for $var in position $pos found a value >= 8"
char=`expr $char - 8`
offset=-2147483648
fi
value=`expr $value \* 16 + $char`
done
if test "$offset" != 0 ; then
#echo "$fullf77var: $value, $offset"
value=`expr $value + $offset`
fi
#echo "$fullf77var = $value"
eval $fullf77var=$value
done
AC_SUBST(MPI_F77_CHAR)
AC_SUBST(MPI_F77_SIGNED_CHAR)
AC_SUBST(MPI_F77_UNSIGNED_CHAR)
AC_SUBST(MPI_F77_WCHAR)
AC_SUBST(MPI_F77_SHORT)
AC_SUBST(MPI_F77_UNSIGNED_SHORT)
MPI_F77_UNSIGNED=$MPI_F77_UNSIGNED_INT
AC_SUBST(MPI_F77_UNSIGNED)
AC_SUBST(MPI_F77_INT)
AC_SUBST(MPI_F77_LONG)
AC_SUBST(MPI_F77_UNSIGNED_LONG)
AC_SUBST(MPI_F77_FLOAT)
AC_SUBST(MPI_F77_DOUBLE)
AC_SUBST(MPI_F77_LONG_DOUBLE)
AC_SUBST(MPI_F77_UNSIGNED_LONG_LONG)
MPI_F77_LONG_LONG_INT=$MPI_F77_LONG_LONG
AC_SUBST(MPI_F77_LONG_LONG_INT)
AC_SUBST(MPI_F77_LONG_LONG)
AC_SUBST(MPI_F77_FLOAT_INT)
AC_SUBST(MPI_F77_DOUBLE_INT)
AC_SUBST(MPI_F77_LONG_INT)
AC_SUBST(MPI_F77_SHORT_INT)
AC_SUBST(MPI_F77_2INT)
AC_SUBST(MPI_F77_LONG_DOUBLE_INT)
AC_SUBST(MPI_F77_INT8_T)
AC_SUBST(MPI_F77_INT16_T)
AC_SUBST(MPI_F77_INT32_T)
AC_SUBST(MPI_F77_INT64_T)
AC_SUBST(MPI_F77_UINT8_T)
AC_SUBST(MPI_F77_UINT16_T)
AC_SUBST(MPI_F77_UINT32_T)
AC_SUBST(MPI_F77_UINT64_T)
AC_SUBST(MPI_F77_C_BOOL)
AC_SUBST(MPI_F77_C_FLOAT_COMPLEX)
# C_COMPLEX is an alias for FLOAT_COMPLEX
MPI_F77_C_COMPLEX=$MPI_F77_C_FLOAT_COMPLEX
AC_SUBST(MPI_F77_C_COMPLEX)
AC_SUBST(MPI_F77_C_DOUBLE_COMPLEX)
AC_SUBST(MPI_F77_C_LONG_DOUBLE_COMPLEX)
# these two are not yet defined, but AC_SUBST only cares about them at
# AC_OUTPUT-time
AC_SUBST(MPI_F77_AINT)
AC_SUBST(MPI_F77_OFFSET)
# Try and compute the values of .true. and .false. in Fortran
# This code has been removed because the Fortran binding code does
# not yet support it.
PAC_F77_LOGICALS_IN_C([$MPI_FINT])
# Get the INTEGER_KIND, ADDRESS_KIND and OFFSET_KIND if possible
#
# For Fortran 90, we'll also need MPI_ADDRESS_KIND and MPI_OFFSET_KIND
# Since our compiler might BE a Fortran 90 compiler, try and determine the
# values.
if test "$FC" = "no" ; then
PAC_F77_IS_FC([
FC=$F77
if test -z "$FCFLAGS" ; then
FCFLAGS="$FFLAGS"
fi
])
fi
if test "$FC" != "no" ; then
# Offset kind should be for 8 bytes if possible (Romio prefers that)
# address should be sizeof void * (unless --with-aint-size has
# been set)
# FIXME in the current configure implementation OFFSET_KIND and
# MPI_Offset won't always agree, but generally will. The MPI Standard
# implies that these types must have identical size, so this is a bug
# waiting to happen.
if test "$with_aint_size" -gt 0 -a \
"$with_aint_size" -gt "$ac_cv_sizeof_void_p" ; then
testsize=$with_aint_size
else
testsize=$ac_cv_sizeof_void_p
fi
if test "$testsize" = 0 ; then
# Set a default
testsize=4
fi
dnl Using the {} around testsize helps the comments work correctly
PAC_PROG_FC_INT_KIND(ADDRESS_KIND,${testsize},$CROSS_F90_ADDRESS_KIND)
if test "$testsize" = 8 ; then
OFFSET_KIND=$ADDRESS_KIND
else
PAC_PROG_FC_INT_KIND(OFFSET_KIND,8,$CROSS_F90_OFFSET_KIND)
fi
#
PAC_PROG_FC_INT_KIND(INTEGER_KIND,$pac_cv_f77_sizeof_integer,$CROSS_F90_INTEGER_KIND)
if test "$INTEGER_KIND" = "-1" ; then
# In our experience, this usually means that there is some
# problem building and/or running the f90 program. Fail
# in this case rather than attempt to continue
AC_MSG_ERROR([Unable to determine Fortran 90 KIND values for either address-sized integers or offset-sized integers.])
fi
#
# Some compilers won't allow a -1 kind (e.g., absoft). In this case,
# use a fallback (sizeof(int) kind)
if test "$ADDRESS_KIND" = "-1" -o "$OFFSET_KIND" = "-1" ; then
if test "$ADDRESS_KIND" = "-1" ; then
ADDRESS_KIND=$INTEGER_KIND
fi
if test "$OFFSET_KIND" = "-1" ; then
OFFSET_KIND=$INTEGER_KIND
fi
fi
AC_LANG_PUSH([Fortran])
AC_CACHE_CHECK([if real*8 is supported in Fortran 90],
[pac_cv_fort90_real8],[
AC_COMPILE_IFELSE([
AC_LANG_PROGRAM([],[ real*8 a])
],[
pac_cv_fort90_real8=yes
],[
pac_cv_fort90_real8=no
])
])
AC_LANG_POP([Fortran])
WTIME_DOUBLE_TYPE="DOUBLE PRECISION"
# Save a copy of the original mpi_base.f90 file
if test "$enable_fc" = "yes" -a "$pac_cv_fort90_real8" = "yes" ; then
WTIME_DOUBLE_TYPE="REAL*8"
fi
# WTIME_DOUBLE_TYPE is substituted into mpi_base.f90
AC_SUBST(WTIME_DOUBLE_TYPE)
fi
# Make sure that address kind and offset kind have values.
if test -z "$ADDRESS_KIND" ; then
ADDRESS_KIND=0
fi
if test -z "$OFFSET_KIND" ; then
OFFSET_KIND=0
fi
# Note, however, that zero value are (in all practical case) invalid
# for Fortran 90, and indicate a failure. Test and fail if Fortran 90
# enabled.
if test "$enable_fc" = "yes" ; then
if test "$ADDRESS_KIND" -le 0 -o "$OFFSET_KIND" -le 0 ; then
AC_MSG_ERROR([Unable to determine Fortran 90 integer kinds for MPI types. If you do not need Fortran 90, add --disable-fc to the configure options.])
# If the above is converted to a warning, you need to change
# enable_fc and remote f90 from the bindings
enable_fc=no
fi
fi
AC_SUBST(ADDRESS_KIND)
AC_SUBST(OFFSET_KIND)
AC_SUBST(INTEGER_KIND)
# Some compilers may require special directives to handle the common
# block in a library. In particular, directives are needed for Microsoft
# Windows to support dynamic library import. The following six
# directives may be needed:
# CMS\$ATTRIBUTES DLLIMPORT::/MPIPRIV1/
# CMS\$ATTRIBUTES DLLIMPORT::/MPIPRIV2/
# CMS\$ATTRIBUTES DLLIMPORT::/MPIPRIVC/
# CDEC\$ATTRIBUTES DLLIMPORT::/MPIPRIV1/
# CDEC\$ATTRIBUTES DLLIMPORT::/MPIPRIV2/
# CDEC\$ATTRIBUTES DLLIMPORT::/MPIPRIVC/
# CMS is for the Microsoft compiler,
# CDEC is (we believe) for the DEC Fortran compiler.
# We need to make this a configure-time variable because some compilers
# (in particular, a version of the Intel Fortran compiler for Linux)
# will read directives for other compilers and then flag as fatal
# errors directives that it does not support but does recognize.
DLLIMPORT=""
AC_SUBST(DLLIMPORT)
# FIXME:
# We also need to include
# SIZEOF_FC_MPI_OFFSET
# SIZEOF_FC_MPI_AINT
#
# If other "kinds" are supported, MPI_SIZEOF needs to identify
# those as well. This is very difficult to do in a general way.
# To start with, we use the sizes determined for the Fortran 77 values.
# These must be the same as for the Fortran 90 values.
CROSS_F90_SIZEOF_INTEGER=${CROSS_F90_SIZEOF_INTEGER:-0}
CROSS_F90_SIZEOF_REAL=${CROSS_F90_SIZEOF_REAL:-0}
CROSS_F90_SIZEOF_DOUBLE_PRECISION=${CROSS_F90_SIZEOF_DOUBLE_PRECISION:-0}
SIZEOF_FC_INTEGER=$CROSS_F90_SIZEOF_INTEGER
SIZEOF_FC_REAL=$CROSS_F90_SIZEOF_REAL
SIZEOF_FC_CHARACTER=1
SIZEOF_FC_DOUBLE_PRECISION=$CROSS_F90_SIZEOF_DOUBLE_PRECISION
if test "$pac_cv_f77_sizeof_integer" -gt 0 -a \
"$SIZEOF_FC_INTEGER" = "0" ; then
SIZEOF_FC_INTEGER=$pac_cv_f77_sizeof_integer
fi
if test "$pac_cv_f77_sizeof_real" -gt 0 -a "$SIZEOF_FC_REAL" = "0" ; then
SIZEOF_FC_REAL=$pac_cv_f77_sizeof_real
fi
if test "$pac_cv_f77_sizeof_double_precision" -gt 0 -a \
"$SIZEOF_FC_DOUBLE_PRECISION" = "0" ; then
SIZEOF_FC_DOUBLE_PRECISION=$pac_cv_f77_sizeof_double_precision
fi
AC_SUBST(SIZEOF_FC_INTEGER)
AC_SUBST(SIZEOF_FC_REAL)
AC_SUBST(SIZEOF_FC_DOUBLE_PRECISION)
AC_SUBST(SIZEOF_FC_CHARACTER)
# REQD is short for "real equal double precision" and is set to the
# Fortran 90 comment character if true. This is necessary to
# allow the mpi_sizeofs module to be built, since if this part of the
# Fortran standard is violated by the compiler (unfortunately common,
# as some applications are written to require this non-standard
# version), the double precision versions of the MPI_SIZEOF routine
# must be commented out of the module (!).
REQD=
if test "$SIZEOF_FC_REAL" = "$SIZEOF_FC_DOUBLE_PRECISION" ; then
REQD="!"
fi
AC_SUBST(REQD)
# Is integer*1 supported, and is it a different size than integer?
REQI1="!"
if test "$pac_cv_fort_integer1" = yes -a "$SIZEOF_FC_INTEGER" != 1 ; then
REQI1=
fi
AC_SUBST(REQI1)
# Is integer*2 supported, and is it a different size than integer?
REQI2="!"
if test "$pac_cv_fort_integer2" = yes -a "$SIZEOF_FC_INTEGER" != 2 ; then
REQI2=
fi
AC_SUBST(REQI2)
# Is integer*8 supported, and is it a different size than integer?
REQI8="!"
if test "$pac_cv_fort_integer8" = yes -a "$SIZEOF_FC_INTEGER" != 8 ; then
REQI8=
fi
AC_SUBST(REQI8)
#
AC_LANG_C
fi
# ----------------------------------------------------------------------------
# C++ types
# default to null types
# Set to "0x0c000000" instead of "MPI_DATATYPE_NULL" because these values
# sometimes are used in preprocessor tests where we cannot compare the
# type-casted values.
MPIR_CXX_BOOL=0x0c000000
MPIR_CXX_COMPLEX=0x0c000000
MPIR_CXX_DOUBLE_COMPLEX=0x0c000000
MPIR_CXX_LONG_DOUBLE_COMPLEX=0x0c000000
MPI_F77_CXX_BOOL=MPI_DATATYPE_NULL
MPI_F77_CXX_FLOAT_COMPLEX=MPI_DATATYPE_NULL
MPI_F77_CXX_DOUBLE_COMPLEX=MPI_DATATYPE_NULL
MPI_F77_CXX_LONG_DOUBLE_COMPLEX=MPI_DATATYPE_NULL
if test "$enable_cxx" = "yes" ; then
AC_LANG_CPLUSPLUS
AC_CHECK_SIZEOF(bool)
# Find a C type that matches the size of the C++ boolean type
case "$ac_cv_sizeof_bool" in
$ac_cv_sizeof__Bool)
bool_type=_Bool
;;
$ac_cv_sizeof_unsigned_char)
bool_type="unsigned char"
;;
$ac_cv_sizeof_unsigned_short)
bool_type="unsigned short"
;;
$ac_cv_sizeof_unsigned_int)
bool_type="unsigned int"
;;
$ac_cv_sizeof_unsigned_long)
bool_type="unsigned long"
;;
$ac_cv_sizeof_unsigned_long_long)
bool_type="unsigned long long"
;;
*)
AC_MSG_ERROR([unable to determine matching C type for C++ bool])
;;
esac
AC_DEFINE_UNQUOTED([MPIR_CXX_BOOL_CTYPE],[$bool_type],
[a C type used to compute C++ bool reductions])
AC_CHECK_HEADER(complex)
if test "$ac_cv_header_complex" = "yes" ; then
# The C++ complex types are all templated. We finagle this by
# defining a standin name
AC_CHECK_SIZEOF(Complex,0,[#include <stdio.h>
#include <complex>
using namespace std;
#define Complex complex<float>
])
AC_CHECK_SIZEOF(DoubleComplex,0,[#include <stdio.h>
#include <complex>
using namespace std;
#define DoubleComplex complex<double>
])
if test "$MPID_NO_LONG_DOUBLE" != yes ; then
AC_CHECK_SIZEOF(LongDoubleComplex,0,[#include <stdio.h>
#include <complex>
using namespace std;
#define LongDoubleComplex complex<long double>
])
fi
# If either complex or double complex have length 0, then mark
# c++ complex as unavailable
if test "$ac_cv_sizeof_Complex" != 0 -a \
"$ac_cv_sizeof_DoubleComplex" != 0 ; then
AC_DEFINE(HAVE_CXX_COMPLEX,1,[Define is C++ supports complex types])
fi
# Datatypes are given by
# 0x4c00 <length in bytes> (1 byte) <unique num> (1 byte)
# where the unique nums are
# 33,34,35,36
case "$ac_cv_sizeof_bool" in
1) MPIR_CXX_BOOL=0x4c000133 ;;
2) MPIR_CXX_BOOL=0x4c000233 ;;
4) MPIR_CXX_BOOL=0x4c000433 ;;
8) MPIR_CXX_BOOL=0x4c000833 ;;
*) ;;
esac
case "$ac_cv_sizeof_Complex" in
8) MPIR_CXX_COMPLEX=0x4c000834 ;;
16) MPIR_CXX_COMPLEX=0x4c001034 ;;
*) ;;
esac
case "$ac_cv_sizeof_DoubleComplex" in
8) MPIR_CXX_DOUBLE_COMPLEX=0x4c000835 ;;
16) MPIR_CXX_DOUBLE_COMPLEX=0x4c001035 ;;
32) MPIR_CXX_DOUBLE_COMPLEX=0x4c002035 ;;
*) ;;
esac
# only enable CXX "long double" if we have a C "long double", since we
# currently perform reductions on CXX "long double" types via C.
if test "X$pac_cv_have_long_double" = "Xyes" ; then
case "$ac_cv_sizeof_LongDoubleComplex" in
8) MPIR_CXX_LONG_DOUBLE_COMPLEX=0x4c000836 ;;
16) MPIR_CXX_LONG_DOUBLE_COMPLEX=0x4c001036 ;;
24) MPIR_CXX_LONG_DOUBLE_COMPLEX=0x4c001836 ;;
32) MPIR_CXX_LONG_DOUBLE_COMPLEX=0x4c002036 ;;
*) ;;
esac
fi
fi
AC_LANG_C
# Make these available to the collective operations and other code
AC_DEFINE_UNQUOTED(MPIR_CXX_BOOL_VALUE,$MPIR_CXX_BOOL,[Define as the MPI Datatype handle for MPI::BOOL])
AC_DEFINE_UNQUOTED(MPIR_CXX_COMPLEX_VALUE,$MPIR_CXX_COMPLEX,[Define as the MPI Datatype handle for MPI::COMPLEX])
AC_DEFINE_UNQUOTED(MPIR_CXX_DOUBLE_COMPLEX_VALUE,$MPIR_CXX_DOUBLE_COMPLEX,[Define as the MPI Datatype handle for MPI::DOUBLE_COMPLEX])
AC_DEFINE_UNQUOTED(MPIR_CXX_LONG_DOUBLE_COMPLEX_VALUE,$MPIR_CXX_LONG_DOUBLE_COMPLEX,[Define as the MPI Datatype handle for MPI::LONG_DOUBLE_COMPLEX])
# compute F77 decimal constant values for these types
PAC_CONV_HEX_TO_DEC([$MPIR_CXX_BOOL], [MPI_F77_CXX_BOOL])
PAC_CONV_HEX_TO_DEC([$MPIR_CXX_COMPLEX], [MPI_F77_CXX_FLOAT_COMPLEX])
PAC_CONV_HEX_TO_DEC([$MPIR_CXX_DOUBLE_COMPLEX], [MPI_F77_CXX_DOUBLE_COMPLEX])
PAC_CONV_HEX_TO_DEC([$MPIR_CXX_LONG_DOUBLE_COMPLEX],[MPI_F77_CXX_LONG_DOUBLE_COMPLEX])
fi
AC_SUBST([MPIR_CXX_BOOL])
AC_SUBST([MPIR_CXX_COMPLEX])
AC_SUBST([MPIR_CXX_DOUBLE_COMPLEX])
AC_SUBST([MPIR_CXX_LONG_DOUBLE_COMPLEX])
AC_SUBST([MPI_F77_CXX_BOOL])
AC_SUBST([MPI_F77_CXX_FLOAT_COMPLEX])
AC_SUBST([MPI_F77_CXX_DOUBLE_COMPLEX])
AC_SUBST([MPI_F77_CXX_LONG_DOUBLE_COMPLEX])
# ------------------------------------------------------------------------
# Test if type_tag_for_datatype is agnostic to modifiers such as const, volatile, and restrict
# if not, the type tags are disabled to avoid compiler warings. A new type_tag for const etc. does
# does not help, since only the latest type_tag definition is used. Type tags are defined in mpi.h,
# therefore, they must be also be activated/deavtivated there
PAC_PUSH_FLAG([CFLAGS])
PAC_APPEND_FLAG([-Werror],[CFLAGS])
AC_TRY_COMPILE([
typedef int TEST_Datatype;
#define TEST_INT ((TEST_Datatype)0x44)
static const TEST_Datatype test_int __attribute__((type_tag_for_datatype(TEST,int))) = TEST_INT;
void test(const void* buffer, TEST_Datatype datatype)__attribute__((pointer_with_type_tag(TEST,1,2)));],[
const int buf[10];
test(buf, TEST_INT);],ac_attr_support=yes, ac_attr_support=no)
if test "$ac_attr_support" = yes
then
DISABLE_TAG_SUPPORT="#undef NO_TAGS_WITH_MODIFIERS"
else
DISABLE_TAG_SUPPORT="#define NO_TAGS_WITH_MODIFIERS 1"
fi
PAC_POP_FLAG([CFLAGS])
AC_SUBST(DISABLE_TAG_SUPPORT)
# ----------------------------------------------------------------------------
# Check for the alignment rules moves with types int64_t etc. These
# are used in the datatype code to perform pack and unpack operations.
# These only determine if different alignments *work*, not whether they
# work efficiently. The datatype pack code (should) allow the developer
# to include stricter alignment rules than are needed for correctness to
# get better performance.
if test "$ac_cv_c_int64_t" != "no" -o -n "$INT64_T" ; then
default_int64_t_alignment=${CROSS_INT64_T_ALIGNMENT:-"unknown"}
if test -z "$INT64_T" ; then
if test "$ac_cv_c_int64_t" = yes ; then
INT64_T="int64_t"
else
INT64_T="$ac_cv_int64_t"
fi
fi
# We use the type that we're going use for int64.
AC_CACHE_CHECK([for alignment restrictions on $INT64_T],pac_cv_int64_t_alignment,[
AC_TRY_RUN([
#include <sys/types.h>
#include <stdlib.h>
int main(int argc, char **argv )
{
$INT64_T *p1, v;
char *buf_p = (char *)malloc( 64 ), *bp;
bp = buf_p;
/* Make bp aligned on 4, not 8 bytes */
if (!( (long)bp & 0x7 ) ) bp += 4;
p1 = ($INT64_T *)bp;
v = -1;
*p1 = v;
if (!( (long)bp & 0x3 ) ) bp += 2;
p1 = ($INT64_T *)bp;
*p1 = 1;
if (!( (long)bp & 0x1 ) ) bp += 1;
p1 = ($INT64_T *)bp;
*p1 = 1;
return 0;
}
],pac_cv_int64_t_alignment=no,pac_cv_int64_t_alignment=yes,pac_cv_int64_t_alignment=$default_int64_t_alignment)
])
if test "$pac_cv_int64_t_alignment" = "no" ; then
AC_DEFINE(HAVE_ANY_INT64_T_ALIGNMENT,1,[Define if int64_t works with any alignment])
fi
fi
if test "$ac_cv_int32_t" != "no" ; then
default_int32_t_alignment=${CROSS_INT32_T_ALIGNMENT:-"unknown"}
if test -z "$INT32_T" ; then
if test "$ac_cv_c_int32_t" = yes ; then
INT32_T="int32_t"
else
INT32_T="$ac_cv_int32_t"
fi
fi
AC_CACHE_CHECK([for alignment restrictions on int32_t],pac_cv_int32_t_alignment,[
AC_TRY_RUN([
#include <sys/types.h>
#include <stdlib.h>
int main(int argc, char **argv )
{
$INT32_T *p1, v;
char *buf_p = (char *)malloc( 64 ), *bp;
bp = buf_p;
/* Make bp aligned on 4, not 8 bytes */
if (!( (long)bp & 0x7 ) ) bp += 4;
p1 = ($INT32_T *)bp;
v = -1;
*p1 = v;
if (!( (long)bp & 0x3 ) ) bp += 2;
p1 = ($INT32_T *)bp;
*p1 = 1;
if (!( (long)bp & 0x1 ) ) bp += 1;
p1 = ($INT32_T *)bp;
*p1 = 1;
return 0;
}
],pac_cv_int32_t_alignment=no,pac_cv_int32_t_alignment=yes,pac_cv_int32_t_alignment=$default_int32_t_alignment)
])
if test "$pac_cv_int32_t_alignment" = "no" ; then
AC_DEFINE(HAVE_ANY_INT32_T_ALIGNMENT,1,[Define if int32_t works with any alignment])
fi
fi
# -----------------------------------------------------------------------------
# Check for support of enable-coverage. Put this near the end of the tests
# because the coverage options may affect the other tests.
PAC_ENABLE_COVERAGE
# -----------------------------------------------------------------------------
# Look for Standard headers
AC_HEADER_STDC
# Check for a specific header
# Grrr. OS/X fails the test for sys/uio.h because uio *requires* sys/types.h
# to compile. Thus, we'll make that a separate test
# stddef.h is sometimes needed for types like wchar_t
AC_CHECK_HEADERS(stdlib.h stdarg.h sys/types.h string.h inttypes.h limits.h stddef.h errno.h sys/socket.h sys/time.h unistd.h endian.h assert.h sys/param.h)
AC_CACHE_CHECK([for sys/uio.h],ac_cv_header_sys_uio_h,[
AC_TRY_COMPILE([
#include <sys/types.h>
#include <sys/uio.h>
],[int a;],ac_cv_header_sys_uio_h=yes,ac_cv_header_sys_uio_h=no)])
if test "$ac_cv_header_sys_uio_h" = yes ; then
AC_DEFINE(HAVE_SYS_UIO_H,1,[Define if you have the <sys/uio.h> header file.])
fi
# Check for special types
AC_TYPE_SIZE_T
# These are used to support timeouts
AC_CHECK_FUNCS(setitimer alarm)
# These are used for error reporting
AC_CHECK_FUNCS(vsnprintf vsprintf)
if test "$ac_cv_func_vsnprintf" = "yes" ; then
# vsnprintf may be declared in stdio.h and may need stdarg.h
PAC_FUNC_NEEDS_DECL([#include <stdio.h>
#include <stdarg.h>],vsnprintf)
fi
# We would like to use strerror in the file namepublisher; it is also used
# in MPIU_Strerror (whose implementation is broken if strerror is not found)
AC_CHECK_FUNCS(strerror strncasecmp)
AC_FUNC_STRERROR_R
if test "$ac_cv_func_strerror_r" = "yes" ; then
PAC_FUNC_NEEDS_DECL([#include <string.h>],strerror_r)
fi
# Use snprintf if possible when creating messages
AC_CHECK_FUNCS(snprintf)
if test "$ac_cv_func_snprintf" = "yes" ; then
PAC_FUNC_NEEDS_DECL([#include <stdio.h>],snprintf)
fi
# qsort will be used in MPI_Comm_split, if available
AC_CHECK_FUNCS([qsort])
# if we are using stdarg, we may need va_copy . Test to see if we have it
# Since it may be a built-in instead of a function, we must try to
# compile and link a program that uses it.
# va_copy is currently used only in src/util/dbg_printf.c, in an obsolete
# debugging routine. We may want to withdraw this (saving the
# test in confdb/aclocal_cc.m4).
AC_CACHE_CHECK([for va_copy],pac_cv_func_va_copy,[
AC_TRY_LINK([
#include <stdarg.h>
void foo1( char *fmt, ... ) {
va_list ap, list;
va_start(ap,fmt);
va_copy(list,ap);
va_end(list);
va_end(ap);
}
],[foo1("a test %d", 3);],pac_cv_func_va_copy=yes,pac_cv_func_va_copy=no)])
if test "$pac_cv_func_va_copy" = "yes" ; then
AC_DEFINE(HAVE_VA_COPY,1,[Define if we have va_copy])
else
AC_CACHE_CHECK([for __va_copy],pac_cv_func___va_copy,[
AC_TRY_LINK([
#include <stdarg.h>
void foo1( char *fmt, ... ) {
va_list ap, list;
va_start(ap,fmt);
__va_copy(list,ap);
va_end(list);
va_end(ap);
}
],[foo1("a test %d", 3);],pac_cv_func___va_copy=yes,pac_cv_func___va_copy=no)])
if test "$pac_cv_func___va_copy" = "yes" ; then
AC_DEFINE(HAVE___VA_COPY,1,[Define if we have __va_copy])
fi
fi
PAC_C_MACRO_VA_ARGS
# Check for alloca function. May set HAVE_ALLOCA_H and HAVE_ALLOCA
AC_FUNC_ALLOCA
# We don't use alloca unless USE_ALLOCA is also set.
AC_ARG_ENABLE(alloca,
AC_HELP_STRING([--enable-alloca],
[Use alloca to allocate temporary memory if available]),,enable_alloca=no)
if test "$enable_alloca" = yes ; then
AC_DEFINE(USE_ALLOCA,1,[Define if alloca should be used if available])
fi
if test "$enable_g_mem" != "yes" ; then
# Strdup is needed only if memory tracing is not enabled.
AC_CHECK_FUNCS(strdup)
if test "$ac_cv_func_strdup" = "yes" ; then
# Do we need to declare strdup?
PAC_FUNC_NEEDS_DECL([#include <string.h>],strdup)
fi
else
# search.h is used for fancier output from trmem. Disabled for now,
# since the tsearch routines have problematic prototypes.
AC_CHECK_HEADERS(search)
AC_CHECK_FUNCS(tsearch)
# Check that we can compile tsearch without error. Try to compile
# it with the header and the char * args
if test "$ac_cv_func_tsearch" = "yes" ; then
AC_CACHE_CHECK([whether tsearch requires char* args],
pac_cv_tsearch_charp,[
AC_TRY_COMPILE([#include <search.h>
char *tsearch( char *k, char **r, (int (*)())compare ) { return k; }],
[int f=0;],pac_cv_tsearch_charp=yes,pac_cv_tsearch_charp=no)])
if test "$pac_cv_tsearch_charp" = "yes" ; then
# this should consider defining a name with the argument type
# so that no further ifdefs are needed
AC_DEFINE(USE_TSEARCH_WITH_CHARP,1,[Define if tsearch requires char pointers])
fi
fi
# Note that HPUX and AIX may require _INCLUDE_XOPEN_SOURCE or
# _XOPEN_SOURCE be defined respectively.
fi
# ----------------------------------------------------------------------------
# Look for some non-posix, but commonly provided functions
# ----------------------------------------------------------------------------
# mkstemp() is a better replacement for mktemp()
AC_HAVE_FUNCS(mkstemp)
if test "$ac_cv_func_mkstemp" = "yes" ; then
PAC_FUNC_NEEDS_DECL([#include <stdlib.h>],mkstemp)
fi
# fdopen() converts from an fd to a FILE*
AC_HAVE_FUNCS(fdopen)
if test "$ac_cv_func_fdopen" = "yes" ; then
PAC_FUNC_NEEDS_DECL([#include <stdlib.h>],fdopen)
fi
# putenv() sets environment variable
AC_HAVE_FUNCS(putenv)
if test "$ac_cv_func_putenv" = "yes" ; then
PAC_FUNC_NEEDS_DECL([#include <stdlib.h>],putenv)
fi
# ----------------------------------------------------------------------------
# Support for timers. The following code processes the
# --enable-timer-type=name argument and selects the timer based on
# both that field and what configure is able to determine is available.
# The file src/include/mpiu_timer.h is also created.
# Note that at least the handling of the "device" option must come *after*
# the setup_device script is loaded so that the device can set the appropriate
# fields. For now, we've split this so that there is an update to the timer
# after the setup_device script is loaded, but we should consider moving
# this entire block.
# FIXME DJG setup_device has been eliminated in favor of subconfigure.m4 files
# ----------------------------------------------------------------------------
# Default type for timer stamp.
MPICH_TIMER_TYPE=long
AC_SUBST(MPICH_TIMER_TYPE)
# If the device specified a timer type, use that by default. Else,
# try to detect a type that works on this system.
if test -n "$MPID_DEVICE_TIMER_TYPE" ; then
default_timer_type=device
else
default_timer_type=
fi
# clock_gettime is the POSIX gettimeofday
# gethrtime is the Solaris high-resolution timer
dnl
dnl Specific checks that a function works correctly
dnl
dnl Now that we know what the options are, choose the timer to use
dnl
dnl The default preference is
dnl Solaris gethrtime
dnl Posix clock_gettime
dnl Unix gettimeofday (one of two versions)
dnl
dnl Also available are various hardware time stamps
dnl Linux-x86 cycle counter
dnl Linux-alpha cycle counter
dnl
dnl We also allow --enable-timer-type=name to select a timer type
AC_ARG_ENABLE(timer-type,
[ --enable-timer-type=name - Select the timer to use for MPI_Wtime and
internal timestamps.
gethrtime - Solaris timer (Solaris systems only)
clock_gettime - Posix timer (where available)
gettimeofday - Most Unix systems
linux86_cycle - Linux x86; returns cycle counts, not time in seconds*
gcc_ia64_cycle - IPF ar.itc timer*
mach_absolute_time - Mach absolute time (alternative to clock_gettime
for OSX)
device - The timer is provided by the device
*Note that the cycle timers are intended to be used by MPICH
developers for internal low-level timing. Normal users should
not use these as they are not guaranteed to be accurate in
certain situations.
linuxalpha_cycle is no longer supported.
],timer_type=$enable_timer_type,timer_type=${default_timer_type})
if test -z "$timer_type" ; then
# Try to pick a timer based on what is available
AC_CHECK_FUNCS(clock_gettime clock_getres gethrtime mach_absolute_time gettimeofday)
if test "$ac_cv_func_gethrtime" = "yes" ; then
# Sigh. The Solaris include files do not define hrtime_t
# Before we accept this choice, make sure that we can
# do arithmetic with hrtime_t .
AC_CACHE_CHECK([that hrtime_t is properly defined for gethrtime],
pac_cv_hrtime_works,[
AC_TRY_COMPILE([
#include <sys/time.h>
],[hrtime_t t1, t2; t1 = 1; t2 = 2; t1 = t1 + t2;],
pac_cv_hrtime_works=yes,pac_cv_hrtime_works=no)])
# A more ambitious test would look to see if casting an
# hrtime_t to int64_t works, and even more ambitious
# would check whether long or long long was 64 bits (or even
# better, the sizeof hrtime_t).
# AC_CHECK_FUNCS has false positive when checking whether gethrtime is
# available on Solaris with strict configuration. We must use
# AC_CHECK_DECL to confirm it.
AC_CHECK_DECL(gethrtime)
fi
if test "$ac_cv_func_gethrtime" = "yes" -a \
"$ac_cv_has_decl_gethrtime" = "yes" -a \
"$pac_cv_hrtime_works" = "yes" ; then
timer_type=gethrtime
elif test "$ac_cv_func_clock_gettime" = "yes" -a \
"$ac_cv_func_clock_getres" = "yes" ; then
# Test on both because some systems (e.g., cygwin) provide
# clock_gettime but not clock_getres
timer_type=clock_gettime
elif test "$ac_cv_func_mach_absolute_time" = "yes" ; then
timer_type=mach_absolute_time
elif test "$ac_cv_func_gettimeofday" = "yes" ; then
timer_type=gettimeofday
fi
fi
if test -z "$timer_type" ; then
AC_MSG_ERROR([No timer found])
fi
# Check for valid timer and select datatypes for the time stamp
case "$timer_type" in
gethrtime)
MPICH_TIMER_TYPE=hrtime_t
AC_CHECK_FUNC(gethrtime,,[
AC_MSG_ERROR([Requested timer gethrtime is not available])
])
;;
clock_gettime)
missing_function=no
AC_SEARCH_LIBS([clock_gettime],[rt],,AC_MSG_ERROR([clock_gettime is not available]))
AC_SEARCH_LIBS([clock_getres],[rt],,AC_MSG_ERROR([clock_getres is not available]))
MPICH_TIMER_TYPE="struct timespec"
# AIX does not always define struct timespec (!)
# Make sure that we can use struct timespec
AC_CACHE_CHECK([whether struct timespec is defined in time.h],
pac_cv_struct_timespec_defined,[
AC_TRY_COMPILE([
#include <time.h>],[
struct timespec t;],pac_cv_struct_timespec_defined=yes,
pac_cv_struct_timespec_defined=no)
])
if test "$pac_cv_struct_timespec_defined" != "yes" ; then
# Try again, but with -D_XOPEN_SOURCE=500 (works for AIX)
AC_CACHE_CHECK([whether struct timespec is defined in time.h with _XOPEN_SOURCE=500],
pac_cv_struct_timespec_defined_with_xopen500,[
AC_TRY_COMPILE([
#define _XOPEN_SOURCE 500
#include <time.h>],[
struct timespec t;],pac_cv_struct_timespec_defined_with_xopen500=yes,
pac_cv_struct_timespec_defined_with_xopen500=no)
])
if test "$pac_cv_struct_timespec_defined_with_xopen500" = "yes" ; then
# We need to define _XOPEN_SOURCE=500, but we need to ensure that
# this is done before any include files are loaded. At
# this point it is really too late to add this definition,
# since it may make other tests incompatible.
AC_MSG_ERROR([The available timer requires _XOPEN_SOURCE=500. Add -D_XOPEN_SOURCE=500 to CFLAGS and rerun configure])
fi
fi
#
# FreeBSD 4.3 incorrectly puts the header into sys/time.h;
# time.h is required (see pages 45 and 46 in the POSIX standard).
# See if we can compile
AC_CACHE_CHECK([for CLOCK_REALTIME defined in time.h],pac_cv_posix_clock_realtime,[
AC_TRY_COMPILE([
#include <time.h>],[
clockid_t cid = CLOCK_REALTIME;],pac_cv_posix_clock_realtime=yes,
pac_cv_posix_clock_realtime=no)])
if test "$pac_cv_posix_clock_realtime" = "no" ; then
AC_MSG_WARN([POSIX timer requires definitions in time.h])
# Check for the definition in sys/time.h, which is where
# OpenBSD and FreeBSD have put it by mistake
AC_TRY_COMPILE([
#include <time.h>
#include <sys/time.h>],[
clockid_t cid = CLOCK_REALTIME;],pac_cv_posix_clock_realtime=yes,
pac_cv_posix_clock_realtime=no)
if test "$pac_cv_posix_clock_realtime" = yes ; then
AC_MSG_WARN([sys/time.h required for POSIX timer])
AC_DEFINE(NEEDS_SYS_TIME_H,1,[Define if sys/time.h is required to get timer definitions])
else
AC_MSG_ERROR([Cannot find the definition of CLOCK_REALTIME for the POSIX timer])
fi
fi
;;
gettimeofday)
MPICH_TIMER_TYPE="struct timeval"
# We may have already tested for gettimeofday. If we got a "yes",
# we're good to go
if test "$ac_cv_func_gettimeofday" != "yes" ; then
AC_CHECK_FUNC(gettimeofday,,[
AC_MSG_ERROR([Requested timer gettimeofday is not available])
])
fi
;;
linux86_cycle|linux86_cycle_2)
# The following AC_TRY_RUN statements are needed because x86_64 compilers
# usually know about rdtscp but the cpu may or may not actually implement the
# feature. This is not cross-compile safe, unfortunately. In the long run we
# should allow the user to override this with a configure flag.
AC_CACHE_CHECK([that linux86 cycle counter is available],
pac_cv_linux86_cycle,
AC_TRY_RUN([
int main()
{
/* rdtscp */
long long var, *var_ptr=&var;
__asm__ __volatile__("rdtscp; shl \$32, %%rdx; or %%rdx, %%rax" : "=a" (*var_ptr) : : "ecx", "rdx");
return 0;
}
],pac_cv_linux86_cycle=rdtscp,
AC_TRY_RUN([[
int main()
{
/* cpuid 64 */
long long var, *var_ptr=&var;
__asm__ __volatile__("push %%rbx ; cpuid ; rdtsc ; pop %%rbx ; shl $32, %%rdx; or %%rdx, %%rax" : "=a" (*var_ptr) : : "ecx", "rdx");
return 0;
}
]],pac_cv_linux86_cycle=cpuid_rdtsc64,
AC_TRY_RUN([[[
int main()
{
/* cpuid 32 */
long long var, *var_ptr=&var;
__asm__ __volatile__("push %%ebx ; cpuid ; rdtsc ; pop %%ebx" : "=A" (*var_ptr) : : "ecx");
return 0;
}
]]],pac_cv_linux86_cycle=cpuid_rdtsc32,
AC_TRY_RUN([[[[
int main()
{
/* simple */
long long var, *var_ptr=&var;
__asm__ __volatile__("rdtsc" : "=A" (*var_ptr));
return 0;
}
]]]],pac_cv_linux86_cycle=rdtsc,
pac_cv_linux86_cycle=no)
)
),
dnl The if-cross-compiling clause from the first AC_TRY_RUN. Hope that if the
dnl compiler knows about the instruction then it's supported by the target
dnl platform.
AC_TRY_COMPILE(,[[
long long var, *var_ptr=&var;
__asm__ __volatile__("rdtscp; shl \$32, %%rdx; or %%rdx, %%rax" : "=a" (*var_ptr) : : "ecx", "rdx");
]],pac_cv_linux86_cycle=rdtscp,
AC_TRY_COMPILE(,[[[
long long var, *var_ptr=&var;
__asm__ __volatile__("push %%rbx ; cpuid ; rdtsc ; pop %%rbx ; shl $32, %%rdx; or %%rdx, %%rax" : "=a" (*var_ptr) : : "ecx", "rdx");
]]],pac_cv_linux86_cycle=cpuid_rdtsc64,
AC_TRY_COMPILE(,[[[[
long long var, *var_ptr=&var;
__asm__ __volatile__("push %%ebx ; cpuid ; rdtsc ; pop %%ebx" : "=A" (*var_ptr) : : "ecx");
]]]],pac_cv_linux86_cycle=cpuid_rdtsc32,
AC_TRY_COMPILE(,[[[[[
long long var, *var_ptr=&var;
__asm__ __volatile__("rdtsc" : "=A" (*var_ptr));
]]]]],pac_cv_linux86_cycle=rdtsc,
pac_cv_linux86_cycle=no)
)
)
)
)
)
case "$pac_cv_linux86_cycle" in
"rdtscp")
AC_DEFINE(LINUX86_CYCLE_RDTSCP,1,[Define which x86 cycle counter to use])
;;
"cpuid_rdtsc64")
AC_DEFINE(LINUX86_CYCLE_CPUID_RDTSC64,1,[Define which x86 cycle counter to use])
;;
"cpuid_rdtsc32")
AC_DEFINE(LINUX86_CYCLE_CPUID_RDTSC32,1,[Define which x86 cycle counter to use])
;;
"rdtsc")
AC_DEFINE(LINUX86_CYCLE_RDTSC,1,[Define which x86 cycle counter to use])
;;
*)
cpu_gcc_x86_cycle=no
;;
esac
if test "$cpu_gcc_x86_cycle" = "no" ; then
AC_MSG_ERROR([Linux86 cycle counter is not available on this system and or with the $CC compiler])
fi
MPICH_TIMER_TYPE="long long"
;;
gcc_ia64_cycle)
AC_CACHE_CHECK([that IPF timer is available],
pac_cv_ia64_cycle,[
AC_TRY_COMPILE(,[
long var, *var_ptr=&var;
#ifdef __INTEL_COMPILER
#include "ia64regs.h"
var=__getReg(_IA64_REG_AR_ITC);
#else
__asm__ __volatile__("mov %0=ar.itc" : "=r" (var_ptr));
#endif
],pac_cv_gcc_ia64_cycle=yes,pac_cv_gcc_ia64_cycle=no)])
if test "$pac_cv_gcc_ia64_cycle" != "yes" ; then
AC_MSG_ERROR([IPF cycle counter is not available on this system and or with the $CC compiler])
fi
MPICH_TIMER_TYPE="long"
;;
linuxalpha_cycle)
AC_MSG_ERROR([linuxalpha_cycle is no longer supported])
;;
mach_absolute_time)
AC_CHECK_FUNC(mach_absolute_time,,[AC_MSG_ERROR([mach_absolute_time is not available])])
AC_CHECK_FUNC(mach_timebase_info,,[AC_MSG_ERROR([mach_timebase_info is not available])])
MPICH_TIMER_TYPE="uint64_t"
;;
device)
# The device selected should export the datatype for the timer
# in MPID_DEVICE_TIMER_TYPE if something other than long is needed
if test -n "$MPID_DEVICE_TIMER_TYPE" ; then
MPICH_TIMER_TYPE=$MPID_DEVICE_TIMER_TYPE
fi
;;
*)
AC_MSG_ERROR([Invalid timer type $timer_type])
;;
esac
# Convert timer type to upper case
timer_type=`echo $timer_type | \
tr 'abcdefghijklmnopqrstuvwxyz' 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'`
MPICH_TIMER_KIND=MPIU_$timer_type
AC_SUBST(MPICH_TIMER_KIND)
# ----------------------------------------------------------------------------
# End of code for timer support (except for ac_ OUTPUT)
# ----------------------------------------------------------------------------
# Setup other replaceable values
AC_SUBST(MPILIBNAME)
AC_SUBST(PMPILIBNAME)
if test "$NEEDSPLIB" = "yes" ; then
LPMPILIBNAME="-l${PMPILIBNAME}"
fi
AC_SUBST(LPMPILIBNAME)
# Note that aint_size must be used instead of void_p where the desired check
# is on the size of MPI_Aint
aint_size=$ac_cv_sizeof_void_p
if test "$with_aint_size" -gt 0 ; then
aint_size=$with_aint_size
if test "$aint_size" != "$ac_cv_sizeof_void_p" ; then
AC_MSG_RESULT([Overriding MPI_Aint to be $aint_size bytes])
fi
fi
MPI_AINT=int
for type in int long long_long short ; do
eval len=\$ac_cv_sizeof_$type
if test "$len" = "$aint_size" ; then
MPI_AINT=`echo $type | sed -e 's/_/ /'`
# Make the sizeof AINT available to other configures
MPI_SIZEOF_AINT=$len
export MPI_SIZEOF_AINT
case $type in
int)
MPI_AINT_FMT_DEC_SPEC="%d"
MPI_AINT_FMT_HEX_SPEC="%x"
MPIR_AINT_MAX="INT_MAX"
;;
long)
MPI_AINT_FMT_DEC_SPEC="%ld"
MPI_AINT_FMT_HEX_SPEC="%lx"
MPIR_AINT_MAX="LONG_MAX"
;;
long_long)
MPI_AINT_FMT_DEC_SPEC="%lld"
MPI_AINT_FMT_HEX_SPEC="%llx"
# tt#1776: if LLONG_MAX is missing, we fix it up in C, b/c it's
# easier there. See mpiiimpl.h.
MPIR_AINT_MAX="LLONG_MAX"
;;
short)
MPI_AINT_FMT_DEC_SPEC="%hd"
MPI_AINT_FMT_HEX_SPEC="%hx"
MPIR_AINT_MAX="SHRT_MAX"
;;
*)
AC_MSG_WARN([unable to determine format specifiers for MPI_Aint, defaulting to int])
MPI_AINT_FMT_DEC_SPEC="%d"
MPI_AINT_FMT_HEX_SPEC="%x"
MPIR_AINT_MAX="INT_MAX"
;;
esac
export MPI_AINT_FMT_DEC_SPEC MPI_AINT_FMT_HEX_SPEC
break
fi
done
AC_SUBST(MPI_AINT)
AC_SUBST(MPI_AINT_FMT_DEC_SPEC)
AC_SUBST(MPI_AINT_FMT_HEX_SPEC)
AC_DEFINE_UNQUOTED([MPIR_AINT_MAX],[$MPIR_AINT_MAX],[limits.h _MAX constant for MPI_Aint])
# If sizeof(mpi_aint) = sizeof(int), set this value
if test "$ac_cv_sizeof_int" = "$aint_size" ; then
AC_DEFINE(SIZEOF_INT_IS_AINT,1,[define if sizeof(int) = sizeof(MPI_Aint)])
fi
# Find a pointer-sized int
for type in int long long_long short ; do
eval len=\$ac_cv_sizeof_$type
if test "$len" = "$ac_cv_sizeof_void_p" ; then
case $type in
int)
MPIU_PINT_FMT_DEC_SPEC="\"%d\""
MPIU_UPINT_FMT_DEC_SPEC="\"%u\""
;;
long)
MPIU_PINT_FMT_DEC_SPEC="\"%ld\""
MPIU_UPINT_FMT_DEC_SPEC="\"%lu\""
;;
long_long)
MPIU_PINT_FMT_DEC_SPEC="\"%lld\""
MPIU_UPINT_FMT_DEC_SPEC="\"%llu\""
;;
short)
MPIU_PINT_FMT_DEC_SPEC="\"%hd\""
MPIU_UPINT_FMT_DEC_SPEC="\"%hu\""
;;
*)
AC_MSG_WARN([unable to determine format specifiers for MPIU_Pint, defaulting to int])
MPIU_PINT_FMT_DEC_SPEC="\"%d\""
MPIU_UPINT_FMT_DEC_SPEC="\"%u\""
;;
esac
MPIU_PINT=`echo $type | sed -e 's/_/ /'`
break
fi
done
AC_DEFINE_UNQUOTED(MPIU_Pint,$MPIU_PINT,[MPIU_Pint is a pointer-sized integer])
# allow @MPIU_PINT@ substitution in glue_romio.h
AC_SUBST([MPIU_PINT])
AC_DEFINE_UNQUOTED(MPIU_PINT_FMT_DEC_SPEC,
$MPIU_PINT_FMT_DEC_SPEC,[MPIU_PINT_FMT_DEC_SPEC is the format
specifier for printing Pint as a decimal])
AC_DEFINE_UNQUOTED(MPIU_Upint,unsigned $MPIU_PINT,[MPIU_Upint is an unsigned pointer-sized integer])
AC_DEFINE_UNQUOTED(MPIU_UPINT_FMT_DEC_SPEC,
$MPIU_UPINT_FMT_DEC_SPEC,[MPIU_UPINT_FMT_DEC_SPEC is the format
specifier for printing Upint as a decimal])
# ----------------------------------------------------------------------------
# MPI_AINT datatype
# ----------------------------------------------------------------------------
# Must be done after MPI_Aint type determination but before subconfigures.
# convert to 2-char hex size
case "$MPI_SIZEOF_AINT" in
4) len_mpi_aint=04 ;;
8) len_mpi_aint=08 ;;
16) len_mpi_aint=10 ;;
*) AC_MSG_ERROR([Unable to convert MPI_SIZEOF_AINT to a hex string. This is either because we are building on a very strange platform or there is a bug somewhere in configure.]) ;;
esac
# MPI_AINT and MPI_OFFSET are already taken, appending a _DATATYPE suffix
MPI_AINT_DATATYPE=0x4c00${len_mpi_aint}43
AC_SUBST(MPI_AINT_DATATYPE)
export MPI_AINT_DATATYPE
# 0x4c000043 is 1275068483 in decimal, add ($MPI_SIZEOF_AINT * 256) and you get
# the decimal equivalent of the hex number
MPI_F77_AINT=`expr 1275068483 '+' '(' 256 '*' $MPI_SIZEOF_AINT ')'`
AC_SUBST(MPI_F77_AINT)
export MPI_F77_AINT
# ----------------------------------------------------------------------------
# define MPIU_Size_t - used to express the size of objects
# This is used in mpiu_type_defs.h to define MPIU_SIZE_T,
# and is used in various parts of ch3 and mpid/common/sock.
# This is used to handle the potential problem that a message is
# too long to fit with an int. However, we may still need to make
# some more adjustments in the code (this may not be used everywhere
# that it is needed).
#
# FIXME: this should really be in a util configure file, but we don't
# have one at the moment
#
MPIU_SIZE_T="unsigned $MPI_AINT"
AC_DEFINE_UNQUOTED(MPIU_SIZE_T,$MPIU_SIZE_T,[Set to a type that can express the size of the entire address space])
if test "$ac_cv_sizeof_void_p" -lt "$aint_size" ; then
AC_DEFINE(USE_AINT_FOR_ATTRVAL,1,[Define if MPI_Aint should be used instead of void * for storing attribute values])
fi
# with MPI_AINT defined, now we can
# Get the size for the bsendoverhead
AC_CHECK_SIZEOF(MPIR_Bsend_data_t,0,[
#define MPI_Datatype int
typedef $MPI_AINT MPI_Aint;
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#ifdef HAVE_STDINT_H
#include <stdint.h>
#endif
#include "${master_top_srcdir}/src/include/mpibsend.h"]
)
if test "$ac_cv_sizeof_MPIR_Bsend_data_t" = "0" ; then
AC_MSG_ERROR([Unable to determine the size of MPI_BSEND_OVERHEAD])
# In the past, a default of 128 was used (still likely good enough),
# but the autoconf SIZEOF macro has been changed to ignore the second
# argument, so code that depended on the prior defined behavior now
# silently breaks.
fi
BSEND_OVERHEAD=$ac_cv_sizeof_MPIR_Bsend_data_t
export BSEND_OVERHEAD
AC_SUBST(BSEND_OVERHEAD)
#
# See if we need to update the timer type (which was converted to uppercase)
if test "$timer_type" = "DEVICE" ; then
# The device selected should export the datatype for the timer
# in MPID_DEVICE_TIMER_TYPE if something other than long is needed
if test -n "$MPID_DEVICE_TIMER_TYPE" ; then
MPICH_TIMER_TYPE=$MPID_DEVICE_TIMER_TYPE
fi
fi
dnl Configure any subdirectories. Note that config.status will *not*
dnl reexecute these!
dnl
dnl Gastly problem. CONFIG_SUBDIRS only adds the directories to the
dnl list of directories to be configured. It does NOT control the
dnl timing of the configuration. For that, we must do something different.
dnl Our original solution was to use a separate macro that does cause
dnl immediate configure; this macro made use of the code that autoconf
dnl uses to handle the subdir configure. However, later versions of
dnl autoconf did this in a way that caused problems, paritcularly with
dnl errors reported as inconsistent cache files. Instead, we simply
dnl invoke the configure scripts (if present) directly.
#
# -----------------------------------------------------------------------------
# Configure threads first. This is necessary to obtain all required
# definitions, flags, and libraries that the other subsystems will need
#
#
# -----------------------------------------------------------------------------
AC_ARG_WITH([thread-package],
[ --with-thread-package=package Thread package to use. Supported thread packages include:
posix or pthreads - POSIX threads (default, if required)
solaris - Solaris threads (Solaris OS only)
win - windows threads
none - no threads
],,with_thread_package=posix)
if test "${thread_pkg_required}" = "no" -o "${with_thread_package}" = "no" ; then
with_thread_package=none
fi
if test "${with_thread_package}" = "yes" ; then
with_thread_package=posix
fi
if test "${thread_pkg_required}" = "yes" -a "${with_thread_package}" = "none" ; then
AC_ERROR([if no thread package is available, use --enable-threads=single or funneled])
fi
MPICH_THREAD_PACKAGE_NAME=MPICH_THREAD_PACKAGE_INVALID
case $with_thread_package in
posix|pthreads)
with_thread_package=posix
AC_CHECK_HEADERS(pthread.h)
# If pthreads library is found, just include it on the link line. We don't try
# to test if the C compiler needs it or not, since the C++ or Fortran
# compilers might need it even if the C compiler doesn't
# (nvcc with gfortran, for example).
#
# OSF1 has __pthread_create but not pthread_create (because of
# inconsistencies in the pthread spec). Thus, we look for pthread_key_create
AC_CHECK_LIB([pthread],[pthread_key_create],have_pthreads=yes)
if test "$have_pthreads" = "yes" ; then
PAC_PREPEND_FLAG([-lpthread],[LIBS])
fi
AC_CHECK_FUNCS(pthread_yield)
# this check should come after the AC_CHECK_LIB for -lpthread
AC_CHECK_FUNC([pthread_key_create],[],[AC_MSG_ERROR([unable to find pthreads library])])
# Check for a routine that specify a routine to call on
# thread exit. We can use this to release memory that may
# be allocated by the MPICH library in the thread.
# A complication: pthread_cleanup_push may be a macro; in that
# case, check_funcs will fail to find it.
# Under OSX, pthread_cleanup_push and pop are macros that must
# appear together in the same lexical scope, and hence are
# really useless in libraries that may allocate data within
# a user-managed thread.
AC_CHECK_FUNCS(pthread_cleanup_push)
if test "$ac_cv_func_pthread_cleanup_push" = "no" ; then
AC_CACHE_CHECK([whether pthread_cleanup_push is available (may be a macro in pthread.h)],pac_cv_func_pthread_cleanup_push,[
AC_TRY_LINK([
#include <pthread.h>
void f1(void *a) { return; }],
[pthread_cleanup_push( f1, (void *)0 );],
pac_cv_func_pthread_cleanup_push=yes,
pac_cv_func_pthread_cleanup_push=no)])
if test "$pac_cv_func_pthread_cleanup_push" = yes ; then
AC_DEFINE(HAVE_PTHREAD_CLEANUP_PUSH_MACRO,1,[Define if pthread_cleanup_push is available, even as a macro])
fi
fi
# Check for PTHREAD_MUTEX_ERRORCHECK_NP and PTHREAD_MUTEX_ERRORCHECK
AC_CACHE_CHECK([whether pthread.h defines PTHREAD_MUTEX_ERRORCHECK_NP],
pac_cv_has_pthread_mutex_errorcheck_np,[
AC_TRY_COMPILE([#include <pthread.h>],
[int a=PTHREAD_MUTEX_ERRORCHECK_NP;],
pac_cv_has_pthread_mutex_errorcheck_np=yes,
pac_cv_has_pthread_mutex_errorcheck_np=no)])
AC_CACHE_CHECK([whether pthread.h defines PTHREAD_MUTEX_ERRORCHECK],
pac_cv_has_pthread_mutex_errorcheck,[
AC_TRY_COMPILE([#include <pthread.h>],
[int a=PTHREAD_MUTEX_ERRORCHECK;],
pac_cv_has_pthread_mutex_errorcheck=yes,
pac_cv_has_pthread_mutex_errorcheck=no)])
if test "$pac_cv_has_pthread_mutex_errorcheck" = yes ; then
AC_DEFINE(MPICH_PTHREAD_MUTEX_ERRORCHECK_VALUE,PTHREAD_MUTEX_ERRORCHECK,
[Define to an expression that will result in an error checking mutex type.])
elif test "$pac_cv_has_pthread_mutex_errorcheck_np" = yes ; then
AC_DEFINE(MPICH_PTHREAD_MUTEX_ERRORCHECK_VALUE,PTHREAD_MUTEX_ERRORCHECK_NP,
[Define to an expression that will result in an error checking mutex type.])
fi
PAC_FUNC_NEEDS_DECL([#include <pthread.h>],pthread_mutexattr_settype)
MPICH_THREAD_PACKAGE_NAME=MPICH_THREAD_PACKAGE_POSIX
;;
solaris)
AC_CHECK_HEADERS(thread.h)
AC_CHECK_FUNCS(thr_yield)
AC_SEARCH_LIBS(thr_create,thread,found=yes,found=no)
if test "$found" != "yes" ; then
AC_MSG_ERROR([unable to find Solaris threads library])
fi
# FIXME: need to add -mt if using solaris compilers
MPICH_THREAD_PACKAGE_NAME=MPICH_THREAD_PACKAGE_SOLARIS
;;
win|windows)
with_thread_package=win
MPICH_THREAD_PACKAGE_NAME=MPICH_THREAD_PACKAGE_WIN
AC_MSG_ERROR([The 'win' thread package is not supported via autoconf builds at this time.])
;;
no|none)
with_thread_package=none
MPICH_THREAD_PACKAGE_NAME=MPICH_THREAD_PACKAGE_NONE
;;
*)
AC_MSG_ERROR([The specified thread package, $with_thread_package, is not supported.])
;;
esac
# Define and export the selected thread library so that other packages
# know what's used in MPICH
AC_DEFINE_UNQUOTED([MPICH_THREAD_PACKAGE_NAME],[$MPICH_THREAD_PACKAGE_NAME],[set to the name of the thread package])
# check for compiler-support for thread-local storage (MPICH_TLS_SPECIFIER)
AX_TLS
AC_CHECK_FUNCS(getpid)
# Choose a method to yield the procesor.
# If the user specified a method to use, we check if it's available.
# If a method was not specified, we make a guess based on the OS. The
# default is to use sched_yield() or yield() if one is available,
# otherwise, default to nothing. After that we define the appropriate
# macro.
AC_CHECK_HEADERS(sched.h)
AC_CHECK_HEADERS(unistd.h)
AC_CHECK_HEADERS(sys/select.h)
AC_CHECK_FUNCS(sched_yield yield usleep sleep select)
if test "$ac_cv_func_usleep" = "yes" ; then
PAC_FUNC_NEEDS_DECL([#include <unistd.h>],usleep)
fi
AC_ARG_ENABLE([yield],
[AS_HELP_STRING([--enable-yield], [choose a method to yield the processor in busy loops. Available methods are: sched_yield, yield, select, usleep, sleep, nothing])],
[AS_CASE([$enableval],
[sched_yield], [AS_IF([test "x$ac_cv_func_sched_yield" != "xyes"], [enable_yield=unavail])],
[yield], [AS_IF([test "x$ac_cv_func_yield" != "xyes"], [enable_yield=unavail])],
[select], [AS_IF([test "x$ac_cv_func_select" != "xyes"], [enable_yield=unavail])],
[usleep], [AS_IF([test "x$ac_cv_func_usleep" != "xyes"], [enable_yield=unavail])],
[sleep], [AS_IF([test "x$ac_cv_func_sleep" != "xyes"], [enable_yield=unavail])],
[nothing|no|none], [],
[AC_MSG_ERROR([Invalid option $enableval for --enable-yield])])
AS_IF([test "x$enable_yield" = "xunavail"],
[AC_MSG_ERROR([Yield method $enableval is not available on this platform.])])
],
[# none specified by user; make a guess based on os
AS_CASE([$host],
[*-*-darwin*],
[# In Lion, sched_yield worked but none of the other options had any effect
AS_IF([test "x$ac_cv_func_sched_yield" = "xyes"], [enable_yield=sched_yield],
[enable_yield=nothing])],
[*-*-linux*],
[# sched_yield() has been broken in linux since 2.6.23, and no good alternative exists.
enable_yield=nothing],
[# default: just use sched_yield() or yield()
AS_IF([test "x$ac_cv_func_sched_yield" = "xyes"], [enable_yield=sched_yield],
[test "x$ac_cv_func_yield" = "xyes"], [enable_yield=yield],
[enable_yield=nothing])])
]
)
# set the appropriate macro
AS_CASE([$enable_yield],
[sched_yield],
[AC_DEFINE(USE_SCHED_YIELD_FOR_YIELD,1,[Define to use sched_yield to yield processor])],
[yield],
[AC_DEFINE(USE_YIELD_FOR_YIELD,1,[Define to use yield to yield processor])],
[select],
[AC_DEFINE(USE_SELECT_FOR_YIELD,1,[Define to use select to yield processor])],
[usleep],
[AC_DEFINE(USE_USLEEP_FOR_YIELD,1,[Define to use usleep to yield processor])],
[sleep],
[AC_DEFINE(USE_SLEEP_FOR_YIELD,1,[Define to use sleep to yield processor])],
[nothing|no|none],
[AC_DEFINE(USE_NOTHING_FOR_YIELD,1,[Define to use nothing to yield processor])],
[AC_MSG_ERROR([Invalid value $enable_yield for enable_yield.])]
)
# Check for the Linux functions for controlling processor affinity.
# LINUX: sched_setaffinity
# AIX: bindprocessor
# OSX (Leopard): thread_policy_set
AC_CHECK_FUNCS(sched_setaffinity sched_getaffinity bindprocessor thread_policy_set)
if test "$ac_cv_func_sched_setaffinity" = "yes" ; then
# Test for the cpu process set type
AC_CACHE_CHECK([whether cpu_set_t available],pac_cv_have_cpu_set_t,[
AC_TRY_COMPILE( [
#include <sched.h>],[ cpu_set_t t; ],pac_cv_have_cpu_set_t=yes,pac_cv_have_cpu_set_t=no)])
if test "$pac_cv_have_cpu_set_t" = yes ; then
AC_DEFINE(HAVE_CPU_SET_T,1,[Define if cpu_set_t is defined in sched.h])
AC_CACHE_CHECK([whether the CPU_SET and CPU_ZERO macros are defined],
pac_cv_cpu_set_defined,[
AC_TRY_LINK( [
#include <sched.h>],[ cpu_set_t t; CPU_ZERO(&t); CPU_SET(1,&t); ],
pac_cv_cpu_set_defined=yes,pac_cv_cpu_set_defined=no)])
if test "$pac_cv_cpu_set_defined" = "yes" ; then
AC_DEFINE(HAVE_CPU_SET_MACROS,1,[Define if CPU_SET and CPU_ZERO defined])
fi
# FIXME: Some versions of sched_setaffinity return ENOSYS (!),
# so we should test for the unfriendly and useless behavior
fi
fi
if test "$ac_cv_func_thread_policy_set" = yes ; then
AC_CACHE_CHECK([whether thread affinity macros defined],
pac_cv_have_thread_affinity_policy,[
AC_TRY_COMPILE([#include <mach/thread_policy.h>],[
#if !defined(THREAD_AFFINITY_POLICY) || !defined(THREAD_AFFINITY_TAG_NULL)
:'thread macros not defined
],pac_cv_have_thread_affinity_policy=yes,
pac_cv_have_thread_affinity_policy=no)])
if test "$pac_cv_have_thread_affinity_policy" = yes ; then
AC_DEFINE(HAVE_OSX_THREAD_AFFINITY,1,[Define is the OSX thread affinity policy macros defined])
fi
fi
# -----------------------------------------------------------------------------
# End of thread configure
# -----------------------------------------------------------------------------
# Checkpointing
AC_ARG_ENABLE(checkpointing,
[AC_HELP_STRING([--enable-checkpointing], [Enable application checkpointing])],
[ if test "$enableval" != "no" ; then
PAC_SET_HEADER_LIB_PATH(blcr)
PAC_PUSH_FLAG([LIBS])
PAC_CHECK_HEADER_LIB_FATAL(blcr, libcr.h, cr, cr_init)
PAC_APPEND_FLAG([-lcr],[WRAPPER_LIBS])
PAC_POP_FLAG([LIBS])
AC_DEFINE(ENABLE_CHECKPOINTING,1,[Application checkpointing enabled])
fi ],
)
# Update the cache first with the results of the previous configure steps
# We don't use the subdir cache because ensuring that the cache is consistant
# with the way in which configure wishes to use it is very difficult and
# too prone to error.
dnl PAC_SUBDIR_CACHE(always)
# -----------------------------------------------------------------------------
# experiment with creating a cache file
#if test "$CONF_USE_CACHEFILE" = yes ; then
# basecachefile=`pwd`/cache.base
# set | grep ac_cv > $basecachefile
# # Tell other configures to load this file
# echo "Creating and exporting the base cache file $basecachefile"
# CONF_BASE_CACHEFILE=$basecachefile
# export CONF_BASE_CACHEFILE
#fi
PAC_CREATE_BASE_CACHE
# -----------------------------------------------------------------------------
#
# Configure the device second. This way, any libraries or variables that
# it needs can be extracted before building the other subsystems (this is
# particularly important for the bindings, which may need to know the
# libraries in order to create the compilation scripts)
user_specified_atomic_primitives=no
if test "$DEBUG_SUBDIR_CACHE" = yes ; then
set -x
fi
dnl "configure" the device here via subconfigure.m4 files
m4_map([PAC_SUBCFG_CONFIGURE_SUBSYS], [PAC_SUBCFG_MODULE_LIST])
# now configure any actual recursively configures subsystems, such as ROMIO and
# hydra, or older components that haven't been updated to a subconfigure.m4 yet
for subsys in $devsubsystems $subsystems ; do
PAC_CONFIG_SUBDIR([$subsys],[],[AC_MSG_ERROR([$subsys configure failed])])
done
if test "$DEBUG_SUBDIR_CACHE" = yes -a "$enable_echo" != yes ; then
set +x
fi
dnl PAC_SUBDIR_CACHE_CLEANUP
# Make subsystems available to makefiles.
# FIXME does the makefile actually need this?
subsystems="$devsubsystems $subsystems $bindingsubsystems"
# Find the size of OPA_ptr_t. This step needs to come after the OPA
# configure above in order to get the size OPA_ptr_t evaluated for
# this platform.
AC_CHECK_SIZEOF(OPA_ptr_t,0,[
#include "${master_top_srcdir}/src/openpa/src/opa_primitives.h"
pthread_mutex_t *OPA_emulation_lock;
])
if test "$enable_f77" != "yes" ; then
# These are Fortran datatypes ONLY. Set to null if no Fortran compiler.
# Removed the invalid 2COMPLEX and 2DOUBLE_COMPLEX
for name in CHARACTER INTEGER REAL LOGICAL COMPLEX DOUBLE_PRECISION \
2INTEGER 2REAL DOUBLE_COMPLEX 2DOUBLE_PRECISION ; do
fullname="MPI_$name"
eval $fullname=MPI_DATATYPE_NULL
done
AC_MSG_WARN([Could not define Fortran MPI datatypes for C])
AC_DEFINE(HAVE_NO_FORTRAN_MPI_TYPES_IN_C,1,[Define if the Fortran types are not available in C])
# Temporary values for MPI_Fint (need help from the Fortran subsystem)
MPI_FINT=int
fi
AC_SUBST(MPI_CHARACTER)
AC_SUBST(MPI_INTEGER)
AC_SUBST(MPI_REAL)
AC_SUBST(MPI_LOGICAL)
AC_SUBST(MPI_COMPLEX)
AC_SUBST(MPI_DOUBLE_PRECISION)
AC_SUBST(MPI_2INTEGER)
AC_SUBST(MPI_2REAL)
AC_SUBST(MPI_DOUBLE_COMPLEX)
AC_SUBST(MPI_2DOUBLE_PRECISION)
dnl AC_SUBST(MPI_2COMPLEX)
dnl AC_SUBST(MPI_2DOUBLE_COMPLEX)
AC_SUBST(MPI_FINT)
# If ROMIO was successfully configured, then ROMIO will have exported the
# definition of MPI_OFFSET_TYPE through its localdefs file (created by the
# ROMIO configure in src/mpi/romio/localdefs). If MPI_OFFSET_TYPE was not
# defined, this code attempts to find a good choice for MPI_OFFSET_TYPE
# (As the offset type is used for File operations, the specific type
# really doesn't matter if ROMIO doesn't provide it).
if test -n "$MPI_OFFSET_TYPE" ; then
# We got the value from the ROMIO configure
MPI_OFFSET="$MPI_OFFSET_TYPE"
# Get and export the size of this type if possible
if test -z "$MPI_SIZEOF_OFFSET" ; then
# set a default
AC_CACHE_CHECK([the sizeof MPI_Offset],ac_cv_sizeof_MPI_Offset,[
ac_cv_sizeof_MPI_Offset=unknown
AC_COMPUTE_INT([ac_cv_sizeof_MPI_Offset],[sizeof($MPI_OFFSET)],[],[
AC_MSG_WARN([Unable to determine the size of MPI_Offset])
])
])
if test "$ac_cv_sizeof_MPI_Offset" != "unknown" ; then
MPI_SIZEOF_OFFSET=$ac_cv_sizeof_MPI_Offset
fi
fi
export MPI_SIZEOF_OFFSET
else
# Make a guess at the appropriate definition for offset. Try to
# find a 64bit type.
if test "$ac_cv_sizeof_long" = 8 ; then
MPI_OFFSET="long"
# Make the size of this type available to other configures
MPI_SIZEOF_OFFSET=8
elif test "$ac_cv_sizeof_long_long" = 8 ; then
MPI_OFFSET="long long"
# Make the size of this type available to other configures
MPI_SIZEOF_OFFSET=8
else
MPI_OFFSET=long
MPI_SIZEOF_OFFSET=$ac_cv_sizeof_long
fi
export MPI_SIZEOF_OFFSET
fi
AC_SUBST(MPI_OFFSET)
AS_CASE([$MPI_OFFSET],
[int], [MPIR_OFFSET_MAX="INT_MAX"],
[long], [MPIR_OFFSET_MAX="LONG_MAX"],
['long long'], [MPIR_OFFSET_MAX="LLONG_MAX"],
[short], [MPIR_OFFSET_MAX="SHRT_MAX"],
[AC_MSG_ERROR([unable to determine MPIR_OFFSET_MAX for MPI_Offset])])
AC_DEFINE_UNQUOTED([MPIR_OFFSET_MAX],[$MPIR_OFFSET_MAX],[limits.h _MAX constant for MPI_Offset])
# FIXME: we need an explanation of why we need both MPI_OFFSET and
# MPI_OFFSET_TYPEDEF. Why is MPI_OFFSET_TYPEDEF necessary?
# This appears to be used by the Windows "winconfigure.wsf" which is used
# to create a multiline definition using an #ifdef check on USE_GCC
# We may wish to use a different approach
MPI_OFFSET_TYPEDEF="typedef $MPI_OFFSET MPI_Offset;"
AC_SUBST(MPI_OFFSET_TYPEDEF)
#
# Fortran type for an Offset type (needed to define MPI_DISPLACEMENT_CURRENT
# The value for this comes from ROMIO, and is needed in mpif.h.in
# First, we check that this works with both Fortran compilers (if
# they are defined)
#
# If there is no FORTRAN_MPI_OFFSET type (because ROMIO is disabled),
# just use INTEGER
if test -z "$FORTRAN_MPI_OFFSET" ; then
FORTRAN_MPI_OFFSET=INTEGER
fi
if test "$enable_f77" = yes -a "$enable_fc" = yes ; then
AC_LANG_PUSH([Fortran 77])
AC_MSG_CHECKING([whether the Fortran Offset type works with Fortran 77])
AC_COMPILE_IFELSE([
AC_LANG_PROGRAM([],[ $FORTRAN_MPI_OFFSET i])
],[has_f77_offsettype=yes],[has_f77_offsetype=no])
AC_MSG_RESULT($has_f77_offsettype)
AC_LANG_POP([Fortran 77])
AC_LANG_PUSH([Fortran])
AC_MSG_CHECKING([whether the Fortran Offset type works with Fortran 90])
AC_COMPILE_IFELSE([
AC_LANG_PROGRAM([],[ $FORTRAN_MPI_OFFSET i])
],[has_fc_offsettype=yes],[has_fc_offsetype=no])
AC_LANG_POP([Fortran])
AC_MSG_RESULT($has_fc_offsettype)
if test "$has_f77_offsettype" != yes -o "$has_fc_offsettype" != yes ; then
AC_MSG_WARN([mpif.h is not compatible with both $F77 $FFLAGS and $FC $FCFLAGS. We recommend that you set both F77 and FC to the same compiler and reconfigure.])
fi
fi
AC_SUBST(FORTRAN_MPI_OFFSET)
#
# ----------------------------------------------------------------------------
# MPI_OFFSET datatype
# ----------------------------------------------------------------------------
# must be done after ROMIO configure step
case "$MPI_SIZEOF_OFFSET" in
4) len_mpi_offset=04 ;;
8) len_mpi_offset=08 ;;
16) len_mpi_offset=10 ;;
*) AC_MSG_ERROR([Unable to convert MPI_SIZEOF_OFFSET to a hex string. This is either because we are building on a very strange platform or there is a bug somewhere in configure.]) ;;
esac
MPI_OFFSET_DATATYPE=0x4c00${len_mpi_offset}44
AC_SUBST(MPI_OFFSET_DATATYPE)
export MPI_OFFSET_DATATYPE
# 0x4c000044 is 1275068484 in decimal, add ($MPI_SIZEOF_OFFSET * 256) and you get
# the decimal equivalent of the hex number
MPI_F77_OFFSET=`expr 1275068484 '+' '(' 256 '*' $MPI_SIZEOF_OFFSET ')'`
AC_SUBST(MPI_F77_OFFSET)
export MPI_F77_OFFSET
# ----------------------------------------------------------------------------
# MPI_COUNT datatype
# ----------------------------------------------------------------------------
# quick sanity checking to avoid a bad test immediately below
AS_IF([test -z "$MPI_SIZEOF_AINT"],
[AC_MSG_ERROR([size of MPI_Aint is unknown at this stage])])
AS_IF([test -z "$MPI_SIZEOF_OFFSET"],
[AC_MSG_ERROR([size of MPI_Offset is unknown at this stage])])
AS_IF([test "$MPI_SIZEOF_AINT" -gt "$MPI_SIZEOF_OFFSET"],
[# an unlikely case, but I suppose it's theoretically possible
MPI_COUNT="$MPI_AINT"
COUNT_KIND="$ADDRESS_KIND"
MPIR_COUNT_MAX="$MPIR_AINT_MAX"
MPI_SIZEOF_COUNT="$MPI_SIZEOF_AINT"],
[# don't bother checking whether Aint or Offset are larger than int, they
# surely will be
MPI_COUNT="$MPI_OFFSET"
COUNT_KIND="$OFFSET_KIND"
MPIR_COUNT_MAX="$MPIR_OFFSET_MAX"
MPI_SIZEOF_COUNT="$MPI_SIZEOF_OFFSET"])
AC_SUBST([MPI_COUNT])
AC_SUBST([COUNT_KIND])
AC_DEFINE_UNQUOTED([MPIR_COUNT_MAX],[$MPIR_COUNT_MAX],[limits.h _MAX constant for MPI_Count])
AC_DEFINE_UNQUOTED(MPIR_Ucount,unsigned $MPI_COUNT,[MPIR_Ucount is an unsigned MPI_Count-sized integer])
AS_CASE([$MPI_SIZEOF_COUNT],
[4], [len_mpi_count=04],
[8], [len_mpi_count=08],
[16],[len_mpi_count=10],
[AC_MSG_ERROR([Unable to convert MPI_SIZEOF_COUNT to a hex string!])])
MPI_COUNT_DATATYPE=0x4c00${len_mpi_count}45
AC_SUBST([MPI_COUNT_DATATYPE])
# 0x4c000045 is 1275068485 in decimal, add ($MPI_SIZEOF_COUNT * 256) and you get
# the decimal equivalent of the hex number
MPI_F77_COUNT=`expr 1275068485 '+' '(' 256 '*' $MPI_SIZEOF_OFFSET ')'`
AC_SUBST([MPI_F77_COUNT])
# ----------------------------------------------------------------------------
#
# Set size of MPI_Status. Must come after MPI_Count determination.
#
#
# The size of MPI_Status is needed for the Fortran interface.
#
# WARNING!!! this is a spot where we duplicate code from mpi.h.in and it *must*
# be kept in sync in order to make a proper computation
AC_CACHE_CHECK([for size of MPI_Status],[pac_cv_sizeof_mpi_status],[
dnl "double-quote" (in m4), otherwise you end up with a heinous bug because of
dnl the array subscripting below
[
rm -f pac_mpi_status.h
cat > pac_mpi_status.h <<_EOF
typedef struct {
int count_lo;
int count_hi_and_cancelled;
int MPI_SOURCE;
int MPI_TAG;
int MPI_ERROR;
} MPI_Status;
_EOF
]
dnl just compute it, since a 1s-complement or sign-and-magnitude machine is
dnl *highly* unlikely. Users will report the error if it is ever
dnl encountered, which will be safer than attempting some never-tested
dnl default fallback.
AC_COMPUTE_INT([pac_cv_sizeof_mpi_status],
[sizeof(MPI_Status)],
[#include "pac_mpi_status.h"],
[AC_MSG_ERROR([unable to compute status size, are you compiling on a non-2s-complement host?])])
rm -f pac_mpi_status.h
])
SIZEOF_MPI_STATUS=$pac_cv_sizeof_mpi_status
export SIZEOF_MPI_STATUS
AC_SUBST([SIZEOF_MPI_STATUS])
if test "$enable_f77" = yes -a -z "$MPI_STATUS_SIZE" ; then
if test -n "$SIZEOF_MPI_STATUS" ; then
# compute from the C sizeof
AS_VAR_ARITH([MPI_STATUS_SIZE],[$SIZEOF_MPI_STATUS / $ac_cv_sizeof_int])
if test "$MPI_STATUS_SIZE" = "0" ; then
AC_MSG_ERROR([Could not compute the size of MPI_Status])
fi
else
AC_MSG_ERROR([MPI_STATUS_SIZE was not defined!])
fi
fi # enable_f77 and mpi_status_size not set
AC_SUBST([MPI_STATUS_SIZE])
MPIF_STATUS_SIZE=$MPI_STATUS_SIZE
AC_DEFINE_UNQUOTED([MPIF_STATUS_SIZE],[$MPIF_STATUS_SIZE],[Size of an MPI_STATUS, in Fortran, in Fortran integers])
if test "$enable_f77" = yes ; then
# Check if multiple __attribute__((alias)) is available
# This test requires MPI_STATUS_SIZE, and thus must be made after
# MPI_STATUS_SIZE is determined
if test "$enable_multi_aliases" = "yes" ; then
PAC_C_MULTI_ATTR_ALIAS
if test "$pac_c_multi_attr_alias" = "yes" ; then
PAC_F2C_ATTR_ALIGNED_SIZE([1],[CMB_1INT_ALIGNMENT])
AC_SUBST(CMB_1INT_ALIGNMENT)
PAC_F2C_ATTR_ALIGNED_SIZE([$MPI_STATUS_SIZE],[CMB_STATUS_ALIGNMENT],
[32])
AC_SUBST(CMB_STATUS_ALIGNMENT)
if test "X$CMB_1INT_ALIGNMENT" != "X" \
-a "X$CMB_STATUS_ALIGNMENT" != "X" ; then
AC_DEFINE(HAVE_C_MULTI_ATTR_ALIAS, 1,
[Define if multiple __attribute__((alias)) are supported])
fi
fi
fi
fi
# ----------------------------------------------------------------------------
dnl FIXME XXX DJG does this need to actually be conditional on something?
dnl previously it was conditional on the successful execution of
dnl "src/binding/fortran/use_mpi/configure" but that would only fail if FC couldn't be
dnl determined or a bad VPATH build env was detected
AC_DEFINE(HAVE_FC_TYPE_ROUTINES,1,[Define if Fortran 90 type routines available])
# -----------------------------------------------------------------------------
# Get the value of MPI_MAX_PROCESSOR_NAME
if test -z "$MPID_MAX_PROCESSOR_NAME" ; then
if test -z "$MPI_MAX_PROCESSOR_NAME" ; then
MPI_MAX_PROCESSOR_NAME=128
fi
AC_MSG_WARN([The $with_device device did not set the maximum size of a processor name, $MPI_MAX_PROCESSOR_NAME being used.])
else
MPI_MAX_PROCESSOR_NAME=$MPID_MAX_PROCESSOR_NAME
fi
AC_SUBST(MPI_MAX_PROCESSOR_NAME)
# Get the value of MPI_MAX_LIBRARY_VERSION_STRING
if test -z "$MPID_MAX_LIBRARY_VERSION_STRING" ; then
MPI_MAX_LIBRARY_VERSION_STRING=8192
else
MPI_MAX_LIBRARY_VERSION_STRING=$MPID_MAX_LIBRARY_VERSION_STRING
fi
AC_SUBST(MPI_MAX_LIBRARY_VERSION_STRING)
# Get the value of MPI_MAX_ERROR_STRING
if test -z "$MPID_MAX_ERROR_STRING" ; then
if test -z "$MPI_MAX_ERROR_STRING" ; then
MPI_MAX_ERROR_STRING=512
fi
AC_MSG_WARN([The $with_device device did not set the maximum size of an error string, $MPI_MAX_ERROR_STRING being used.])
else
MPI_MAX_ERROR_STRING=$MPID_MAX_ERROR_STRING
fi
AC_SUBST(MPI_MAX_ERROR_STRING)
# Get the value of libtool_static_flag
if test ! -z "$MPID_LIBTOOL_STATIC_FLAG" ; then
mpich_libtool_static_flag="$MPID_LIBTOOL_STATIC_FLAG"
else
mpich_libtool_static_flag="-static"
fi
AC_SUBST([mpich_libtool_static_flag])
# Add a definition that is used to help support Windows DLLs (used in mpi.h.in)
MPIU_DLL_SPEC_DEF="#define MPIU_DLL_SPEC"
AC_SUBST(MPIU_DLL_SPEC_DEF)
dnl We can configure the test directory after the rest of the configure
dnl steps because it does not depend on them.
# set and export values that the test/mpi configure will reference to ensure
# that the correct decisions are made since this configure happens before the
# MPICH library is built.
MPICH_ENABLE_CXX=$enable_cxx
MPICH_ENABLE_F77=$enable_f77
MPICH_ENABLE_FC=$enable_fc
export MPICH_ENABLE_CXX
export MPICH_ENABLE_F77
export MPICH_ENABLE_FC
AM_CONDITIONAL([BUILD_CXX_BINDING],[test "$enable_cxx" = "yes"])
AM_CONDITIONAL([BUILD_F77_BINDING],[test "$enable_f77" = "yes"])
dnl FIXME DJG this has been moved to the f90 bindings subconfigure.m4 for now
dnl AM_CONDITIONAL([BUILD_FC_BINDING],[test "$enable_fc" = "yes"])
# MPI_SRCDIR gives the test/mpi configure the location of the source
# files for an MPI implementation
if test -n "$ac_abs_srcdir" ; then
MPI_SRCDIR=$ac_abs_srcdir
fi
# Pass these two values with "MPI" names to the test configure
MPI_NO_SPAWN=$MPID_NO_SPAWN
export MPI_NO_SPAWN
MPI_NO_RMA=$MPID_NO_RMA
export MPI_NO_RMA
# Attach program prefix and suffix to executable names for Makefile
AC_SUBST(MPICC_NAME)
AC_SUBST(MPICXX_NAME)
AC_SUBST(MPICPP_NAME)
AC_SUBST(MPIFORT_NAME)
AC_SUBST(MPIF90_NAME)
AC_SUBST(MPIF77_NAME)
PAC_GET_EXENAME("mpicc", MPICC_NAME)
PAC_GET_EXENAME("mpicxx", MPICXX_NAME)
PAC_GET_EXENAME("mpic++", MPICPP_NAME)
PAC_GET_EXENAME("mpifort", MPIFORT_NAME)
PAC_GET_EXENAME("mpif90", MPIF90_NAME)
PAC_GET_EXENAME("mpif77", MPIF77_NAME)
AC_CONFIG_SUBDIRS([test/mpi])
dnl
dnl Generate the Makefiles from Makefile.in
dnl Also generate mpi.h from mpi.h.in so that we can eliminate all ifdefs
dnl from the file.
dnl
dnl Run a setup command for any external modules (normally, this is empty)
dnl Pass a subset of the environment to the invoked process.
AC_OUTPUT_COMMANDS([
for prog in $EXTERNAL_SETUPS - ; do
if test "$prog" != "-" ; then
dir=`dirname $prog`
name=`basename $prog`
(cd $dir && ./$name)
fi
done],[
EXTERNAL_SETUPS="$EXTERNAL_SETUPS"
LIBDIR="$libbuild_dir"
MPILIBNAME="$MPILIBNAME"
PMPILIBNAME="$PMPILIBNAME"
AR="$AR"
CC="$CC"
CPPFLAGS="$CPPFLAGS"
CFLAGS="$CFLAGS"
export LIBDIR ; export MPILIBNAME ; export AR ; export CC ; export CPPFLAGS
export PMPILIBNAME
export CFLAGS
# For test/mpi/configure
MPI_SRCDIR=$MPI_SRCDIR
MPI_NO_SPAWN=$MPID_NO_SPAWN
export MPI_SRCDIR
export MPI_NO_SPAWN
])
if test -z "$includebuild_dir" ; then
includebuild_dir=`pwd`/src/include
fi
if test -z "$libbuild_dir" ; then
libbuild_dir=`pwd`/lib
fi
if test -z "$modincbuild_dir" ; then
# The include files may be in a different directory from the mpif.h file
modincbuild_dir=`pwd`/src/binding/fortran/use_mpi
fi
dnl
dnl If we rerun configure, place a file in the lib directory with the
dnl date. We can use this to avoid rebuilding the library when
dnl a build aborts due to an error (this is intended to help developers)
AC_OUTPUT_COMMANDS([if [ ! -d lib ] ; then mkdir lib ; fi
date > lib/newconfig])
AC_OUTPUT_COMMANDS([chmod a+x src/util/dbg/getfuncstack])
AC_OUTPUT_COMMANDS([chmod a+x test/commands/cmdtests])
AC_DEFINE(HAVE_MPICHCONF,1,[Define so that we can test whether the mpichconf.h file has been included])
if test "$USE_PMI2_API" = "yes" ; then
AC_DEFINE(USE_PMI2_API, 1, [Define if PMI2 API must be used])
fi
########################################################################
# cause libtool script to be built now so that we can use it to test one last
# linking issue on Darwin
LT_OUTPUT
# see ticket #1590 for some more background on these Darwin linking issues
if test "X$enable_shared" = "Xyes" ; then
AS_CASE([$host],
[*-*-darwin*],
[
# The linker on Darwin does not allow common symbols, thus libtool
# adds the -fno-common option by default for shared libraries.
# However, the common symbols defined in different shared libraries
# and object files still can not be treated as the same symbol.
# For example:
# with gfortran, the same common block in the shared libraries and
# the object files will have different memory locations separately;
# with ifort, the same common block in different shared libraries
# will get the same memory location but still get a different location
# in the object file.
# The -Wl,-commons,use_dylibs option asks linker to check dylibs for
# definitions and use them to replace tentative definitions(commons)
# from object files, thus it solves the issue of the common symbol
# mismatch between the object file and the dylibs (i.e., by setting
# the address of a common symbol to the place located in the first
# dylib that is linked with the object file and contains this symbol).
# It needs to be added only in the linking stage for the final
# executable file.
# On the other hand, the -flat-namespace option allows linker to
# unify the same common symbols in different dylibs. It needs to be
# added in linking stage for both the shared library and the final
# executable file.
# In Fortran programs, we implement global definitions such as MPI_BOTTOM
# as common symbols. We check the address of the user input and translate it
# to the C global definition if it is equal to the internal pre-stored address
# in the Fortran binding layer. Without -flat-namespace, we may get different
# addresses and thus treat the predefined constant as a normal buffer.
# Although gfortran works fine by only adding -flat-namespace, and
# ifort works by only adding -Wl,-commons,use_dylibs, we should add
# both options here as a generic solution to make sure everything safe.
# sanity check that -Wl,-flat_namespace works on darwin, unless the user
# asked us not to add it
if test "X$enable_two_level_namespace" = "Xno"; then
# TODO, move this into a PAC macro with real autoconf caching
pac_cv_wl_flat_namespace_works=no
AC_MSG_CHECKING([if the C compiler accepts -Wl,-flat_namespace])
PAC_PUSH_FLAG([LDFLAGS])
PAC_APPEND_FLAG([-Wl,-flat_namespace],[LDFLAGS])
AC_LINK_IFELSE([AC_LANG_PROGRAM([],[int i;])],
[AC_MSG_RESULT([yes])
pac_cv_wl_flat_namespace_works=yes],
[AC_MSG_RESULT([no])])
PAC_POP_FLAG([LDFLAGS])
# Technically we may not be able to use the same form of the argument
# for all four compilers (CC/CXX/F77/FC). But we only think this is
# necessary for Darwin for now, so this unconditional, single-var
# approximation will work for now.
if test "X$pac_cv_wl_flat_namespace_works" = "Xyes" ; then
PAC_APPEND_FLAG([-Wl,-flat_namespace], [LDFLAGS])
PAC_APPEND_FLAG([-Wl,-flat_namespace], [WRAPPER_LDFLAGS])
fi
fi
# We only need to bother with -Wl,-commons,-use_dylibs if we are
# building fortran bindings (no common block usage in our C libs).
if test "X$enable_f77" = "Xyes" ; then
# TODO, move this into a PAC macro with real autoconf caching
pac_cv_wl_commons_use_dylibs_works=no
AC_MSG_CHECKING([if the F77 compiler accepts -Wl,-commons,use_dylibs])
AC_LANG_PUSH([Fortran 77])
PAC_PUSH_FLAG([LDFLAGS])
PAC_APPEND_FLAG([-Wl,-commons,use_dylibs], [LDFLAGS])
AC_LINK_IFELSE([AC_LANG_PROGRAM([],[ INTEGER i])],
[AC_MSG_RESULT([yes])
pac_cv_wl_commons_use_dylibs_works=yes],
[AC_MSG_RESULT([no])])
PAC_POP_FLAG([LDFLAGS])
AC_LANG_POP([Fortran 77])
# Add the flag to the WRAPPER_LDFLAGS, since this common block issue
# is really only a problem for dynamically linked user programs.
#
# Technically we may not be able to use the same form of the argument
# for all four compilers (CC/CXX/F77/FC). But we only think this is
# necessary for Darwin for now, so this unconditional, single-var
# approximation will work for now.
if test "X$pac_cv_wl_commons_use_dylibs_works" = "Xyes" ; then
PAC_APPEND_FLAG([-Wl,-commons,use_dylibs], [WRAPPER_LDFLAGS])
fi
fi
]
)
fi
# Set F08 versions of datatypes, which have type MPI_Datatype and are not integers anymore.
# If the correspoinding F77 datatypes exist, i.e., not MPI_DATATYPE_NULL, we simply use their
# integer value (already converted into decimal) in F08 counterparts. Otherwise, we use
# MPI_VAL value of F08 MPI_DATATYPE_NULL.
# We put the code at the end to ensure all F77 datatypes have been set.
if test "X$f08_works" = "Xyes"; then
for type in INTEGER1 INTEGER2 INTEGER4 INTEGER8 INTEGER16 \
REAL4 REAL8 REAL16 \
COMPLEX8 COMPLEX16 COMPLEX32; do
eval f77typename=F77_$type
eval f77typevalue=\$$f77typename
if test "$f77typevalue" = MPI_DATATYPE_NULL ; then
eval F08_$type=MPI_DATATYPE_NULL%MPI_VAL
else
eval F08_$type=$f77typevalue
fi
done
AC_SUBST(F08_INTEGER1)
AC_SUBST(F08_INTEGER2)
AC_SUBST(F08_INTEGER4)
AC_SUBST(F08_INTEGER8)
AC_SUBST(F08_INTEGER16)
AC_SUBST(F08_REAL4)
AC_SUBST(F08_REAL8)
AC_SUBST(F08_REAL16)
AC_SUBST(F08_COMPLEX8)
AC_SUBST(F08_COMPLEX16)
AC_SUBST(F08_COMPLEX32)
for type in PACKED UB LB BYTE \
CHAR SIGNED_CHAR UNSIGNED_CHAR WCHAR SHORT \
UNSIGNED_SHORT UNSIGNED INT LONG UNSIGNED_INT UNSIGNED_LONG \
FLOAT DOUBLE LONG_DOUBLE LONG_LONG_INT \
UNSIGNED_LONG_LONG LONG_LONG FLOAT_INT DOUBLE_INT \
LONG_INT SHORT_INT "2INT" LONG_DOUBLE_INT \
INT8_T INT16_T INT32_T INT64_T \
UINT8_T UINT16_T UINT32_T UINT64_T \
C_BOOL C_FLOAT_COMPLEX C_COMPLEX C_DOUBLE_COMPLEX C_LONG_DOUBLE_COMPLEX \
AINT OFFSET COUNT \
CXX_BOOL CXX_FLOAT_COMPLEX CXX_DOUBLE_COMPLEX CXX_LONG_DOUBLE_COMPLEX; do
eval f77typename=MPI_F77_$type
eval f77typevalue=\$$f77typename
if test "$f77typevalue" = MPI_DATATYPE_NULL ; then
eval F08_$type=MPI_DATATYPE_NULL%MPI_VAL
else
eval F08_$type=$f77typevalue
fi
done
AC_SUBST(F08_PACKED)
AC_SUBST(F08_UB)
AC_SUBST(F08_LB)
AC_SUBST(F08_BYTE)
AC_SUBST(F08_CHAR)
AC_SUBST(F08_SIGNED_CHAR)
AC_SUBST(F08_UNSIGNED_CHAR)
AC_SUBST(F08_WCHAR)
AC_SUBST(F08_SHORT)
AC_SUBST(F08_UNSIGNED_SHORT)
AC_SUBST(F08_UNSIGNED)
AC_SUBST(F08_INT)
AC_SUBST(F08_LONG)
AC_SUBST(F08_UNSIGNED_INT)
AC_SUBST(F08_UNSIGNED_LONG)
AC_SUBST(F08_FLOAT)
AC_SUBST(F08_DOUBLE)
AC_SUBST(F08_LONG_DOUBLE)
AC_SUBST(F08_LONG_LONG_INT)
AC_SUBST(F08_UNSIGNED_LONG_LONG)
AC_SUBST(F08_LONG_LONG)
AC_SUBST(F08_FLOAT_INT)
AC_SUBST(F08_DOUBLE_INT)
AC_SUBST(F08_LONG_INT)
AC_SUBST(F08_SHORT_INT)
AC_SUBST(F08_2INT)
AC_SUBST(F08_LONG_DOUBLE_INT)
AC_SUBST(F08_INT8_T)
AC_SUBST(F08_INT16_T)
AC_SUBST(F08_INT32_T)
AC_SUBST(F08_INT64_T)
AC_SUBST(F08_UINT8_T)
AC_SUBST(F08_UINT16_T)
AC_SUBST(F08_UINT32_T)
AC_SUBST(F08_UINT64_T)
AC_SUBST(F08_C_BOOL)
AC_SUBST(F08_C_FLOAT_COMPLEX)
AC_SUBST(F08_C_COMPLEX)
AC_SUBST(F08_C_DOUBLE_COMPLEX)
AC_SUBST(F08_C_LONG_DOUBLE_COMPLEX)
AC_SUBST(F08_AINT)
AC_SUBST(F08_OFFSET)
AC_SUBST(F08_COUNT)
AC_SUBST(F08_CXX_BOOL)
AC_SUBST(F08_CXX_FLOAT_COMPLEX)
AC_SUBST(F08_CXX_DOUBLE_COMPLEX)
AC_SUBST(F08_CXX_LONG_DOUBLE_COMPLEX)
AS_CASE([$MPI_AINT],
[short], [F08_C_AINT="c_short"],
[int], [F08_C_AINT="c_int"],
[long], [F08_C_AINT="c_long"],
['long long'], [F08_C_AINT="c_long_long"],
[AC_MSG_ERROR([unable to determine C MPI_AINT type in Fortran 2008])])
AS_CASE([$MPI_COUNT],
[short], [F08_C_COUNT="c_short"],
[int], [F08_C_COUNT="c_int"],
[long], [F08_C_COUNT="c_long"],
['long long'], [F08_C_COUNT="c_long_long"],
[AC_MSG_ERROR([unable to determine C MPI_COUNT type in Fortran 2008])])
AS_CASE([$MPI_OFFSET],
[short], [F08_C_OFFSET="c_short"],
[int], [F08_C_OFFSET="c_int"],
[long], [F08_C_OFFSET="c_long"],
['long long'], [F08_C_OFFSET="c_long_long"],
[AC_MSG_ERROR([unable to determine C MPI_OFFSET type in Fortran 2008])])
AC_SUBST(F08_C_AINT)
AC_SUBST(F08_C_COUNT)
AC_SUBST(F08_C_OFFSET)
fi
########################################################################
if test -z "$pkgconfigdir" ; then
# The default pkgconfig dir is under the lib dir
pkgconfigdir=$libdir/pkgconfig
fi
AC_SUBST(pkgconfigdir)
export pkgconfigdir
dnl This includes an experimental pkgconfig file for ch3 in the src/pkgconfig
dnl directory
AC_OUTPUT(Makefile \
examples/Makefile \
test/Makefile \
test/commands/Makefile \
src/include/mpichinfo.h \
mpich-doxygen \
src/include/glue_romio.h \
src/binding/cxx/mpicxx.h \
src/binding/fortran/mpif_h/mpif.h \
src/binding/fortran/mpif_h/setbotf.f \
src/binding/fortran/mpif_h/setbot.c \
src/binding/fortran/use_mpi/mpi_sizeofs.f90 \
src/binding/fortran/use_mpi/mpi_base.f90 \
src/binding/fortran/use_mpi/mpi_constants.f90 \
src/binding/fortran/use_mpi_f08/mpi_f08_compile_constants.f90 \
src/binding/fortran/use_mpi_f08/mpi_c_interface_types.f90 \
src/packaging/pkgconfig/mpich.pc \
src/packaging/envmods/mpich.module \
src/env/mpixxx_opts.conf \
src/env/mpicc.sh \
src/env/mpicc.bash \
src/env/mpicxx.sh \
src/env/mpicxx.bash \
src/env/mpif77.sh \
src/env/mpif77.bash \
src/env/mpifort.sh \
src/env/mpifort.bash \
src/env/parkill \
src/util/dbg/getfuncstack \
src/util/timers/mpiu_timer.h \
src/include/mpi.h \
doc/design/Makefile \
doc/installguide/Makefile \
doc/logging/Makefile \
doc/refman/Makefile \
doc/userguide/Makefile \
test/commands/cmdtests)
echo 'Configuration completed.'