Blob Blame History Raw
/* -*- Mode: C; c-basic-offset:4 ; indent-tabs-mode:nil ; -*- */
/*
 *  (C) 2003 by Argonne National Laboratory.
 *      See COPYRIGHT in top-level directory.
 */
#include "mpi.h"
#include <stdio.h>
#include <stdlib.h>
#include "mpitest.h"
#include <assert.h>

/*
static char MTEST_Descrip[] = "Test MPI_Allreduce with non-commutative user-defined operations";
*/

/* We make the error count global so that we can easily control the output
   of error information (in particular, limiting it after the first 10
   errors */
int errs = 0;

/* This implements a simple matrix-matrix multiply.  This is an associative
   but not commutative operation.  The matrix size is set in matSize;
   the number of matrices is the count argument. The matrix is stored
   in C order, so that
     c(i,j) is cin[j+i*matSize]
 */
#define MAXCOL 256
static int matSize = 0;         /* Must be < MAXCOL */
static int max_offset = 0;
void uop(void *, void *, int *, MPI_Datatype *);
void uop(void *cinPtr, void *coutPtr, int *count, MPI_Datatype * dtype)
{
    const int *cin = (const int *) cinPtr;
    int *cout = (int *) coutPtr;
    int i, j, k, nmat;
    int tempcol[MAXCOL];
    int offset1, offset2;
    int matsize2 = matSize * matSize;

    for (nmat = 0; nmat < *count; nmat++) {
        for (j = 0; j < matSize; j++) {
            for (i = 0; i < matSize; i++) {
                tempcol[i] = 0;
                for (k = 0; k < matSize; k++) {
                    /* col[i] += cin(i,k) * cout(k,j) */
                    offset1 = k + i * matSize;
                    offset2 = j + k * matSize;
                    assert(offset1 < max_offset);
                    assert(offset2 < max_offset);
                    tempcol[i] += cin[offset1] * cout[offset2];
                }
            }
            for (i = 0; i < matSize; i++) {
                offset1 = j + i * matSize;
                assert(offset1 < max_offset);
                cout[offset1] = tempcol[i];
            }
        }
        cin += matsize2;
        cout += matsize2;
    }
}

/* Initialize the integer matrix as a permutation of rank with rank+1.
   If we call this matrix P_r, we know that product of P_0 P_1 ... P_{size-2}
   is the the matrix representing the permutation that shifts left by one.
   As the final matrix (in the size-1 position), we use the matrix that
   shifts RIGHT by one
*/
static void initMat(MPI_Comm comm, int mat[])
{
    int i, j, size, rank;
    int offset;

    MPI_Comm_rank(comm, &rank);
    MPI_Comm_size(comm, &size);

    for (i = 0; i < size * size; i++) {
        assert(i < max_offset);
        mat[i] = 0;
    }

    if (rank < size - 1) {
        /* Create the permutation matrix that exchanges r with r+1 */
        for (i = 0; i < size; i++) {
            if (i == rank) {
                offset = ((i + 1) % size) + i * size;
                assert(offset < max_offset);
                mat[offset] = 1;
            } else if (i == ((rank + 1) % size)) {
                offset = ((i + size - 1) % size) + i * size;
                assert(offset < max_offset);
                mat[offset] = 1;
            } else {
                offset = i + i * size;
                assert(offset < max_offset);
                mat[offset] = 1;
            }
        }
    } else {
        /* Create the permutation matrix that shifts right by one */
        for (i = 0; i < size; i++) {
            for (j = 0; j < size; j++) {
                offset = j + i * size;  /* location of c(i,j) */
                mat[offset] = 0;
                if (((j - i + size) % size) == 1)
                    mat[offset] = 1;
            }
        }
    }
}

/* Compare a matrix with the identity matrix */
static int isIdentity(MPI_Comm comm, int mat[])
{
    int i, j, size, rank, lerrs = 0;
    int offset;

    MPI_Comm_rank(comm, &rank);
    MPI_Comm_size(comm, &size);

    for (i = 0; i < size; i++) {
        for (j = 0; j < size; j++) {
            if (i == j) {
                offset = j + i * size;
                assert(offset < max_offset);
                if (mat[offset] != 1) {
                    lerrs++;
                    if (errs + lerrs < 10) {
                        printf("[%d] mat[%d,%d] = %d, expected 1 for comm %s\n",
                               rank, i, j, mat[offset], MTestGetIntracommName());
                    }
                }
            } else {
                offset = j + i * size;
                assert(offset < max_offset);
                if (mat[offset] != 0) {
                    lerrs++;
                    if (errs + lerrs < 10) {
                        printf("[%d] mat[%d,%d] = %d, expected 0 for comm %s\n",
                               rank, i, j, mat[offset], MTestGetIntracommName());
                    }
                }
            }
        }
    }
    return lerrs;
}

int main(int argc, char *argv[])
{
    int size;
    int minsize = 2, count;
    MPI_Comm comm;
    int *buf, *bufout;
    MPI_Op op;
    MPI_Datatype mattype;

    MTest_Init(&argc, &argv);

    MPI_Op_create(uop, 0, &op);

    while (MTestGetIntracommGeneral(&comm, minsize, 1)) {
        if (comm == MPI_COMM_NULL) {
            continue;
        }
        MPI_Comm_size(comm, &size);
        matSize = size;

        /* Only one matrix for now */
        count = 1;

        /* A single matrix, the size of the communicator */
        MPI_Type_contiguous(size * size, MPI_INT, &mattype);
        MPI_Type_commit(&mattype);

        max_offset = count * size * size;
        buf = (int *) malloc(max_offset * sizeof(int));
        if (!buf) {
            MPI_Abort(MPI_COMM_WORLD, 1);
        }
        bufout = (int *) malloc(max_offset * sizeof(int));
        if (!bufout) {
            MPI_Abort(MPI_COMM_WORLD, 1);
        }

        initMat(comm, buf);
        MPI_Allreduce(buf, bufout, count, mattype, op, comm);
        errs += isIdentity(comm, bufout);

        /* Try the same test, but using MPI_IN_PLACE */
        initMat(comm, bufout);
        MPI_Allreduce(MPI_IN_PLACE, bufout, count, mattype, op, comm);
        errs += isIdentity(comm, bufout);

        free(buf);
        free(bufout);

        MPI_Type_free(&mattype);
        MTestFreeComm(&comm);
    }

    MPI_Op_free(&op);

    MTest_Finalize(errs);
    return MTestReturnValue(errs);
}