Blob Blame History Raw
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * vim: set ts=8 sts=4 et sw=4 tw=99:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef js_HashTable_h
#define js_HashTable_h

#include "mozilla/Alignment.h"
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/Casting.h"
#include "mozilla/HashFunctions.h"
#include "mozilla/MemoryReporting.h"
#include "mozilla/Move.h"
#include "mozilla/Opaque.h"
#include "mozilla/PodOperations.h"
#include "mozilla/ReentrancyGuard.h"
#include "mozilla/TemplateLib.h"
#include "mozilla/TypeTraits.h"
#include "mozilla/UniquePtr.h"

#include "js/Utility.h"

namespace js {

class TempAllocPolicy;
template <class>
struct DefaultHasher;
template <class, class>
class HashMapEntry;
namespace detail {
template <class T>
class HashTableEntry;
template <class T, class HashPolicy, class AllocPolicy>
class HashTable;
}  // namespace detail

/*****************************************************************************/

// The "generation" of a hash table is an opaque value indicating the state of
// modification of the hash table through its lifetime.  If the generation of
// a hash table compares equal at times T1 and T2, then lookups in the hash
// table, pointers to (or into) hash table entries, etc. at time T1 are valid
// at time T2.  If the generation compares unequal, these computations are all
// invalid and must be performed again to be used.
//
// Generations are meaningfully comparable only with respect to a single hash
// table.  It's always nonsensical to compare the generation of distinct hash
// tables H1 and H2.
using Generation = mozilla::Opaque<uint64_t>;

// A JS-friendly, STL-like container providing a hash-based map from keys to
// values. In particular, HashMap calls constructors and destructors of all
// objects added so non-PODs may be used safely.
//
// Key/Value requirements:
//  - movable, destructible, assignable
// HashPolicy requirements:
//  - see Hash Policy section below
// AllocPolicy:
//  - see AllocPolicy.h
//
// Note:
// - HashMap is not reentrant: Key/Value/HashPolicy/AllocPolicy members
//   called by HashMap must not call back into the same HashMap object.
// - Due to the lack of exception handling, the user must call |init()|.
template <class Key, class Value, class HashPolicy = DefaultHasher<Key>,
          class AllocPolicy = TempAllocPolicy>
class HashMap {
  typedef HashMapEntry<Key, Value> TableEntry;

  struct MapHashPolicy : HashPolicy {
    using Base = HashPolicy;
    typedef Key KeyType;
    static const Key& getKey(TableEntry& e) { return e.key(); }
    static void setKey(TableEntry& e, Key& k) {
      HashPolicy::rekey(e.mutableKey(), k);
    }
  };

  typedef detail::HashTable<TableEntry, MapHashPolicy, AllocPolicy> Impl;
  Impl impl;

 public:
  typedef typename HashPolicy::Lookup Lookup;
  typedef TableEntry Entry;

  // HashMap construction is fallible (due to OOM); thus the user must call
  // init after constructing a HashMap and check the return value.
  explicit HashMap(AllocPolicy a = AllocPolicy()) : impl(a) {}
  MOZ_MUST_USE bool init(uint32_t len = 16) { return impl.init(len); }
  bool initialized() const { return impl.initialized(); }

  // Return whether the given lookup value is present in the map. E.g.:
  //
  //   typedef HashMap<int,char> HM;
  //   HM h;
  //   if (HM::Ptr p = h.lookup(3)) {
  //     const HM::Entry& e = *p; // p acts like a pointer to Entry
  //     assert(p->key == 3);     // Entry contains the key
  //     char val = p->value;     // and value
  //   }
  //
  // Also see the definition of Ptr in HashTable above (with T = Entry).
  typedef typename Impl::Ptr Ptr;
  MOZ_ALWAYS_INLINE Ptr lookup(const Lookup& l) const { return impl.lookup(l); }

  // Like lookup, but does not assert if two threads call lookup at the same
  // time. Only use this method when none of the threads will modify the map.
  MOZ_ALWAYS_INLINE Ptr readonlyThreadsafeLookup(const Lookup& l) const {
    return impl.readonlyThreadsafeLookup(l);
  }

  // Assuming |p.found()|, remove |*p|.
  void remove(Ptr p) { impl.remove(p); }

  // Like |lookup(l)|, but on miss, |p = lookupForAdd(l)| allows efficient
  // insertion of Key |k| (where |HashPolicy::match(k,l) == true|) using
  // |add(p,k,v)|. After |add(p,k,v)|, |p| points to the new Entry. E.g.:
  //
  //   typedef HashMap<int,char> HM;
  //   HM h;
  //   HM::AddPtr p = h.lookupForAdd(3);
  //   if (!p) {
  //     if (!h.add(p, 3, 'a'))
  //       return false;
  //   }
  //   const HM::Entry& e = *p;   // p acts like a pointer to Entry
  //   assert(p->key == 3);       // Entry contains the key
  //   char val = p->value;       // and value
  //
  // Also see the definition of AddPtr in HashTable above (with T = Entry).
  //
  // N.B. The caller must ensure that no mutating hash table operations
  // occur between a pair of |lookupForAdd| and |add| calls. To avoid
  // looking up the key a second time, the caller may use the more efficient
  // relookupOrAdd method. This method reuses part of the hashing computation
  // to more efficiently insert the key if it has not been added. For
  // example, a mutation-handling version of the previous example:
  //
  //    HM::AddPtr p = h.lookupForAdd(3);
  //    if (!p) {
  //      call_that_may_mutate_h();
  //      if (!h.relookupOrAdd(p, 3, 'a'))
  //        return false;
  //    }
  //    const HM::Entry& e = *p;
  //    assert(p->key == 3);
  //    char val = p->value;
  typedef typename Impl::AddPtr AddPtr;
  MOZ_ALWAYS_INLINE AddPtr lookupForAdd(const Lookup& l) const {
    return impl.lookupForAdd(l);
  }

  template <typename KeyInput, typename ValueInput>
  MOZ_MUST_USE bool add(AddPtr& p, KeyInput&& k, ValueInput&& v) {
    return impl.add(p, mozilla::Forward<KeyInput>(k),
                    mozilla::Forward<ValueInput>(v));
  }

  template <typename KeyInput>
  MOZ_MUST_USE bool add(AddPtr& p, KeyInput&& k) {
    return impl.add(p, mozilla::Forward<KeyInput>(k), Value());
  }

  template <typename KeyInput, typename ValueInput>
  MOZ_MUST_USE bool relookupOrAdd(AddPtr& p, KeyInput&& k, ValueInput&& v) {
    return impl.relookupOrAdd(p, k, mozilla::Forward<KeyInput>(k),
                              mozilla::Forward<ValueInput>(v));
  }

  // |all()| returns a Range containing |count()| elements. E.g.:
  //
  //   typedef HashMap<int,char> HM;
  //   HM h;
  //   for (HM::Range r = h.all(); !r.empty(); r.popFront())
  //     char c = r.front().value();
  //
  // Also see the definition of Range in HashTable above (with T = Entry).
  typedef typename Impl::Range Range;
  Range all() const { return impl.all(); }

  // Typedef for the enumeration class. An Enum may be used to examine and
  // remove table entries:
  //
  //   typedef HashMap<int,char> HM;
  //   HM s;
  //   for (HM::Enum e(s); !e.empty(); e.popFront())
  //     if (e.front().value() == 'l')
  //       e.removeFront();
  //
  // Table resize may occur in Enum's destructor. Also see the definition of
  // Enum in HashTable above (with T = Entry).
  typedef typename Impl::Enum Enum;

  // Remove all entries. This does not shrink the table. For that consider
  // using the finish() method.
  void clear() { impl.clear(); }

  // Remove all entries. Unlike clear() this method tries to shrink the table.
  // Unlike finish() it does not require the map to be initialized again.
  void clearAndShrink() { impl.clearAndShrink(); }

  // Remove all the entries and release all internal buffers. The map must
  // be initialized again before any use.
  void finish() { impl.finish(); }

  // Does the table contain any entries?
  bool empty() const { return impl.empty(); }

  // Number of live elements in the map.
  uint32_t count() const { return impl.count(); }

  // Total number of allocation in the dynamic table. Note: resize will
  // happen well before count() == capacity().
  size_t capacity() const { return impl.capacity(); }

  // Don't just call |impl.sizeOfExcludingThis()| because there's no
  // guarantee that |impl| is the first field in HashMap.
  size_t sizeOfExcludingThis(mozilla::MallocSizeOf mallocSizeOf) const {
    return impl.sizeOfExcludingThis(mallocSizeOf);
  }
  size_t sizeOfIncludingThis(mozilla::MallocSizeOf mallocSizeOf) const {
    return mallocSizeOf(this) + impl.sizeOfExcludingThis(mallocSizeOf);
  }

  Generation generation() const { return impl.generation(); }

  /************************************************** Shorthand operations */

  bool has(const Lookup& l) const { return impl.lookup(l).found(); }

  // Overwrite existing value with v. Return false on oom.
  template <typename KeyInput, typename ValueInput>
  MOZ_MUST_USE bool put(KeyInput&& k, ValueInput&& v) {
    AddPtr p = lookupForAdd(k);
    if (p) {
      p->value() = mozilla::Forward<ValueInput>(v);
      return true;
    }
    return add(p, mozilla::Forward<KeyInput>(k),
               mozilla::Forward<ValueInput>(v));
  }

  // Like put, but assert that the given key is not already present.
  template <typename KeyInput, typename ValueInput>
  MOZ_MUST_USE bool putNew(KeyInput&& k, ValueInput&& v) {
    return impl.putNew(k, mozilla::Forward<KeyInput>(k),
                       mozilla::Forward<ValueInput>(v));
  }

  // Only call this to populate an empty map after reserving space with init().
  template <typename KeyInput, typename ValueInput>
  void putNewInfallible(KeyInput&& k, ValueInput&& v) {
    impl.putNewInfallible(k, mozilla::Forward<KeyInput>(k),
                          mozilla::Forward<ValueInput>(v));
  }

  // Add (k,defaultValue) if |k| is not found. Return a false-y Ptr on oom.
  Ptr lookupWithDefault(const Key& k, const Value& defaultValue) {
    AddPtr p = lookupForAdd(k);
    if (p) return p;
    bool ok = add(p, k, defaultValue);
    MOZ_ASSERT_IF(!ok, !p);  // p is left false-y on oom.
    (void)ok;
    return p;
  }

  // Remove if present.
  void remove(const Lookup& l) {
    if (Ptr p = lookup(l)) remove(p);
  }

  // Infallibly rekey one entry, if necessary.
  // Requires template parameters Key and HashPolicy::Lookup to be the same
  // type.
  void rekeyIfMoved(const Key& old_key, const Key& new_key) {
    if (old_key != new_key) rekeyAs(old_key, new_key, new_key);
  }

  // Infallibly rekey one entry if present, and return whether that happened.
  bool rekeyAs(const Lookup& old_lookup, const Lookup& new_lookup,
               const Key& new_key) {
    if (Ptr p = lookup(old_lookup)) {
      impl.rekeyAndMaybeRehash(p, new_lookup, new_key);
      return true;
    }
    return false;
  }

  // HashMap is movable
  HashMap(HashMap&& rhs) : impl(mozilla::Move(rhs.impl)) {}
  void operator=(HashMap&& rhs) {
    MOZ_ASSERT(this != &rhs, "self-move assignment is prohibited");
    impl = mozilla::Move(rhs.impl);
  }

 private:
  // HashMap is not copyable or assignable
  HashMap(const HashMap& hm) = delete;
  HashMap& operator=(const HashMap& hm) = delete;

  friend class Impl::Enum;
};

/*****************************************************************************/

// A JS-friendly, STL-like container providing a hash-based set of values. In
// particular, HashSet calls constructors and destructors of all objects added
// so non-PODs may be used safely.
//
// T requirements:
//  - movable, destructible, assignable
// HashPolicy requirements:
//  - see Hash Policy section below
// AllocPolicy:
//  - see AllocPolicy.h
//
// Note:
// - HashSet is not reentrant: T/HashPolicy/AllocPolicy members called by
//   HashSet must not call back into the same HashSet object.
// - Due to the lack of exception handling, the user must call |init()|.
template <class T, class HashPolicy = DefaultHasher<T>,
          class AllocPolicy = TempAllocPolicy>
class HashSet {
  struct SetOps : HashPolicy {
    using Base = HashPolicy;
    typedef T KeyType;
    static const KeyType& getKey(const T& t) { return t; }
    static void setKey(T& t, KeyType& k) { HashPolicy::rekey(t, k); }
  };

  typedef detail::HashTable<const T, SetOps, AllocPolicy> Impl;
  Impl impl;

 public:
  typedef typename HashPolicy::Lookup Lookup;
  typedef T Entry;

  // HashSet construction is fallible (due to OOM); thus the user must call
  // init after constructing a HashSet and check the return value.
  explicit HashSet(AllocPolicy a = AllocPolicy()) : impl(a) {}
  MOZ_MUST_USE bool init(uint32_t len = 16) { return impl.init(len); }
  bool initialized() const { return impl.initialized(); }

  // Return whether the given lookup value is present in the map. E.g.:
  //
  //   typedef HashSet<int> HS;
  //   HS h;
  //   if (HS::Ptr p = h.lookup(3)) {
  //     assert(*p == 3);   // p acts like a pointer to int
  //   }
  //
  // Also see the definition of Ptr in HashTable above.
  typedef typename Impl::Ptr Ptr;
  MOZ_ALWAYS_INLINE Ptr lookup(const Lookup& l) const { return impl.lookup(l); }

  // Like lookup, but does not assert if two threads call lookup at the same
  // time. Only use this method when none of the threads will modify the map.
  MOZ_ALWAYS_INLINE Ptr readonlyThreadsafeLookup(const Lookup& l) const {
    return impl.readonlyThreadsafeLookup(l);
  }

  // Assuming |p.found()|, remove |*p|.
  void remove(Ptr p) { impl.remove(p); }

  // Like |lookup(l)|, but on miss, |p = lookupForAdd(l)| allows efficient
  // insertion of T value |t| (where |HashPolicy::match(t,l) == true|) using
  // |add(p,t)|. After |add(p,t)|, |p| points to the new element. E.g.:
  //
  //   typedef HashSet<int> HS;
  //   HS h;
  //   HS::AddPtr p = h.lookupForAdd(3);
  //   if (!p) {
  //     if (!h.add(p, 3))
  //       return false;
  //   }
  //   assert(*p == 3);   // p acts like a pointer to int
  //
  // Also see the definition of AddPtr in HashTable above.
  //
  // N.B. The caller must ensure that no mutating hash table operations
  // occur between a pair of |lookupForAdd| and |add| calls. To avoid
  // looking up the key a second time, the caller may use the more efficient
  // relookupOrAdd method. This method reuses part of the hashing computation
  // to more efficiently insert the key if it has not been added. For
  // example, a mutation-handling version of the previous example:
  //
  //    HS::AddPtr p = h.lookupForAdd(3);
  //    if (!p) {
  //      call_that_may_mutate_h();
  //      if (!h.relookupOrAdd(p, 3, 3))
  //        return false;
  //    }
  //    assert(*p == 3);
  //
  // Note that relookupOrAdd(p,l,t) performs Lookup using |l| and adds the
  // entry |t|, where the caller ensures match(l,t).
  typedef typename Impl::AddPtr AddPtr;
  MOZ_ALWAYS_INLINE AddPtr lookupForAdd(const Lookup& l) const {
    return impl.lookupForAdd(l);
  }

  template <typename U>
  MOZ_MUST_USE bool add(AddPtr& p, U&& u) {
    return impl.add(p, mozilla::Forward<U>(u));
  }

  template <typename U>
  MOZ_MUST_USE bool relookupOrAdd(AddPtr& p, const Lookup& l, U&& u) {
    return impl.relookupOrAdd(p, l, mozilla::Forward<U>(u));
  }

  // |all()| returns a Range containing |count()| elements:
  //
  //   typedef HashSet<int> HS;
  //   HS h;
  //   for (HS::Range r = h.all(); !r.empty(); r.popFront())
  //     int i = r.front();
  //
  // Also see the definition of Range in HashTable above.
  typedef typename Impl::Range Range;
  Range all() const { return impl.all(); }

  // Typedef for the enumeration class. An Enum may be used to examine and
  // remove table entries:
  //
  //   typedef HashSet<int> HS;
  //   HS s;
  //   for (HS::Enum e(s); !e.empty(); e.popFront())
  //     if (e.front() == 42)
  //       e.removeFront();
  //
  // Table resize may occur in Enum's destructor. Also see the definition of
  // Enum in HashTable above.
  typedef typename Impl::Enum Enum;

  // Remove all entries. This does not shrink the table. For that consider
  // using the finish() method.
  void clear() { impl.clear(); }

  // Remove all entries. Unlike clear() this method tries to shrink the table.
  // Unlike finish() it does not require the set to be initialized again.
  void clearAndShrink() { impl.clearAndShrink(); }

  // Remove all the entries and release all internal buffers. The set must
  // be initialized again before any use.
  void finish() { impl.finish(); }

  // Does the table contain any entries?
  bool empty() const { return impl.empty(); }

  // Number of live elements in the map.
  uint32_t count() const { return impl.count(); }

  // Total number of allocation in the dynamic table. Note: resize will
  // happen well before count() == capacity().
  size_t capacity() const { return impl.capacity(); }

  // Don't just call |impl.sizeOfExcludingThis()| because there's no
  // guarantee that |impl| is the first field in HashSet.
  size_t sizeOfExcludingThis(mozilla::MallocSizeOf mallocSizeOf) const {
    return impl.sizeOfExcludingThis(mallocSizeOf);
  }
  size_t sizeOfIncludingThis(mozilla::MallocSizeOf mallocSizeOf) const {
    return mallocSizeOf(this) + impl.sizeOfExcludingThis(mallocSizeOf);
  }

  Generation generation() const { return impl.generation(); }

  /************************************************** Shorthand operations */

  bool has(const Lookup& l) const { return impl.lookup(l).found(); }

  // Add |u| if it is not present already. Return false on oom.
  template <typename U>
  MOZ_MUST_USE bool put(U&& u) {
    AddPtr p = lookupForAdd(u);
    return p ? true : add(p, mozilla::Forward<U>(u));
  }

  // Like put, but assert that the given key is not already present.
  template <typename U>
  MOZ_MUST_USE bool putNew(U&& u) {
    return impl.putNew(u, mozilla::Forward<U>(u));
  }

  template <typename U>
  MOZ_MUST_USE bool putNew(const Lookup& l, U&& u) {
    return impl.putNew(l, mozilla::Forward<U>(u));
  }

  // Only call this to populate an empty set after reserving space with init().
  template <typename U>
  void putNewInfallible(const Lookup& l, U&& u) {
    impl.putNewInfallible(l, mozilla::Forward<U>(u));
  }

  void remove(const Lookup& l) {
    if (Ptr p = lookup(l)) remove(p);
  }

  // Infallibly rekey one entry, if present.
  // Requires template parameters T and HashPolicy::Lookup to be the same type.
  void rekeyIfMoved(const Lookup& old_value, const T& new_value) {
    if (old_value != new_value) rekeyAs(old_value, new_value, new_value);
  }

  // Infallibly rekey one entry if present, and return whether that happened.
  bool rekeyAs(const Lookup& old_lookup, const Lookup& new_lookup,
               const T& new_value) {
    if (Ptr p = lookup(old_lookup)) {
      impl.rekeyAndMaybeRehash(p, new_lookup, new_value);
      return true;
    }
    return false;
  }

  // Infallibly replace the current key at |p| with an equivalent key.
  // Specifically, both HashPolicy::hash and HashPolicy::match must return
  // identical results for the new and old key when applied against all
  // possible matching values.
  void replaceKey(Ptr p, const T& new_value) {
    MOZ_ASSERT(p.found());
    MOZ_ASSERT(*p != new_value);
    MOZ_ASSERT(HashPolicy::hash(*p) == HashPolicy::hash(new_value));
    MOZ_ASSERT(HashPolicy::match(*p, new_value));
    const_cast<T&>(*p) = new_value;
  }

  // HashSet is movable
  HashSet(HashSet&& rhs) : impl(mozilla::Move(rhs.impl)) {}
  void operator=(HashSet&& rhs) {
    MOZ_ASSERT(this != &rhs, "self-move assignment is prohibited");
    impl = mozilla::Move(rhs.impl);
  }

 private:
  // HashSet is not copyable or assignable
  HashSet(const HashSet& hs) = delete;
  HashSet& operator=(const HashSet& hs) = delete;

  friend class Impl::Enum;
};

/*****************************************************************************/

// Hash Policy
//
// A hash policy P for a hash table with key-type Key must provide:
//  - a type |P::Lookup| to use to lookup table entries;
//  - a static member function |P::hash| with signature
//
//      static js::HashNumber hash(Lookup)
//
//    to use to hash the lookup type; and
//  - a static member function |P::match| with signature
//
//      static bool match(Key, Lookup)
//
//    to use to test equality of key and lookup values.
//
// Normally, Lookup = Key. In general, though, different values and types of
// values can be used to lookup and store. If a Lookup value |l| is != to the
// added Key value |k|, the user must ensure that |P::match(k,l)|. E.g.:
//
//   js::HashSet<Key, P>::AddPtr p = h.lookup(l);
//   if (!p) {
//     assert(P::match(k, l));  // must hold
//     h.add(p, k);
//   }

// Pointer hashing policy that uses HashGeneric() to create good hashes for
// pointers.  Note that we don't shift out the lowest k bits to generate a
// good distribution for arena allocated pointers.
template <typename Key>
struct PointerHasher {
  typedef Key Lookup;
  static HashNumber hash(const Lookup& l) {
    size_t word = reinterpret_cast<size_t>(l);
    return mozilla::HashGeneric(word);
  }
  static bool match(const Key& k, const Lookup& l) { return k == l; }
  static void rekey(Key& k, const Key& newKey) { k = newKey; }
};

// Default hash policy: just use the 'lookup' value. This of course only
// works if the lookup value is integral. HashTable applies ScrambleHashCode to
// the result of the 'hash' which means that it is 'ok' if the lookup value is
// not well distributed over the HashNumber domain.
template <class Key>
struct DefaultHasher {
  typedef Key Lookup;
  static HashNumber hash(const Lookup& l) {
    // Hash if can implicitly cast to hash number type.
    return l;
  }
  static bool match(const Key& k, const Lookup& l) {
    // Use builtin or overloaded operator==.
    return k == l;
  }
  static void rekey(Key& k, const Key& newKey) { k = newKey; }
};

// Specialize hashing policy for pointer types. It assumes that the type is
// at least word-aligned. For types with smaller size use PointerHasher.
template <class T>
struct DefaultHasher<T*> : PointerHasher<T*> {};

// Specialize hashing policy for mozilla::UniquePtr to proxy the UniquePtr's
// raw pointer to PointerHasher.
template <class T, class D>
struct DefaultHasher<mozilla::UniquePtr<T, D>> {
  using Lookup = mozilla::UniquePtr<T, D>;
  using PtrHasher = PointerHasher<T*>;

  static HashNumber hash(const Lookup& l) { return PtrHasher::hash(l.get()); }
  static bool match(const mozilla::UniquePtr<T, D>& k, const Lookup& l) {
    return PtrHasher::match(k.get(), l.get());
  }
  static void rekey(mozilla::UniquePtr<T, D>& k,
                    mozilla::UniquePtr<T, D>&& newKey) {
    k = mozilla::Move(newKey);
  }
};

// For doubles, we can xor the two uint32s.
template <>
struct DefaultHasher<double> {
  typedef double Lookup;
  static HashNumber hash(double d) {
    static_assert(sizeof(HashNumber) == 4,
                  "subsequent code assumes a four-byte hash");
    uint64_t u = mozilla::BitwiseCast<uint64_t>(d);
    return HashNumber(u ^ (u >> 32));
  }
  static bool match(double lhs, double rhs) {
    return mozilla::BitwiseCast<uint64_t>(lhs) ==
           mozilla::BitwiseCast<uint64_t>(rhs);
  }
};

template <>
struct DefaultHasher<float> {
  typedef float Lookup;
  static HashNumber hash(float f) {
    static_assert(sizeof(HashNumber) == 4,
                  "subsequent code assumes a four-byte hash");
    return HashNumber(mozilla::BitwiseCast<uint32_t>(f));
  }
  static bool match(float lhs, float rhs) {
    return mozilla::BitwiseCast<uint32_t>(lhs) ==
           mozilla::BitwiseCast<uint32_t>(rhs);
  }
};

// A hash policy that compares C strings.
struct CStringHasher {
  typedef const char* Lookup;
  static js::HashNumber hash(Lookup l) { return mozilla::HashString(l); }
  static bool match(const char* key, Lookup lookup) {
    return strcmp(key, lookup) == 0;
  }
};

// Fallible hashing interface.
//
// Most of the time generating a hash code is infallible so this class provides
// default methods that always succeed.  Specialize this class for your own hash
// policy to provide fallible hashing.
//
// This is used by MovableCellHasher to handle the fact that generating a unique
// ID for cell pointer may fail due to OOM.
template <typename HashPolicy>
struct FallibleHashMethods {
  // Return true if a hashcode is already available for its argument.  Once
  // this returns true for a specific argument it must continue to do so.
  template <typename Lookup>
  static bool hasHash(Lookup&& l) {
    return true;
  }

  // Fallible method to ensure a hashcode exists for its argument and create
  // one if not.  Returns false on error, e.g. out of memory.
  template <typename Lookup>
  static bool ensureHash(Lookup&& l) {
    return true;
  }
};

template <typename HashPolicy, typename Lookup>
static bool HasHash(Lookup&& l) {
  return FallibleHashMethods<typename HashPolicy::Base>::hasHash(
      mozilla::Forward<Lookup>(l));
}

template <typename HashPolicy, typename Lookup>
static bool EnsureHash(Lookup&& l) {
  return FallibleHashMethods<typename HashPolicy::Base>::ensureHash(
      mozilla::Forward<Lookup>(l));
}

/*****************************************************************************/

// Both HashMap and HashSet are implemented by a single HashTable that is even
// more heavily parameterized than the other two. This leaves HashTable gnarly
// and extremely coupled to HashMap and HashSet; thus code should not use
// HashTable directly.

template <class Key, class Value>
class HashMapEntry {
  Key key_;
  Value value_;

  template <class, class, class>
  friend class detail::HashTable;
  template <class>
  friend class detail::HashTableEntry;
  template <class, class, class, class>
  friend class HashMap;

 public:
  template <typename KeyInput, typename ValueInput>
  HashMapEntry(KeyInput&& k, ValueInput&& v)
      : key_(mozilla::Forward<KeyInput>(k)),
        value_(mozilla::Forward<ValueInput>(v)) {}

  HashMapEntry(HashMapEntry&& rhs)
      : key_(mozilla::Move(rhs.key_)), value_(mozilla::Move(rhs.value_)) {}

  void operator=(HashMapEntry&& rhs) {
    key_ = mozilla::Move(rhs.key_);
    value_ = mozilla::Move(rhs.value_);
  }

  typedef Key KeyType;
  typedef Value ValueType;

  const Key& key() const { return key_; }
  Key& mutableKey() { return key_; }
  const Value& value() const { return value_; }
  Value& value() { return value_; }

 private:
  HashMapEntry(const HashMapEntry&) = delete;
  void operator=(const HashMapEntry&) = delete;
};

}  // namespace js

namespace mozilla {

template <typename T>
struct IsPod<js::detail::HashTableEntry<T>> : IsPod<T> {};

template <typename K, typename V>
struct IsPod<js::HashMapEntry<K, V>>
    : IntegralConstant<bool, IsPod<K>::value && IsPod<V>::value> {};

}  // namespace mozilla

namespace js {

namespace detail {

template <class T, class HashPolicy, class AllocPolicy>
class HashTable;

template <class T>
class HashTableEntry {
  template <class, class, class>
  friend class HashTable;
  typedef typename mozilla::RemoveConst<T>::Type NonConstT;

  HashNumber keyHash;
  mozilla::AlignedStorage2<NonConstT> mem;

  static const HashNumber sFreeKey = 0;
  static const HashNumber sRemovedKey = 1;
  static const HashNumber sCollisionBit = 1;

  static bool isLiveHash(HashNumber hash) { return hash > sRemovedKey; }

  HashTableEntry(const HashTableEntry&) = delete;
  void operator=(const HashTableEntry&) = delete;
  ~HashTableEntry() = delete;

 public:
  // NB: HashTableEntry is treated as a POD: no constructor or destructor calls.

  void destroyIfLive() {
    if (isLive()) mem.addr()->~T();
  }

  void destroy() {
    MOZ_ASSERT(isLive());
    mem.addr()->~T();
  }

  void swap(HashTableEntry* other) {
    if (this == other) return;
    MOZ_ASSERT(isLive());
    if (other->isLive()) {
      mozilla::Swap(*mem.addr(), *other->mem.addr());
    } else {
      *other->mem.addr() = mozilla::Move(*mem.addr());
      destroy();
    }
    mozilla::Swap(keyHash, other->keyHash);
  }

  T& get() {
    MOZ_ASSERT(isLive());
    return *mem.addr();
  }
  NonConstT& getMutable() {
    MOZ_ASSERT(isLive());
    return *mem.addr();
  }

  bool isFree() const { return keyHash == sFreeKey; }
  void clearLive() {
    MOZ_ASSERT(isLive());
    keyHash = sFreeKey;
    mem.addr()->~T();
  }
  void clear() {
    if (isLive()) mem.addr()->~T();
    keyHash = sFreeKey;
  }
  bool isRemoved() const { return keyHash == sRemovedKey; }
  void removeLive() {
    MOZ_ASSERT(isLive());
    keyHash = sRemovedKey;
    mem.addr()->~T();
  }
  bool isLive() const { return isLiveHash(keyHash); }
  void setCollision() {
    MOZ_ASSERT(isLive());
    keyHash |= sCollisionBit;
  }
  void unsetCollision() { keyHash &= ~sCollisionBit; }
  bool hasCollision() const { return keyHash & sCollisionBit; }
  bool matchHash(HashNumber hn) { return (keyHash & ~sCollisionBit) == hn; }
  HashNumber getKeyHash() const { return keyHash & ~sCollisionBit; }

  template <typename... Args>
  void setLive(HashNumber hn, Args&&... args) {
    MOZ_ASSERT(!isLive());
    keyHash = hn;
    new (mem.addr()) T(mozilla::Forward<Args>(args)...);
    MOZ_ASSERT(isLive());
  }
};

template <class T, class HashPolicy, class AllocPolicy>
class HashTable : private AllocPolicy {
  friend class mozilla::ReentrancyGuard;

  typedef typename mozilla::RemoveConst<T>::Type NonConstT;
  typedef typename HashPolicy::KeyType Key;
  typedef typename HashPolicy::Lookup Lookup;

 public:
  typedef HashTableEntry<T> Entry;

  // A nullable pointer to a hash table element. A Ptr |p| can be tested
  // either explicitly |if (p.found()) p->...| or using boolean conversion
  // |if (p) p->...|. Ptr objects must not be used after any mutating hash
  // table operations unless |generation()| is tested.
  class Ptr {
    friend class HashTable;

    Entry* entry_;
#ifdef JS_DEBUG
    const HashTable* table_;
    Generation generation;
#endif

   protected:
    Ptr(Entry& entry, const HashTable& tableArg)
        : entry_(&entry)
#ifdef JS_DEBUG
          ,
          table_(&tableArg),
          generation(tableArg.generation())
#endif
    {
    }

   public:
    Ptr()
        : entry_(nullptr)
#ifdef JS_DEBUG
          ,
          table_(nullptr),
          generation(0)
#endif
    {
    }

    bool isValid() const { return !!entry_; }

    bool found() const {
      if (!isValid()) return false;
#ifdef JS_DEBUG
      MOZ_ASSERT(generation == table_->generation());
#endif
      return entry_->isLive();
    }

    explicit operator bool() const { return found(); }

    bool operator==(const Ptr& rhs) const {
      MOZ_ASSERT(found() && rhs.found());
      return entry_ == rhs.entry_;
    }

    bool operator!=(const Ptr& rhs) const {
#ifdef JS_DEBUG
      MOZ_ASSERT(generation == table_->generation());
#endif
      return !(*this == rhs);
    }

    T& operator*() const {
#ifdef JS_DEBUG
      MOZ_ASSERT(found());
      MOZ_ASSERT(generation == table_->generation());
#endif
      return entry_->get();
    }

    T* operator->() const {
#ifdef JS_DEBUG
      MOZ_ASSERT(found());
      MOZ_ASSERT(generation == table_->generation());
#endif
      return &entry_->get();
    }
  };

  // A Ptr that can be used to add a key after a failed lookup.
  class AddPtr : public Ptr {
    friend class HashTable;
    HashNumber keyHash;
#ifdef JS_DEBUG
    uint64_t mutationCount;
#endif

    AddPtr(Entry& entry, const HashTable& tableArg, HashNumber hn)
        : Ptr(entry, tableArg),
          keyHash(hn)
#ifdef JS_DEBUG
          ,
          mutationCount(tableArg.mutationCount)
#endif
    {
    }

   public:
    AddPtr() : keyHash(0) {}
  };

  // A collection of hash table entries. The collection is enumerated by
  // calling |front()| followed by |popFront()| as long as |!empty()|. As
  // with Ptr/AddPtr, Range objects must not be used after any mutating hash
  // table operation unless the |generation()| is tested.
  class Range {
   protected:
    friend class HashTable;

    Range(const HashTable& tableArg, Entry* c, Entry* e)
        : cur(c),
          end(e)
#ifdef JS_DEBUG
          ,
          table_(&tableArg),
          mutationCount(tableArg.mutationCount),
          generation(tableArg.generation()),
          validEntry(true)
#endif
    {
      while (cur < end && !cur->isLive()) ++cur;
    }

    Entry* cur;
    Entry* end;
#ifdef JS_DEBUG
    const HashTable* table_;
    uint64_t mutationCount;
    Generation generation;
    bool validEntry;
#endif

   public:
    Range()
        : cur(nullptr),
          end(nullptr)
#ifdef JS_DEBUG
          ,
          table_(nullptr),
          mutationCount(0),
          generation(0),
          validEntry(false)
#endif
    {
    }

    bool empty() const {
#ifdef JS_DEBUG
      MOZ_ASSERT(generation == table_->generation());
      MOZ_ASSERT(mutationCount == table_->mutationCount);
#endif
      return cur == end;
    }

    T& front() const {
      MOZ_ASSERT(!empty());
#ifdef JS_DEBUG
      MOZ_ASSERT(validEntry);
      MOZ_ASSERT(generation == table_->generation());
      MOZ_ASSERT(mutationCount == table_->mutationCount);
#endif
      return cur->get();
    }

    void popFront() {
      MOZ_ASSERT(!empty());
#ifdef JS_DEBUG
      MOZ_ASSERT(generation == table_->generation());
      MOZ_ASSERT(mutationCount == table_->mutationCount);
#endif
      while (++cur < end && !cur->isLive()) continue;
#ifdef JS_DEBUG
      validEntry = true;
#endif
    }
  };

  // A Range whose lifetime delimits a mutating enumeration of a hash table.
  // Since rehashing when elements were removed during enumeration would be
  // bad, it is postponed until the Enum is destructed.  Since the Enum's
  // destructor touches the hash table, the user must ensure that the hash
  // table is still alive when the destructor runs.
  class Enum : public Range {
    friend class HashTable;

    HashTable& table_;
    bool rekeyed;
    bool removed;

    // Enum is movable but not copyable.
    Enum(const Enum&) = delete;
    void operator=(const Enum&) = delete;

   public:
    template <class Map>
    explicit Enum(Map& map)
        : Range(map.all()), table_(map.impl), rekeyed(false), removed(false) {}

    MOZ_IMPLICIT Enum(Enum&& other)
        : Range(other),
          table_(other.table_),
          rekeyed(other.rekeyed),
          removed(other.removed) {
      other.rekeyed = false;
      other.removed = false;
    }

    // Removes the |front()| element from the table, leaving |front()|
    // invalid until the next call to |popFront()|. For example:
    //
    //   HashSet<int> s;
    //   for (HashSet<int>::Enum e(s); !e.empty(); e.popFront())
    //     if (e.front() == 42)
    //       e.removeFront();
    void removeFront() {
      table_.remove(*this->cur);
      removed = true;
#ifdef JS_DEBUG
      this->validEntry = false;
      this->mutationCount = table_.mutationCount;
#endif
    }

    NonConstT& mutableFront() {
      MOZ_ASSERT(!this->empty());
#ifdef JS_DEBUG
      MOZ_ASSERT(this->validEntry);
      MOZ_ASSERT(this->generation == this->Range::table_->generation());
      MOZ_ASSERT(this->mutationCount == this->Range::table_->mutationCount);
#endif
      return this->cur->getMutable();
    }

    // Removes the |front()| element and re-inserts it into the table with
    // a new key at the new Lookup position.  |front()| is invalid after
    // this operation until the next call to |popFront()|.
    void rekeyFront(const Lookup& l, const Key& k) {
      MOZ_ASSERT(&k != &HashPolicy::getKey(this->cur->get()));
      Ptr p(*this->cur, table_);
      table_.rekeyWithoutRehash(p, l, k);
      rekeyed = true;
#ifdef JS_DEBUG
      this->validEntry = false;
      this->mutationCount = table_.mutationCount;
#endif
    }

    void rekeyFront(const Key& k) { rekeyFront(k, k); }

    // Potentially rehashes the table.
    ~Enum() {
      if (rekeyed) {
        table_.gen++;
        table_.checkOverRemoved();
      }

      if (removed) table_.compactIfUnderloaded();
    }
  };

  // HashTable is movable
  HashTable(HashTable&& rhs) : AllocPolicy(rhs) {
    mozilla::PodAssign(this, &rhs);
    rhs.table = nullptr;
  }
  void operator=(HashTable&& rhs) {
    MOZ_ASSERT(this != &rhs, "self-move assignment is prohibited");
    if (table) destroyTable(*this, table, capacity());
    mozilla::PodAssign(this, &rhs);
    rhs.table = nullptr;
  }

 private:
  // HashTable is not copyable or assignable
  HashTable(const HashTable&) = delete;
  void operator=(const HashTable&) = delete;

 private:
  static const size_t CAP_BITS = 30;

 public:
  uint64_t gen : 56;       // entry storage generation number
  uint64_t hashShift : 8;  // multiplicative hash shift
  Entry* table;            // entry storage
  uint32_t entryCount;     // number of entries in table
  uint32_t removedCount;   // removed entry sentinels in table

#ifdef JS_DEBUG
  uint64_t mutationCount;
  mutable bool mEntered;
  // Note that some updates to these stats are not thread-safe. See the
  // comment on the three-argument overloading of HashTable::lookup().
  mutable struct Stats {
    uint32_t searches;        // total number of table searches
    uint32_t steps;           // hash chain links traversed
    uint32_t hits;            // searches that found key
    uint32_t misses;          // searches that didn't find key
    uint32_t addOverRemoved;  // adds that recycled a removed entry
    uint32_t removes;         // calls to remove
    uint32_t removeFrees;     // calls to remove that freed the entry
    uint32_t grows;           // table expansions
    uint32_t shrinks;         // table contractions
    uint32_t compresses;      // table compressions
    uint32_t rehashes;        // tombstone decontaminations
  } stats;
#define METER(x) x
#else
#define METER(x)
#endif

  // The default initial capacity is 32 (enough to hold 16 elements), but it
  // can be as low as 4.
  static const unsigned sMinCapacityLog2 = 2;
  static const unsigned sMinCapacity = 1 << sMinCapacityLog2;
  static const unsigned sMaxInit = JS_BIT(CAP_BITS - 1);
  static const unsigned sMaxCapacity = JS_BIT(CAP_BITS);
  static const unsigned sHashBits = mozilla::tl::BitSize<HashNumber>::value;

  // Hash-table alpha is conceptually a fraction, but to avoid floating-point
  // math we implement it as a ratio of integers.
  static const uint8_t sAlphaDenominator = 4;
  static const uint8_t sMinAlphaNumerator = 1;  // min alpha: 1/4
  static const uint8_t sMaxAlphaNumerator = 3;  // max alpha: 3/4

  static const HashNumber sFreeKey = Entry::sFreeKey;
  static const HashNumber sRemovedKey = Entry::sRemovedKey;
  static const HashNumber sCollisionBit = Entry::sCollisionBit;

  void setTableSizeLog2(unsigned sizeLog2) { hashShift = sHashBits - sizeLog2; }

  static bool isLiveHash(HashNumber hash) { return Entry::isLiveHash(hash); }

  static HashNumber prepareHash(const Lookup& l) {
    HashNumber keyHash = ScrambleHashCode(HashPolicy::hash(l));

    // Avoid reserved hash codes.
    if (!isLiveHash(keyHash)) keyHash -= (sRemovedKey + 1);
    return keyHash & ~sCollisionBit;
  }

  enum FailureBehavior { DontReportFailure = false, ReportFailure = true };

  static Entry* createTable(AllocPolicy& alloc, uint32_t capacity,
                            FailureBehavior reportFailure = ReportFailure) {
    static_assert(sFreeKey == 0,
                  "newly-calloc'd tables have to be considered empty");
    if (reportFailure) return alloc.template pod_calloc<Entry>(capacity);

    return alloc.template maybe_pod_calloc<Entry>(capacity);
  }

  static Entry* maybeCreateTable(AllocPolicy& alloc, uint32_t capacity) {
    static_assert(sFreeKey == 0,
                  "newly-calloc'd tables have to be considered empty");
    return alloc.template maybe_pod_calloc<Entry>(capacity);
  }

  static void destroyTable(AllocPolicy& alloc, Entry* oldTable,
                           uint32_t capacity) {
    Entry* end = oldTable + capacity;
    for (Entry* e = oldTable; e < end; ++e) e->destroyIfLive();
    alloc.free_(oldTable);
  }

 public:
  explicit HashTable(AllocPolicy ap)
      : AllocPolicy(ap),
        gen(0),
        hashShift(sHashBits),
        table(nullptr),
        entryCount(0),
        removedCount(0)
#ifdef JS_DEBUG
        ,
        mutationCount(0),
        mEntered(false)
#endif
  {
  }

  MOZ_MUST_USE bool init(uint32_t length) {
    MOZ_ASSERT(!initialized());

    // Reject all lengths whose initial computed capacity would exceed
    // sMaxCapacity.  Round that maximum length down to the nearest power
    // of two for speedier code.
    if (MOZ_UNLIKELY(length > sMaxInit)) {
      this->reportAllocOverflow();
      return false;
    }

    static_assert(
        (sMaxInit * sAlphaDenominator) / sAlphaDenominator == sMaxInit,
        "multiplication in numerator below could overflow");
    static_assert(
        sMaxInit * sAlphaDenominator <= UINT32_MAX - sMaxAlphaNumerator,
        "numerator calculation below could potentially overflow");

    // Compute the smallest capacity allowing |length| elements to be
    // inserted without rehashing: ceil(length / max-alpha).  (Ceiling
    // integral division: <http://stackoverflow.com/a/2745086>.)
    uint32_t newCapacity =
        (length * sAlphaDenominator + sMaxAlphaNumerator - 1) /
        sMaxAlphaNumerator;
    if (newCapacity < sMinCapacity) newCapacity = sMinCapacity;

    // FIXME: use JS_CEILING_LOG2 when PGO stops crashing (bug 543034).
    uint32_t roundUp = sMinCapacity, roundUpLog2 = sMinCapacityLog2;
    while (roundUp < newCapacity) {
      roundUp <<= 1;
      ++roundUpLog2;
    }

    newCapacity = roundUp;
    MOZ_ASSERT(newCapacity >= length);
    MOZ_ASSERT(newCapacity <= sMaxCapacity);

    table = createTable(*this, newCapacity);
    if (!table) return false;

    setTableSizeLog2(roundUpLog2);
    METER(memset(&stats, 0, sizeof(stats)));
    return true;
  }

  bool initialized() const { return !!table; }

  ~HashTable() {
    if (table) destroyTable(*this, table, capacity());
  }

 private:
  HashNumber hash1(HashNumber hash0) const { return hash0 >> hashShift; }

  struct DoubleHash {
    HashNumber h2;
    HashNumber sizeMask;
  };

  DoubleHash hash2(HashNumber curKeyHash) const {
    unsigned sizeLog2 = sHashBits - hashShift;
    DoubleHash dh = {((curKeyHash << sizeLog2) >> hashShift) | 1,
                     (HashNumber(1) << sizeLog2) - 1};
    return dh;
  }

  static HashNumber applyDoubleHash(HashNumber h1, const DoubleHash& dh) {
    return (h1 - dh.h2) & dh.sizeMask;
  }

  bool overloaded() {
    static_assert(sMaxCapacity <= UINT32_MAX / sMaxAlphaNumerator,
                  "multiplication below could overflow");
    return entryCount + removedCount >=
           capacity() * sMaxAlphaNumerator / sAlphaDenominator;
  }

  // Would the table be underloaded if it had the given capacity and entryCount?
  static bool wouldBeUnderloaded(uint32_t capacity, uint32_t entryCount) {
    static_assert(sMaxCapacity <= UINT32_MAX / sMinAlphaNumerator,
                  "multiplication below could overflow");
    return capacity > sMinCapacity &&
           entryCount <= capacity * sMinAlphaNumerator / sAlphaDenominator;
  }

  bool underloaded() { return wouldBeUnderloaded(capacity(), entryCount); }

  static MOZ_ALWAYS_INLINE bool match(Entry& e, const Lookup& l) {
    return HashPolicy::match(HashPolicy::getKey(e.get()), l);
  }

  // Warning: in order for readonlyThreadsafeLookup() to be safe this
  // function must not modify the table in any way when |collisionBit| is 0.
  // (The use of the METER() macro to increment stats violates this
  // restriction but we will live with that for now because it's enabled so
  // rarely.)
  MOZ_ALWAYS_INLINE Entry& lookup(const Lookup& l, HashNumber keyHash,
                                  unsigned collisionBit) const {
    MOZ_ASSERT(isLiveHash(keyHash));
    MOZ_ASSERT(!(keyHash & sCollisionBit));
    MOZ_ASSERT(collisionBit == 0 || collisionBit == sCollisionBit);
    MOZ_ASSERT(table);
    METER(stats.searches++);

    // Compute the primary hash address.
    HashNumber h1 = hash1(keyHash);
    Entry* entry = &table[h1];

    // Miss: return space for a new entry.
    if (entry->isFree()) {
      METER(stats.misses++);
      return *entry;
    }

    // Hit: return entry.
    if (entry->matchHash(keyHash) && match(*entry, l)) {
      METER(stats.hits++);
      return *entry;
    }

    // Collision: double hash.
    DoubleHash dh = hash2(keyHash);

    // Save the first removed entry pointer so we can recycle later.
    Entry* firstRemoved = nullptr;

    while (true) {
      if (MOZ_UNLIKELY(entry->isRemoved())) {
        if (!firstRemoved) firstRemoved = entry;
      } else {
        if (collisionBit == sCollisionBit) entry->setCollision();
      }

      METER(stats.steps++);
      h1 = applyDoubleHash(h1, dh);

      entry = &table[h1];
      if (entry->isFree()) {
        METER(stats.misses++);
        return firstRemoved ? *firstRemoved : *entry;
      }

      if (entry->matchHash(keyHash) && match(*entry, l)) {
        METER(stats.hits++);
        return *entry;
      }
    }
  }

  // This is a copy of lookup hardcoded to the assumptions:
  //   1. the lookup is a lookupForAdd
  //   2. the key, whose |keyHash| has been passed is not in the table,
  //   3. no entries have been removed from the table.
  // This specialized search avoids the need for recovering lookup values
  // from entries, which allows more flexible Lookup/Key types.
  Entry& findFreeEntry(HashNumber keyHash) {
    MOZ_ASSERT(!(keyHash & sCollisionBit));
    MOZ_ASSERT(table);
    METER(stats.searches++);

    // We assume 'keyHash' has already been distributed.

    // Compute the primary hash address.
    HashNumber h1 = hash1(keyHash);
    Entry* entry = &table[h1];

    // Miss: return space for a new entry.
    if (!entry->isLive()) {
      METER(stats.misses++);
      return *entry;
    }

    // Collision: double hash.
    DoubleHash dh = hash2(keyHash);

    while (true) {
      MOZ_ASSERT(!entry->isRemoved());
      entry->setCollision();

      METER(stats.steps++);
      h1 = applyDoubleHash(h1, dh);

      entry = &table[h1];
      if (!entry->isLive()) {
        METER(stats.misses++);
        return *entry;
      }
    }
  }

  enum RebuildStatus { NotOverloaded, Rehashed, RehashFailed };

  RebuildStatus changeTableSize(int deltaLog2,
                                FailureBehavior reportFailure = ReportFailure) {
    // Look, but don't touch, until we succeed in getting new entry store.
    Entry* oldTable = table;
    uint32_t oldCap = capacity();
    uint32_t newLog2 = sHashBits - hashShift + deltaLog2;
    uint32_t newCapacity = JS_BIT(newLog2);
    if (MOZ_UNLIKELY(newCapacity > sMaxCapacity)) {
      if (reportFailure) this->reportAllocOverflow();
      return RehashFailed;
    }

    Entry* newTable = createTable(*this, newCapacity, reportFailure);
    if (!newTable) return RehashFailed;

    // We can't fail from here on, so update table parameters.
    setTableSizeLog2(newLog2);
    removedCount = 0;
    gen++;
    table = newTable;

    // Copy only live entries, leaving removed ones behind.
    Entry* end = oldTable + oldCap;
    for (Entry* src = oldTable; src < end; ++src) {
      if (src->isLive()) {
        HashNumber hn = src->getKeyHash();
        findFreeEntry(hn).setLive(
            hn,
            mozilla::Move(const_cast<typename Entry::NonConstT&>(src->get())));
        src->destroy();
      }
    }

    // All entries have been destroyed, no need to destroyTable.
    this->free_(oldTable);
    return Rehashed;
  }

  bool shouldCompressTable() {
    // Compress if a quarter or more of all entries are removed.
    return removedCount >= (capacity() >> 2);
  }

  RebuildStatus checkOverloaded(FailureBehavior reportFailure = ReportFailure) {
    if (!overloaded()) return NotOverloaded;

    int deltaLog2;
    if (shouldCompressTable()) {
      METER(stats.compresses++);
      deltaLog2 = 0;
    } else {
      METER(stats.grows++);
      deltaLog2 = 1;
    }

    return changeTableSize(deltaLog2, reportFailure);
  }

  // Infallibly rehash the table if we are overloaded with removals.
  void checkOverRemoved() {
    if (overloaded()) {
      if (checkOverloaded(DontReportFailure) == RehashFailed)
        rehashTableInPlace();
    }
  }

  void remove(Entry& e) {
    MOZ_ASSERT(table);
    METER(stats.removes++);

    if (e.hasCollision()) {
      e.removeLive();
      removedCount++;
    } else {
      METER(stats.removeFrees++);
      e.clearLive();
    }
    entryCount--;
#ifdef JS_DEBUG
    mutationCount++;
#endif
  }

  void checkUnderloaded() {
    if (underloaded()) {
      METER(stats.shrinks++);
      (void)changeTableSize(-1, DontReportFailure);
    }
  }

  // Resize the table down to the largest capacity which doesn't underload the
  // table.  Since we call checkUnderloaded() on every remove, you only need
  // to call this after a bulk removal of items done without calling remove().
  void compactIfUnderloaded() {
    int32_t resizeLog2 = 0;
    uint32_t newCapacity = capacity();
    while (wouldBeUnderloaded(newCapacity, entryCount)) {
      newCapacity = newCapacity >> 1;
      resizeLog2--;
    }

    if (resizeLog2 != 0) (void)changeTableSize(resizeLog2, DontReportFailure);
  }

  // This is identical to changeTableSize(currentSize), but without requiring
  // a second table.  We do this by recycling the collision bits to tell us if
  // the element is already inserted or still waiting to be inserted.  Since
  // already-inserted elements win any conflicts, we get the same table as we
  // would have gotten through random insertion order.
  void rehashTableInPlace() {
    METER(stats.rehashes++);
    removedCount = 0;
    gen++;
    for (size_t i = 0; i < capacity(); ++i) table[i].unsetCollision();

    for (size_t i = 0; i < capacity();) {
      Entry* src = &table[i];

      if (!src->isLive() || src->hasCollision()) {
        ++i;
        continue;
      }

      HashNumber keyHash = src->getKeyHash();
      HashNumber h1 = hash1(keyHash);
      DoubleHash dh = hash2(keyHash);
      Entry* tgt = &table[h1];
      while (true) {
        if (!tgt->hasCollision()) {
          src->swap(tgt);
          tgt->setCollision();
          break;
        }

        h1 = applyDoubleHash(h1, dh);
        tgt = &table[h1];
      }
    }

    // TODO: this algorithm leaves collision bits on *all* elements, even if
    // they are on no collision path. We have the option of setting the
    // collision bits correctly on a subsequent pass or skipping the rehash
    // unless we are totally filled with tombstones: benchmark to find out
    // which approach is best.
  }

  // Note: |l| may be a reference to a piece of |u|, so this function
  // must take care not to use |l| after moving |u|.
  //
  // Prefer to use putNewInfallible; this function does not check
  // invariants.
  template <typename... Args>
  void putNewInfallibleInternal(const Lookup& l, Args&&... args) {
    MOZ_ASSERT(table);

    HashNumber keyHash = prepareHash(l);
    Entry* entry = &findFreeEntry(keyHash);
    MOZ_ASSERT(entry);

    if (entry->isRemoved()) {
      METER(stats.addOverRemoved++);
      removedCount--;
      keyHash |= sCollisionBit;
    }

    entry->setLive(keyHash, mozilla::Forward<Args>(args)...);
    entryCount++;
#ifdef JS_DEBUG
    mutationCount++;
#endif
  }

 public:
  void clear() {
    if (mozilla::IsPod<Entry>::value) {
      memset(table, 0, sizeof(*table) * capacity());
    } else {
      uint32_t tableCapacity = capacity();
      Entry* end = table + tableCapacity;
      for (Entry* e = table; e < end; ++e) e->clear();
    }
    removedCount = 0;
    entryCount = 0;
#ifdef JS_DEBUG
    mutationCount++;
#endif
  }

  void clearAndShrink() {
    clear();
    compactIfUnderloaded();
  }

  void finish() {
#ifdef JS_DEBUG
    MOZ_ASSERT(!mEntered);
#endif
    if (!table) return;

    destroyTable(*this, table, capacity());
    table = nullptr;
    gen++;
    entryCount = 0;
    removedCount = 0;
#ifdef JS_DEBUG
    mutationCount++;
#endif
  }

  Range all() const {
    MOZ_ASSERT(table);
    return Range(*this, table, table + capacity());
  }

  bool empty() const {
    MOZ_ASSERT(table);
    return !entryCount;
  }

  uint32_t count() const {
    MOZ_ASSERT(table);
    return entryCount;
  }

  uint32_t capacity() const {
    MOZ_ASSERT(table);
    return JS_BIT(sHashBits - hashShift);
  }

  Generation generation() const {
    MOZ_ASSERT(table);
    return Generation(gen);
  }

  size_t sizeOfExcludingThis(mozilla::MallocSizeOf mallocSizeOf) const {
    return mallocSizeOf(table);
  }

  size_t sizeOfIncludingThis(mozilla::MallocSizeOf mallocSizeOf) const {
    return mallocSizeOf(this) + sizeOfExcludingThis(mallocSizeOf);
  }

  MOZ_ALWAYS_INLINE Ptr lookup(const Lookup& l) const {
    mozilla::ReentrancyGuard g(*this);
    if (!HasHash<HashPolicy>(l)) return Ptr();
    HashNumber keyHash = prepareHash(l);
    return Ptr(lookup(l, keyHash, 0), *this);
  }

  MOZ_ALWAYS_INLINE Ptr readonlyThreadsafeLookup(const Lookup& l) const {
    if (!HasHash<HashPolicy>(l)) return Ptr();
    HashNumber keyHash = prepareHash(l);
    return Ptr(lookup(l, keyHash, 0), *this);
  }

  MOZ_ALWAYS_INLINE AddPtr lookupForAdd(const Lookup& l) const {
    mozilla::ReentrancyGuard g(*this);
    if (!EnsureHash<HashPolicy>(l)) return AddPtr();
    HashNumber keyHash = prepareHash(l);
    // Calling constructor in return statement here avoid excess copying
    // when build with Visual Studio 2015 and 2017, but it triggers a bug in
    // gcc which is fixed in gcc-6. See bug 1385181.
#if MOZ_IS_GCC && __GNUC__ < 6
    AddPtr p(lookup(l, keyHash, sCollisionBit), *this, keyHash);
    return p;
#else
    return AddPtr(lookup(l, keyHash, sCollisionBit), *this, keyHash);
#endif
  }

  template <typename... Args>
  MOZ_MUST_USE bool add(AddPtr& p, Args&&... args) {
    mozilla::ReentrancyGuard g(*this);
    MOZ_ASSERT(table);
    MOZ_ASSERT_IF(p.isValid(), p.table_ == this);
    MOZ_ASSERT(!p.found());
    MOZ_ASSERT(!(p.keyHash & sCollisionBit));

    // Check for error from ensureHash() here.
    if (!p.isValid()) return false;

    MOZ_ASSERT(p.generation == generation());
#ifdef JS_DEBUG
    MOZ_ASSERT(p.mutationCount == mutationCount);
#endif

    // Changing an entry from removed to live does not affect whether we
    // are overloaded and can be handled separately.
    if (p.entry_->isRemoved()) {
      if (!this->checkSimulatedOOM()) return false;
      METER(stats.addOverRemoved++);
      removedCount--;
      p.keyHash |= sCollisionBit;
    } else {
      // Preserve the validity of |p.entry_|.
      RebuildStatus status = checkOverloaded();
      if (status == RehashFailed) return false;
      if (status == NotOverloaded && !this->checkSimulatedOOM()) return false;
      if (status == Rehashed) p.entry_ = &findFreeEntry(p.keyHash);
    }

    p.entry_->setLive(p.keyHash, mozilla::Forward<Args>(args)...);
    entryCount++;
#ifdef JS_DEBUG
    mutationCount++;
    p.generation = generation();
    p.mutationCount = mutationCount;
#endif
    return true;
  }

  // Note: |l| may be a reference to a piece of |u|, so this function
  // must take care not to use |l| after moving |u|.
  template <typename... Args>
  void putNewInfallible(const Lookup& l, Args&&... args) {
    MOZ_ASSERT(!lookup(l).found());
    mozilla::ReentrancyGuard g(*this);
    putNewInfallibleInternal(l, mozilla::Forward<Args>(args)...);
  }

  // Note: |l| may be alias arguments in |args|, so this function must take
  // care not to use |l| after moving |args|.
  template <typename... Args>
  MOZ_MUST_USE bool putNew(const Lookup& l, Args&&... args) {
    if (!this->checkSimulatedOOM()) return false;

    if (!EnsureHash<HashPolicy>(l)) return false;

    if (checkOverloaded() == RehashFailed) return false;

    putNewInfallible(l, mozilla::Forward<Args>(args)...);
    return true;
  }

  // Note: |l| may be a reference to a piece of |u|, so this function
  // must take care not to use |l| after moving |u|.
  template <typename... Args>
  MOZ_MUST_USE bool relookupOrAdd(AddPtr& p, const Lookup& l, Args&&... args) {
    // Check for error from ensureHash() here.
    if (!p.isValid()) return false;

#ifdef JS_DEBUG
    p.generation = generation();
    p.mutationCount = mutationCount;
#endif
    {
      mozilla::ReentrancyGuard g(*this);
      MOZ_ASSERT(prepareHash(l) == p.keyHash);  // l has not been destroyed
      p.entry_ = &lookup(l, p.keyHash, sCollisionBit);
    }
    return p.found() || add(p, mozilla::Forward<Args>(args)...);
  }

  void remove(Ptr p) {
    MOZ_ASSERT(table);
    mozilla::ReentrancyGuard g(*this);
    MOZ_ASSERT(p.found());
    MOZ_ASSERT(p.generation == generation());
    remove(*p.entry_);
    checkUnderloaded();
  }

  void rekeyWithoutRehash(Ptr p, const Lookup& l, const Key& k) {
    MOZ_ASSERT(table);
    mozilla::ReentrancyGuard g(*this);
    MOZ_ASSERT(p.found());
    MOZ_ASSERT(p.generation == generation());
    typename HashTableEntry<T>::NonConstT t(mozilla::Move(*p));
    HashPolicy::setKey(t, const_cast<Key&>(k));
    remove(*p.entry_);
    putNewInfallibleInternal(l, mozilla::Move(t));
  }

  void rekeyAndMaybeRehash(Ptr p, const Lookup& l, const Key& k) {
    rekeyWithoutRehash(p, l, k);
    checkOverRemoved();
  }

#undef METER
};

}  // namespace detail
}  // namespace js

#endif /* js_HashTable_h */