/*
** 2018 May 08
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
*/
#include "sqliteInt.h"
#ifndef SQLITE_OMIT_WINDOWFUNC
/*
** SELECT REWRITING
**
** Any SELECT statement that contains one or more window functions in
** either the select list or ORDER BY clause (the only two places window
** functions may be used) is transformed by function sqlite3WindowRewrite()
** in order to support window function processing. For example, with the
** schema:
**
** CREATE TABLE t1(a, b, c, d, e, f, g);
**
** the statement:
**
** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM t1 ORDER BY e;
**
** is transformed to:
**
** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM (
** SELECT a, e, c, d, b FROM t1 ORDER BY c, d
** ) ORDER BY e;
**
** The flattening optimization is disabled when processing this transformed
** SELECT statement. This allows the implementation of the window function
** (in this case max()) to process rows sorted in order of (c, d), which
** makes things easier for obvious reasons. More generally:
**
** * FROM, WHERE, GROUP BY and HAVING clauses are all moved to
** the sub-query.
**
** * ORDER BY, LIMIT and OFFSET remain part of the parent query.
**
** * Terminals from each of the expression trees that make up the
** select-list and ORDER BY expressions in the parent query are
** selected by the sub-query. For the purposes of the transformation,
** terminals are column references and aggregate functions.
**
** If there is more than one window function in the SELECT that uses
** the same window declaration (the OVER bit), then a single scan may
** be used to process more than one window function. For example:
**
** SELECT max(b) OVER (PARTITION BY c ORDER BY d),
** min(e) OVER (PARTITION BY c ORDER BY d)
** FROM t1;
**
** is transformed in the same way as the example above. However:
**
** SELECT max(b) OVER (PARTITION BY c ORDER BY d),
** min(e) OVER (PARTITION BY a ORDER BY b)
** FROM t1;
**
** Must be transformed to:
**
** SELECT max(b) OVER (PARTITION BY c ORDER BY d) FROM (
** SELECT e, min(e) OVER (PARTITION BY a ORDER BY b), c, d, b FROM
** SELECT a, e, c, d, b FROM t1 ORDER BY a, b
** ) ORDER BY c, d
** ) ORDER BY e;
**
** so that both min() and max() may process rows in the order defined by
** their respective window declarations.
**
** INTERFACE WITH SELECT.C
**
** When processing the rewritten SELECT statement, code in select.c calls
** sqlite3WhereBegin() to begin iterating through the results of the
** sub-query, which is always implemented as a co-routine. It then calls
** sqlite3WindowCodeStep() to process rows and finish the scan by calling
** sqlite3WhereEnd().
**
** sqlite3WindowCodeStep() generates VM code so that, for each row returned
** by the sub-query a sub-routine (OP_Gosub) coded by select.c is invoked.
** When the sub-routine is invoked:
**
** * The results of all window-functions for the row are stored
** in the associated Window.regResult registers.
**
** * The required terminal values are stored in the current row of
** temp table Window.iEphCsr.
**
** In some cases, depending on the window frame and the specific window
** functions invoked, sqlite3WindowCodeStep() caches each entire partition
** in a temp table before returning any rows. In other cases it does not.
** This detail is encapsulated within this file, the code generated by
** select.c is the same in either case.
**
** BUILT-IN WINDOW FUNCTIONS
**
** This implementation features the following built-in window functions:
**
** row_number()
** rank()
** dense_rank()
** percent_rank()
** cume_dist()
** ntile(N)
** lead(expr [, offset [, default]])
** lag(expr [, offset [, default]])
** first_value(expr)
** last_value(expr)
** nth_value(expr, N)
**
** These are the same built-in window functions supported by Postgres.
** Although the behaviour of aggregate window functions (functions that
** can be used as either aggregates or window funtions) allows them to
** be implemented using an API, built-in window functions are much more
** esoteric. Additionally, some window functions (e.g. nth_value())
** may only be implemented by caching the entire partition in memory.
** As such, some built-in window functions use the same API as aggregate
** window functions and some are implemented directly using VDBE
** instructions. Additionally, for those functions that use the API, the
** window frame is sometimes modified before the SELECT statement is
** rewritten. For example, regardless of the specified window frame, the
** row_number() function always uses:
**
** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
**
** See sqlite3WindowUpdate() for details.
**
** As well as some of the built-in window functions, aggregate window
** functions min() and max() are implemented using VDBE instructions if
** the start of the window frame is declared as anything other than
** UNBOUNDED PRECEDING.
*/
/*
** Implementation of built-in window function row_number(). Assumes that the
** window frame has been coerced to:
**
** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
*/
static void row_numberStepFunc(
sqlite3_context *pCtx,
int nArg,
sqlite3_value **apArg
){
i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p));
if( p ) (*p)++;
UNUSED_PARAMETER(nArg);
UNUSED_PARAMETER(apArg);
}
static void row_numberValueFunc(sqlite3_context *pCtx){
i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p));
sqlite3_result_int64(pCtx, (p ? *p : 0));
}
/*
** Context object type used by rank(), dense_rank(), percent_rank() and
** cume_dist().
*/
struct CallCount {
i64 nValue;
i64 nStep;
i64 nTotal;
};
/*
** Implementation of built-in window function dense_rank(). Assumes that
** the window frame has been set to:
**
** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
*/
static void dense_rankStepFunc(
sqlite3_context *pCtx,
int nArg,
sqlite3_value **apArg
){
struct CallCount *p;
p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
if( p ) p->nStep = 1;
UNUSED_PARAMETER(nArg);
UNUSED_PARAMETER(apArg);
}
static void dense_rankValueFunc(sqlite3_context *pCtx){
struct CallCount *p;
p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
if( p ){
if( p->nStep ){
p->nValue++;
p->nStep = 0;
}
sqlite3_result_int64(pCtx, p->nValue);
}
}
/*
** Implementation of built-in window function rank(). Assumes that
** the window frame has been set to:
**
** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
*/
static void rankStepFunc(
sqlite3_context *pCtx,
int nArg,
sqlite3_value **apArg
){
struct CallCount *p;
p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
if( p ){
p->nStep++;
if( p->nValue==0 ){
p->nValue = p->nStep;
}
}
UNUSED_PARAMETER(nArg);
UNUSED_PARAMETER(apArg);
}
static void rankValueFunc(sqlite3_context *pCtx){
struct CallCount *p;
p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
if( p ){
sqlite3_result_int64(pCtx, p->nValue);
p->nValue = 0;
}
}
/*
** Implementation of built-in window function percent_rank(). Assumes that
** the window frame has been set to:
**
** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
*/
static void percent_rankStepFunc(
sqlite3_context *pCtx,
int nArg,
sqlite3_value **apArg
){
struct CallCount *p;
UNUSED_PARAMETER(nArg); assert( nArg==1 );
p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
if( p ){
if( p->nTotal==0 ){
p->nTotal = sqlite3_value_int64(apArg[0]);
}
p->nStep++;
if( p->nValue==0 ){
p->nValue = p->nStep;
}
}
}
static void percent_rankValueFunc(sqlite3_context *pCtx){
struct CallCount *p;
p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
if( p ){
if( p->nTotal>1 ){
double r = (double)(p->nValue-1) / (double)(p->nTotal-1);
sqlite3_result_double(pCtx, r);
}else{
sqlite3_result_double(pCtx, 0.0);
}
p->nValue = 0;
}
}
/*
** Implementation of built-in window function cume_dist(). Assumes that
** the window frame has been set to:
**
** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
*/
static void cume_distStepFunc(
sqlite3_context *pCtx,
int nArg,
sqlite3_value **apArg
){
struct CallCount *p;
assert( nArg==1 ); UNUSED_PARAMETER(nArg);
p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
if( p ){
if( p->nTotal==0 ){
p->nTotal = sqlite3_value_int64(apArg[0]);
}
p->nStep++;
}
}
static void cume_distValueFunc(sqlite3_context *pCtx){
struct CallCount *p;
p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
if( p && p->nTotal ){
double r = (double)(p->nStep) / (double)(p->nTotal);
sqlite3_result_double(pCtx, r);
}
}
/*
** Context object for ntile() window function.
*/
struct NtileCtx {
i64 nTotal; /* Total rows in partition */
i64 nParam; /* Parameter passed to ntile(N) */
i64 iRow; /* Current row */
};
/*
** Implementation of ntile(). This assumes that the window frame has
** been coerced to:
**
** ROWS UNBOUNDED PRECEDING AND CURRENT ROW
*/
static void ntileStepFunc(
sqlite3_context *pCtx,
int nArg,
sqlite3_value **apArg
){
struct NtileCtx *p;
assert( nArg==2 ); UNUSED_PARAMETER(nArg);
p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
if( p ){
if( p->nTotal==0 ){
p->nParam = sqlite3_value_int64(apArg[0]);
p->nTotal = sqlite3_value_int64(apArg[1]);
if( p->nParam<=0 ){
sqlite3_result_error(
pCtx, "argument of ntile must be a positive integer", -1
);
}
}
p->iRow++;
}
}
static void ntileValueFunc(sqlite3_context *pCtx){
struct NtileCtx *p;
p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
if( p && p->nParam>0 ){
int nSize = (p->nTotal / p->nParam);
if( nSize==0 ){
sqlite3_result_int64(pCtx, p->iRow);
}else{
i64 nLarge = p->nTotal - p->nParam*nSize;
i64 iSmall = nLarge*(nSize+1);
i64 iRow = p->iRow-1;
assert( (nLarge*(nSize+1) + (p->nParam-nLarge)*nSize)==p->nTotal );
if( iRow<iSmall ){
sqlite3_result_int64(pCtx, 1 + iRow/(nSize+1));
}else{
sqlite3_result_int64(pCtx, 1 + nLarge + (iRow-iSmall)/nSize);
}
}
}
}
/*
** Context object for last_value() window function.
*/
struct LastValueCtx {
sqlite3_value *pVal;
int nVal;
};
/*
** Implementation of last_value().
*/
static void last_valueStepFunc(
sqlite3_context *pCtx,
int nArg,
sqlite3_value **apArg
){
struct LastValueCtx *p;
UNUSED_PARAMETER(nArg);
p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
if( p ){
sqlite3_value_free(p->pVal);
p->pVal = sqlite3_value_dup(apArg[0]);
if( p->pVal==0 ){
sqlite3_result_error_nomem(pCtx);
}else{
p->nVal++;
}
}
}
static void last_valueInvFunc(
sqlite3_context *pCtx,
int nArg,
sqlite3_value **apArg
){
struct LastValueCtx *p;
UNUSED_PARAMETER(nArg);
UNUSED_PARAMETER(apArg);
p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
if( ALWAYS(p) ){
p->nVal--;
if( p->nVal==0 ){
sqlite3_value_free(p->pVal);
p->pVal = 0;
}
}
}
static void last_valueValueFunc(sqlite3_context *pCtx){
struct LastValueCtx *p;
p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
if( p && p->pVal ){
sqlite3_result_value(pCtx, p->pVal);
}
}
static void last_valueFinalizeFunc(sqlite3_context *pCtx){
struct LastValueCtx *p;
p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
if( p && p->pVal ){
sqlite3_result_value(pCtx, p->pVal);
sqlite3_value_free(p->pVal);
p->pVal = 0;
}
}
/*
** Static names for the built-in window function names. These static
** names are used, rather than string literals, so that FuncDef objects
** can be associated with a particular window function by direct
** comparison of the zName pointer. Example:
**
** if( pFuncDef->zName==row_valueName ){ ... }
*/
static const char row_numberName[] = "row_number";
static const char dense_rankName[] = "dense_rank";
static const char rankName[] = "rank";
static const char percent_rankName[] = "percent_rank";
static const char cume_distName[] = "cume_dist";
static const char ntileName[] = "ntile";
static const char last_valueName[] = "last_value";
static const char nth_valueName[] = "nth_value";
static const char first_valueName[] = "first_value";
static const char leadName[] = "lead";
static const char lagName[] = "lag";
/*
** No-op implementations of xStep() and xFinalize(). Used as place-holders
** for built-in window functions that never call those interfaces.
**
** The noopValueFunc() is called but is expected to do nothing. The
** noopStepFunc() is never called, and so it is marked with NO_TEST to
** let the test coverage routine know not to expect this function to be
** invoked.
*/
static void noopStepFunc( /*NO_TEST*/
sqlite3_context *p, /*NO_TEST*/
int n, /*NO_TEST*/
sqlite3_value **a /*NO_TEST*/
){ /*NO_TEST*/
UNUSED_PARAMETER(p); /*NO_TEST*/
UNUSED_PARAMETER(n); /*NO_TEST*/
UNUSED_PARAMETER(a); /*NO_TEST*/
assert(0); /*NO_TEST*/
} /*NO_TEST*/
static void noopValueFunc(sqlite3_context *p){ UNUSED_PARAMETER(p); /*no-op*/ }
/* Window functions that use all window interfaces: xStep, xFinal,
** xValue, and xInverse */
#define WINDOWFUNCALL(name,nArg,extra) { \
nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \
name ## StepFunc, name ## FinalizeFunc, name ## ValueFunc, \
name ## InvFunc, name ## Name, {0} \
}
/* Window functions that are implemented using bytecode and thus have
** no-op routines for their methods */
#define WINDOWFUNCNOOP(name,nArg,extra) { \
nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \
noopStepFunc, noopValueFunc, noopValueFunc, \
noopStepFunc, name ## Name, {0} \
}
/* Window functions that use all window interfaces: xStep, the
** same routine for xFinalize and xValue and which never call
** xInverse. */
#define WINDOWFUNCX(name,nArg,extra) { \
nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \
name ## StepFunc, name ## ValueFunc, name ## ValueFunc, \
noopStepFunc, name ## Name, {0} \
}
/*
** Register those built-in window functions that are not also aggregates.
*/
void sqlite3WindowFunctions(void){
static FuncDef aWindowFuncs[] = {
WINDOWFUNCX(row_number, 0, 0),
WINDOWFUNCX(dense_rank, 0, 0),
WINDOWFUNCX(rank, 0, 0),
WINDOWFUNCX(percent_rank, 0, SQLITE_FUNC_WINDOW_SIZE),
WINDOWFUNCX(cume_dist, 0, SQLITE_FUNC_WINDOW_SIZE),
WINDOWFUNCX(ntile, 1, SQLITE_FUNC_WINDOW_SIZE),
WINDOWFUNCALL(last_value, 1, 0),
WINDOWFUNCNOOP(nth_value, 2, 0),
WINDOWFUNCNOOP(first_value, 1, 0),
WINDOWFUNCNOOP(lead, 1, 0),
WINDOWFUNCNOOP(lead, 2, 0),
WINDOWFUNCNOOP(lead, 3, 0),
WINDOWFUNCNOOP(lag, 1, 0),
WINDOWFUNCNOOP(lag, 2, 0),
WINDOWFUNCNOOP(lag, 3, 0),
};
sqlite3InsertBuiltinFuncs(aWindowFuncs, ArraySize(aWindowFuncs));
}
/*
** This function is called immediately after resolving the function name
** for a window function within a SELECT statement. Argument pList is a
** linked list of WINDOW definitions for the current SELECT statement.
** Argument pFunc is the function definition just resolved and pWin
** is the Window object representing the associated OVER clause. This
** function updates the contents of pWin as follows:
**
** * If the OVER clause refered to a named window (as in "max(x) OVER win"),
** search list pList for a matching WINDOW definition, and update pWin
** accordingly. If no such WINDOW clause can be found, leave an error
** in pParse.
**
** * If the function is a built-in window function that requires the
** window to be coerced (see "BUILT-IN WINDOW FUNCTIONS" at the top
** of this file), pWin is updated here.
*/
void sqlite3WindowUpdate(
Parse *pParse,
Window *pList, /* List of named windows for this SELECT */
Window *pWin, /* Window frame to update */
FuncDef *pFunc /* Window function definition */
){
if( pWin->zName && pWin->eType==0 ){
Window *p;
for(p=pList; p; p=p->pNextWin){
if( sqlite3StrICmp(p->zName, pWin->zName)==0 ) break;
}
if( p==0 ){
sqlite3ErrorMsg(pParse, "no such window: %s", pWin->zName);
return;
}
pWin->pPartition = sqlite3ExprListDup(pParse->db, p->pPartition, 0);
pWin->pOrderBy = sqlite3ExprListDup(pParse->db, p->pOrderBy, 0);
pWin->pStart = sqlite3ExprDup(pParse->db, p->pStart, 0);
pWin->pEnd = sqlite3ExprDup(pParse->db, p->pEnd, 0);
pWin->eStart = p->eStart;
pWin->eEnd = p->eEnd;
pWin->eType = p->eType;
}
if( pFunc->funcFlags & SQLITE_FUNC_WINDOW ){
sqlite3 *db = pParse->db;
if( pWin->pFilter ){
sqlite3ErrorMsg(pParse,
"FILTER clause may only be used with aggregate window functions"
);
}else
if( pFunc->zName==row_numberName || pFunc->zName==ntileName ){
sqlite3ExprDelete(db, pWin->pStart);
sqlite3ExprDelete(db, pWin->pEnd);
pWin->pStart = pWin->pEnd = 0;
pWin->eType = TK_ROWS;
pWin->eStart = TK_UNBOUNDED;
pWin->eEnd = TK_CURRENT;
}else
if( pFunc->zName==dense_rankName || pFunc->zName==rankName
|| pFunc->zName==percent_rankName || pFunc->zName==cume_distName
){
sqlite3ExprDelete(db, pWin->pStart);
sqlite3ExprDelete(db, pWin->pEnd);
pWin->pStart = pWin->pEnd = 0;
pWin->eType = TK_RANGE;
pWin->eStart = TK_UNBOUNDED;
pWin->eEnd = TK_CURRENT;
}
}
pWin->pFunc = pFunc;
}
/*
** Context object passed through sqlite3WalkExprList() to
** selectWindowRewriteExprCb() by selectWindowRewriteEList().
*/
typedef struct WindowRewrite WindowRewrite;
struct WindowRewrite {
Window *pWin;
SrcList *pSrc;
ExprList *pSub;
Select *pSubSelect; /* Current sub-select, if any */
};
/*
** Callback function used by selectWindowRewriteEList(). If necessary,
** this function appends to the output expression-list and updates
** expression (*ppExpr) in place.
*/
static int selectWindowRewriteExprCb(Walker *pWalker, Expr *pExpr){
struct WindowRewrite *p = pWalker->u.pRewrite;
Parse *pParse = pWalker->pParse;
/* If this function is being called from within a scalar sub-select
** that used by the SELECT statement being processed, only process
** TK_COLUMN expressions that refer to it (the outer SELECT). Do
** not process aggregates or window functions at all, as they belong
** to the scalar sub-select. */
if( p->pSubSelect ){
if( pExpr->op!=TK_COLUMN ){
return WRC_Continue;
}else{
int nSrc = p->pSrc->nSrc;
int i;
for(i=0; i<nSrc; i++){
if( pExpr->iTable==p->pSrc->a[i].iCursor ) break;
}
if( i==nSrc ) return WRC_Continue;
}
}
switch( pExpr->op ){
case TK_FUNCTION:
if( !ExprHasProperty(pExpr, EP_WinFunc) ){
break;
}else{
Window *pWin;
for(pWin=p->pWin; pWin; pWin=pWin->pNextWin){
if( pExpr->y.pWin==pWin ){
assert( pWin->pOwner==pExpr );
return WRC_Prune;
}
}
}
/* Fall through. */
case TK_AGG_FUNCTION:
case TK_COLUMN: {
Expr *pDup = sqlite3ExprDup(pParse->db, pExpr, 0);
p->pSub = sqlite3ExprListAppend(pParse, p->pSub, pDup);
if( p->pSub ){
assert( ExprHasProperty(pExpr, EP_Static)==0 );
ExprSetProperty(pExpr, EP_Static);
sqlite3ExprDelete(pParse->db, pExpr);
ExprClearProperty(pExpr, EP_Static);
memset(pExpr, 0, sizeof(Expr));
pExpr->op = TK_COLUMN;
pExpr->iColumn = p->pSub->nExpr-1;
pExpr->iTable = p->pWin->iEphCsr;
}
break;
}
default: /* no-op */
break;
}
return WRC_Continue;
}
static int selectWindowRewriteSelectCb(Walker *pWalker, Select *pSelect){
struct WindowRewrite *p = pWalker->u.pRewrite;
Select *pSave = p->pSubSelect;
if( pSave==pSelect ){
return WRC_Continue;
}else{
p->pSubSelect = pSelect;
sqlite3WalkSelect(pWalker, pSelect);
p->pSubSelect = pSave;
}
return WRC_Prune;
}
/*
** Iterate through each expression in expression-list pEList. For each:
**
** * TK_COLUMN,
** * aggregate function, or
** * window function with a Window object that is not a member of the
** Window list passed as the second argument (pWin).
**
** Append the node to output expression-list (*ppSub). And replace it
** with a TK_COLUMN that reads the (N-1)th element of table
** pWin->iEphCsr, where N is the number of elements in (*ppSub) after
** appending the new one.
*/
static void selectWindowRewriteEList(
Parse *pParse,
Window *pWin,
SrcList *pSrc,
ExprList *pEList, /* Rewrite expressions in this list */
ExprList **ppSub /* IN/OUT: Sub-select expression-list */
){
Walker sWalker;
WindowRewrite sRewrite;
memset(&sWalker, 0, sizeof(Walker));
memset(&sRewrite, 0, sizeof(WindowRewrite));
sRewrite.pSub = *ppSub;
sRewrite.pWin = pWin;
sRewrite.pSrc = pSrc;
sWalker.pParse = pParse;
sWalker.xExprCallback = selectWindowRewriteExprCb;
sWalker.xSelectCallback = selectWindowRewriteSelectCb;
sWalker.u.pRewrite = &sRewrite;
(void)sqlite3WalkExprList(&sWalker, pEList);
*ppSub = sRewrite.pSub;
}
/*
** Append a copy of each expression in expression-list pAppend to
** expression list pList. Return a pointer to the result list.
*/
static ExprList *exprListAppendList(
Parse *pParse, /* Parsing context */
ExprList *pList, /* List to which to append. Might be NULL */
ExprList *pAppend /* List of values to append. Might be NULL */
){
if( pAppend ){
int i;
int nInit = pList ? pList->nExpr : 0;
for(i=0; i<pAppend->nExpr; i++){
Expr *pDup = sqlite3ExprDup(pParse->db, pAppend->a[i].pExpr, 0);
pList = sqlite3ExprListAppend(pParse, pList, pDup);
if( pList ) pList->a[nInit+i].sortOrder = pAppend->a[i].sortOrder;
}
}
return pList;
}
/*
** If the SELECT statement passed as the second argument does not invoke
** any SQL window functions, this function is a no-op. Otherwise, it
** rewrites the SELECT statement so that window function xStep functions
** are invoked in the correct order as described under "SELECT REWRITING"
** at the top of this file.
*/
int sqlite3WindowRewrite(Parse *pParse, Select *p){
int rc = SQLITE_OK;
if( p->pWin && p->pPrior==0 ){
Vdbe *v = sqlite3GetVdbe(pParse);
sqlite3 *db = pParse->db;
Select *pSub = 0; /* The subquery */
SrcList *pSrc = p->pSrc;
Expr *pWhere = p->pWhere;
ExprList *pGroupBy = p->pGroupBy;
Expr *pHaving = p->pHaving;
ExprList *pSort = 0;
ExprList *pSublist = 0; /* Expression list for sub-query */
Window *pMWin = p->pWin; /* Master window object */
Window *pWin; /* Window object iterator */
p->pSrc = 0;
p->pWhere = 0;
p->pGroupBy = 0;
p->pHaving = 0;
/* Create the ORDER BY clause for the sub-select. This is the concatenation
** of the window PARTITION and ORDER BY clauses. Then, if this makes it
** redundant, remove the ORDER BY from the parent SELECT. */
pSort = sqlite3ExprListDup(db, pMWin->pPartition, 0);
pSort = exprListAppendList(pParse, pSort, pMWin->pOrderBy);
if( pSort && p->pOrderBy ){
if( sqlite3ExprListCompare(pSort, p->pOrderBy, -1)==0 ){
sqlite3ExprListDelete(db, p->pOrderBy);
p->pOrderBy = 0;
}
}
/* Assign a cursor number for the ephemeral table used to buffer rows.
** The OpenEphemeral instruction is coded later, after it is known how
** many columns the table will have. */
pMWin->iEphCsr = pParse->nTab++;
selectWindowRewriteEList(pParse, pMWin, pSrc, p->pEList, &pSublist);
selectWindowRewriteEList(pParse, pMWin, pSrc, p->pOrderBy, &pSublist);
pMWin->nBufferCol = (pSublist ? pSublist->nExpr : 0);
/* Append the PARTITION BY and ORDER BY expressions to the to the
** sub-select expression list. They are required to figure out where
** boundaries for partitions and sets of peer rows lie. */
pSublist = exprListAppendList(pParse, pSublist, pMWin->pPartition);
pSublist = exprListAppendList(pParse, pSublist, pMWin->pOrderBy);
/* Append the arguments passed to each window function to the
** sub-select expression list. Also allocate two registers for each
** window function - one for the accumulator, another for interim
** results. */
for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
pWin->iArgCol = (pSublist ? pSublist->nExpr : 0);
pSublist = exprListAppendList(pParse, pSublist, pWin->pOwner->x.pList);
if( pWin->pFilter ){
Expr *pFilter = sqlite3ExprDup(db, pWin->pFilter, 0);
pSublist = sqlite3ExprListAppend(pParse, pSublist, pFilter);
}
pWin->regAccum = ++pParse->nMem;
pWin->regResult = ++pParse->nMem;
sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
}
/* If there is no ORDER BY or PARTITION BY clause, and the window
** function accepts zero arguments, and there are no other columns
** selected (e.g. "SELECT row_number() OVER () FROM t1"), it is possible
** that pSublist is still NULL here. Add a constant expression here to
** keep everything legal in this case.
*/
if( pSublist==0 ){
pSublist = sqlite3ExprListAppend(pParse, 0,
sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0)
);
}
pSub = sqlite3SelectNew(
pParse, pSublist, pSrc, pWhere, pGroupBy, pHaving, pSort, 0, 0
);
p->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
assert( p->pSrc || db->mallocFailed );
if( p->pSrc ){
p->pSrc->a[0].pSelect = pSub;
sqlite3SrcListAssignCursors(pParse, p->pSrc);
if( sqlite3ExpandSubquery(pParse, &p->pSrc->a[0]) ){
rc = SQLITE_NOMEM;
}else{
pSub->selFlags |= SF_Expanded;
p->selFlags &= ~SF_Aggregate;
sqlite3SelectPrep(pParse, pSub, 0);
}
sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pMWin->iEphCsr, pSublist->nExpr);
}else{
sqlite3SelectDelete(db, pSub);
}
if( db->mallocFailed ) rc = SQLITE_NOMEM;
}
return rc;
}
/*
** Free the Window object passed as the second argument.
*/
void sqlite3WindowDelete(sqlite3 *db, Window *p){
if( p ){
sqlite3ExprDelete(db, p->pFilter);
sqlite3ExprListDelete(db, p->pPartition);
sqlite3ExprListDelete(db, p->pOrderBy);
sqlite3ExprDelete(db, p->pEnd);
sqlite3ExprDelete(db, p->pStart);
sqlite3DbFree(db, p->zName);
sqlite3DbFree(db, p);
}
}
/*
** Free the linked list of Window objects starting at the second argument.
*/
void sqlite3WindowListDelete(sqlite3 *db, Window *p){
while( p ){
Window *pNext = p->pNextWin;
sqlite3WindowDelete(db, p);
p = pNext;
}
}
/*
** The argument expression is an PRECEDING or FOLLOWING offset. The
** value should be a non-negative integer. If the value is not a
** constant, change it to NULL. The fact that it is then a non-negative
** integer will be caught later. But it is important not to leave
** variable values in the expression tree.
*/
static Expr *sqlite3WindowOffsetExpr(Parse *pParse, Expr *pExpr){
if( 0==sqlite3ExprIsConstant(pExpr) ){
sqlite3ExprDelete(pParse->db, pExpr);
pExpr = sqlite3ExprAlloc(pParse->db, TK_NULL, 0, 0);
}
return pExpr;
}
/*
** Allocate and return a new Window object describing a Window Definition.
*/
Window *sqlite3WindowAlloc(
Parse *pParse, /* Parsing context */
int eType, /* Frame type. TK_RANGE or TK_ROWS */
int eStart, /* Start type: CURRENT, PRECEDING, FOLLOWING, UNBOUNDED */
Expr *pStart, /* Start window size if TK_PRECEDING or FOLLOWING */
int eEnd, /* End type: CURRENT, FOLLOWING, TK_UNBOUNDED, PRECEDING */
Expr *pEnd /* End window size if TK_FOLLOWING or PRECEDING */
){
Window *pWin = 0;
/* Parser assures the following: */
assert( eType==TK_RANGE || eType==TK_ROWS );
assert( eStart==TK_CURRENT || eStart==TK_PRECEDING
|| eStart==TK_UNBOUNDED || eStart==TK_FOLLOWING );
assert( eEnd==TK_CURRENT || eEnd==TK_FOLLOWING
|| eEnd==TK_UNBOUNDED || eEnd==TK_PRECEDING );
assert( (eStart==TK_PRECEDING || eStart==TK_FOLLOWING)==(pStart!=0) );
assert( (eEnd==TK_FOLLOWING || eEnd==TK_PRECEDING)==(pEnd!=0) );
/* If a frame is declared "RANGE" (not "ROWS"), then it may not use
** either "<expr> PRECEDING" or "<expr> FOLLOWING".
*/
if( eType==TK_RANGE && (pStart!=0 || pEnd!=0) ){
sqlite3ErrorMsg(pParse, "RANGE must use only UNBOUNDED or CURRENT ROW");
goto windowAllocErr;
}
/* Additionally, the
** starting boundary type may not occur earlier in the following list than
** the ending boundary type:
**
** UNBOUNDED PRECEDING
** <expr> PRECEDING
** CURRENT ROW
** <expr> FOLLOWING
** UNBOUNDED FOLLOWING
**
** The parser ensures that "UNBOUNDED PRECEDING" cannot be used as an ending
** boundary, and than "UNBOUNDED FOLLOWING" cannot be used as a starting
** frame boundary.
*/
if( (eStart==TK_CURRENT && eEnd==TK_PRECEDING)
|| (eStart==TK_FOLLOWING && (eEnd==TK_PRECEDING || eEnd==TK_CURRENT))
){
sqlite3ErrorMsg(pParse, "unsupported frame delimiter for ROWS");
goto windowAllocErr;
}
pWin = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window));
if( pWin==0 ) goto windowAllocErr;
pWin->eType = eType;
pWin->eStart = eStart;
pWin->eEnd = eEnd;
pWin->pEnd = sqlite3WindowOffsetExpr(pParse, pEnd);
pWin->pStart = sqlite3WindowOffsetExpr(pParse, pStart);
return pWin;
windowAllocErr:
sqlite3ExprDelete(pParse->db, pEnd);
sqlite3ExprDelete(pParse->db, pStart);
return 0;
}
/*
** Attach window object pWin to expression p.
*/
void sqlite3WindowAttach(Parse *pParse, Expr *p, Window *pWin){
if( p ){
assert( p->op==TK_FUNCTION );
/* This routine is only called for the parser. If pWin was not
** allocated due to an OOM, then the parser would fail before ever
** invoking this routine */
if( ALWAYS(pWin) ){
p->y.pWin = pWin;
ExprSetProperty(p, EP_WinFunc);
pWin->pOwner = p;
if( p->flags & EP_Distinct ){
sqlite3ErrorMsg(pParse,
"DISTINCT is not supported for window functions");
}
}
}else{
sqlite3WindowDelete(pParse->db, pWin);
}
}
/*
** Return 0 if the two window objects are identical, or non-zero otherwise.
** Identical window objects can be processed in a single scan.
*/
int sqlite3WindowCompare(Parse *pParse, Window *p1, Window *p2){
if( p1->eType!=p2->eType ) return 1;
if( p1->eStart!=p2->eStart ) return 1;
if( p1->eEnd!=p2->eEnd ) return 1;
if( sqlite3ExprCompare(pParse, p1->pStart, p2->pStart, -1) ) return 1;
if( sqlite3ExprCompare(pParse, p1->pEnd, p2->pEnd, -1) ) return 1;
if( sqlite3ExprListCompare(p1->pPartition, p2->pPartition, -1) ) return 1;
if( sqlite3ExprListCompare(p1->pOrderBy, p2->pOrderBy, -1) ) return 1;
return 0;
}
/*
** This is called by code in select.c before it calls sqlite3WhereBegin()
** to begin iterating through the sub-query results. It is used to allocate
** and initialize registers and cursors used by sqlite3WindowCodeStep().
*/
void sqlite3WindowCodeInit(Parse *pParse, Window *pMWin){
Window *pWin;
Vdbe *v = sqlite3GetVdbe(pParse);
int nPart = (pMWin->pPartition ? pMWin->pPartition->nExpr : 0);
nPart += (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0);
if( nPart ){
pMWin->regPart = pParse->nMem+1;
pParse->nMem += nPart;
sqlite3VdbeAddOp3(v, OP_Null, 0, pMWin->regPart, pMWin->regPart+nPart-1);
}
for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
FuncDef *p = pWin->pFunc;
if( (p->funcFlags & SQLITE_FUNC_MINMAX) && pWin->eStart!=TK_UNBOUNDED ){
/* The inline versions of min() and max() require a single ephemeral
** table and 3 registers. The registers are used as follows:
**
** regApp+0: slot to copy min()/max() argument to for MakeRecord
** regApp+1: integer value used to ensure keys are unique
** regApp+2: output of MakeRecord
*/
ExprList *pList = pWin->pOwner->x.pList;
KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pList, 0, 0);
pWin->csrApp = pParse->nTab++;
pWin->regApp = pParse->nMem+1;
pParse->nMem += 3;
if( pKeyInfo && pWin->pFunc->zName[1]=='i' ){
assert( pKeyInfo->aSortOrder[0]==0 );
pKeyInfo->aSortOrder[0] = 1;
}
sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pWin->csrApp, 2);
sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
}
else if( p->zName==nth_valueName || p->zName==first_valueName ){
/* Allocate two registers at pWin->regApp. These will be used to
** store the start and end index of the current frame. */
assert( pMWin->iEphCsr );
pWin->regApp = pParse->nMem+1;
pWin->csrApp = pParse->nTab++;
pParse->nMem += 2;
sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr);
}
else if( p->zName==leadName || p->zName==lagName ){
assert( pMWin->iEphCsr );
pWin->csrApp = pParse->nTab++;
sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr);
}
}
}
/*
** A "PRECEDING <expr>" (eCond==0) or "FOLLOWING <expr>" (eCond==1) or the
** value of the second argument to nth_value() (eCond==2) has just been
** evaluated and the result left in register reg. This function generates VM
** code to check that the value is a non-negative integer and throws an
** exception if it is not.
*/
static void windowCheckIntValue(Parse *pParse, int reg, int eCond){
static const char *azErr[] = {
"frame starting offset must be a non-negative integer",
"frame ending offset must be a non-negative integer",
"second argument to nth_value must be a positive integer"
};
static int aOp[] = { OP_Ge, OP_Ge, OP_Gt };
Vdbe *v = sqlite3GetVdbe(pParse);
int regZero = sqlite3GetTempReg(pParse);
assert( eCond==0 || eCond==1 || eCond==2 );
sqlite3VdbeAddOp2(v, OP_Integer, 0, regZero);
sqlite3VdbeAddOp2(v, OP_MustBeInt, reg, sqlite3VdbeCurrentAddr(v)+2);
VdbeCoverageIf(v, eCond==0);
VdbeCoverageIf(v, eCond==1);
VdbeCoverageIf(v, eCond==2);
sqlite3VdbeAddOp3(v, aOp[eCond], regZero, sqlite3VdbeCurrentAddr(v)+2, reg);
VdbeCoverageNeverNullIf(v, eCond==0);
VdbeCoverageNeverNullIf(v, eCond==1);
VdbeCoverageNeverNullIf(v, eCond==2);
sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_ERROR, OE_Abort);
sqlite3VdbeAppendP4(v, (void*)azErr[eCond], P4_STATIC);
sqlite3ReleaseTempReg(pParse, regZero);
}
/*
** Return the number of arguments passed to the window-function associated
** with the object passed as the only argument to this function.
*/
static int windowArgCount(Window *pWin){
ExprList *pList = pWin->pOwner->x.pList;
return (pList ? pList->nExpr : 0);
}
/*
** Generate VM code to invoke either xStep() (if bInverse is 0) or
** xInverse (if bInverse is non-zero) for each window function in the
** linked list starting at pMWin. Or, for built-in window functions
** that do not use the standard function API, generate the required
** inline VM code.
**
** If argument csr is greater than or equal to 0, then argument reg is
** the first register in an array of registers guaranteed to be large
** enough to hold the array of arguments for each function. In this case
** the arguments are extracted from the current row of csr into the
** array of registers before invoking OP_AggStep or OP_AggInverse
**
** Or, if csr is less than zero, then the array of registers at reg is
** already populated with all columns from the current row of the sub-query.
**
** If argument regPartSize is non-zero, then it is a register containing the
** number of rows in the current partition.
*/
static void windowAggStep(
Parse *pParse,
Window *pMWin, /* Linked list of window functions */
int csr, /* Read arguments from this cursor */
int bInverse, /* True to invoke xInverse instead of xStep */
int reg, /* Array of registers */
int regPartSize /* Register containing size of partition */
){
Vdbe *v = sqlite3GetVdbe(pParse);
Window *pWin;
for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
int flags = pWin->pFunc->funcFlags;
int regArg;
int nArg = windowArgCount(pWin);
if( csr>=0 ){
int i;
for(i=0; i<nArg; i++){
sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+i, reg+i);
}
regArg = reg;
if( flags & SQLITE_FUNC_WINDOW_SIZE ){
if( nArg==0 ){
regArg = regPartSize;
}else{
sqlite3VdbeAddOp2(v, OP_SCopy, regPartSize, reg+nArg);
}
nArg++;
}
}else{
assert( !(flags & SQLITE_FUNC_WINDOW_SIZE) );
regArg = reg + pWin->iArgCol;
}
if( (pWin->pFunc->funcFlags & SQLITE_FUNC_MINMAX)
&& pWin->eStart!=TK_UNBOUNDED
){
int addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regArg);
VdbeCoverage(v);
if( bInverse==0 ){
sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1, 1);
sqlite3VdbeAddOp2(v, OP_SCopy, regArg, pWin->regApp);
sqlite3VdbeAddOp3(v, OP_MakeRecord, pWin->regApp, 2, pWin->regApp+2);
sqlite3VdbeAddOp2(v, OP_IdxInsert, pWin->csrApp, pWin->regApp+2);
}else{
sqlite3VdbeAddOp4Int(v, OP_SeekGE, pWin->csrApp, 0, regArg, 1);
VdbeCoverageNeverTaken(v);
sqlite3VdbeAddOp1(v, OP_Delete, pWin->csrApp);
sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
}
sqlite3VdbeJumpHere(v, addrIsNull);
}else if( pWin->regApp ){
assert( pWin->pFunc->zName==nth_valueName
|| pWin->pFunc->zName==first_valueName
);
assert( bInverse==0 || bInverse==1 );
sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1-bInverse, 1);
}else if( pWin->pFunc->zName==leadName
|| pWin->pFunc->zName==lagName
){
/* no-op */
}else{
int addrIf = 0;
if( pWin->pFilter ){
int regTmp;
assert( nArg==0 || nArg==pWin->pOwner->x.pList->nExpr );
assert( nArg || pWin->pOwner->x.pList==0 );
if( csr>0 ){
regTmp = sqlite3GetTempReg(pParse);
sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+nArg,regTmp);
}else{
regTmp = regArg + nArg;
}
addrIf = sqlite3VdbeAddOp3(v, OP_IfNot, regTmp, 0, 1);
VdbeCoverage(v);
if( csr>0 ){
sqlite3ReleaseTempReg(pParse, regTmp);
}
}
if( pWin->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
CollSeq *pColl;
assert( nArg>0 );
pColl = sqlite3ExprNNCollSeq(pParse, pWin->pOwner->x.pList->a[0].pExpr);
sqlite3VdbeAddOp4(v, OP_CollSeq, 0,0,0, (const char*)pColl, P4_COLLSEQ);
}
sqlite3VdbeAddOp3(v, bInverse? OP_AggInverse : OP_AggStep,
bInverse, regArg, pWin->regAccum);
sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF);
sqlite3VdbeChangeP5(v, (u8)nArg);
if( addrIf ) sqlite3VdbeJumpHere(v, addrIf);
}
}
}
/*
** Generate VM code to invoke either xValue() (bFinal==0) or xFinalize()
** (bFinal==1) for each window function in the linked list starting at
** pMWin. Or, for built-in window-functions that do not use the standard
** API, generate the equivalent VM code.
*/
static void windowAggFinal(Parse *pParse, Window *pMWin, int bFinal){
Vdbe *v = sqlite3GetVdbe(pParse);
Window *pWin;
for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
if( (pWin->pFunc->funcFlags & SQLITE_FUNC_MINMAX)
&& pWin->eStart!=TK_UNBOUNDED
){
sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
sqlite3VdbeAddOp1(v, OP_Last, pWin->csrApp);
VdbeCoverage(v);
sqlite3VdbeAddOp3(v, OP_Column, pWin->csrApp, 0, pWin->regResult);
sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
if( bFinal ){
sqlite3VdbeAddOp1(v, OP_ResetSorter, pWin->csrApp);
}
}else if( pWin->regApp ){
}else{
if( bFinal ){
sqlite3VdbeAddOp2(v, OP_AggFinal, pWin->regAccum, windowArgCount(pWin));
sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF);
sqlite3VdbeAddOp2(v, OP_Copy, pWin->regAccum, pWin->regResult);
sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
}else{
sqlite3VdbeAddOp3(v, OP_AggValue, pWin->regAccum, windowArgCount(pWin),
pWin->regResult);
sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF);
}
}
}
}
/*
** This function generates VM code to invoke the sub-routine at address
** lblFlushPart once for each partition with the entire partition cached in
** the Window.iEphCsr temp table.
*/
static void windowPartitionCache(
Parse *pParse,
Select *p, /* The rewritten SELECT statement */
WhereInfo *pWInfo, /* WhereInfo to call WhereEnd() on */
int regFlushPart, /* Register to use with Gosub lblFlushPart */
int lblFlushPart, /* Subroutine to Gosub to */
int *pRegSize /* OUT: Register containing partition size */
){
Window *pMWin = p->pWin;
Vdbe *v = sqlite3GetVdbe(pParse);
int iSubCsr = p->pSrc->a[0].iCursor;
int nSub = p->pSrc->a[0].pTab->nCol;
int k;
int reg = pParse->nMem+1;
int regRecord = reg+nSub;
int regRowid = regRecord+1;
*pRegSize = regRowid;
pParse->nMem += nSub + 2;
/* Load the column values for the row returned by the sub-select
** into an array of registers starting at reg. */
for(k=0; k<nSub; k++){
sqlite3VdbeAddOp3(v, OP_Column, iSubCsr, k, reg+k);
}
sqlite3VdbeAddOp3(v, OP_MakeRecord, reg, nSub, regRecord);
/* Check if this is the start of a new partition. If so, call the
** flush_partition sub-routine. */
if( pMWin->pPartition ){
int addr;
ExprList *pPart = pMWin->pPartition;
int nPart = pPart->nExpr;
int regNewPart = reg + pMWin->nBufferCol;
KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pPart, 0, 0);
addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPart, pMWin->regPart,nPart);
sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
sqlite3VdbeAddOp3(v, OP_Jump, addr+2, addr+4, addr+2);
VdbeCoverageEqNe(v);
sqlite3VdbeAddOp3(v, OP_Copy, regNewPart, pMWin->regPart, nPart-1);
sqlite3VdbeAddOp2(v, OP_Gosub, regFlushPart, lblFlushPart);
VdbeComment((v, "call flush_partition"));
}
/* Buffer the current row in the ephemeral table. */
sqlite3VdbeAddOp2(v, OP_NewRowid, pMWin->iEphCsr, regRowid);
sqlite3VdbeAddOp3(v, OP_Insert, pMWin->iEphCsr, regRecord, regRowid);
/* End of the input loop */
sqlite3WhereEnd(pWInfo);
/* Invoke "flush_partition" to deal with the final (or only) partition */
sqlite3VdbeAddOp2(v, OP_Gosub, regFlushPart, lblFlushPart);
VdbeComment((v, "call flush_partition"));
}
/*
** Invoke the sub-routine at regGosub (generated by code in select.c) to
** return the current row of Window.iEphCsr. If all window functions are
** aggregate window functions that use the standard API, a single
** OP_Gosub instruction is all that this routine generates. Extra VM code
** for per-row processing is only generated for the following built-in window
** functions:
**
** nth_value()
** first_value()
** lag()
** lead()
*/
static void windowReturnOneRow(
Parse *pParse,
Window *pMWin,
int regGosub,
int addrGosub
){
Vdbe *v = sqlite3GetVdbe(pParse);
Window *pWin;
for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
FuncDef *pFunc = pWin->pFunc;
if( pFunc->zName==nth_valueName
|| pFunc->zName==first_valueName
){
int csr = pWin->csrApp;
int lbl = sqlite3VdbeMakeLabel(v);
int tmpReg = sqlite3GetTempReg(pParse);
sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
if( pFunc->zName==nth_valueName ){
sqlite3VdbeAddOp3(v, OP_Column, pMWin->iEphCsr, pWin->iArgCol+1,tmpReg);
windowCheckIntValue(pParse, tmpReg, 2);
}else{
sqlite3VdbeAddOp2(v, OP_Integer, 1, tmpReg);
}
sqlite3VdbeAddOp3(v, OP_Add, tmpReg, pWin->regApp, tmpReg);
sqlite3VdbeAddOp3(v, OP_Gt, pWin->regApp+1, lbl, tmpReg);
VdbeCoverageNeverNull(v);
sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, 0, tmpReg);
VdbeCoverageNeverTaken(v);
sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult);
sqlite3VdbeResolveLabel(v, lbl);
sqlite3ReleaseTempReg(pParse, tmpReg);
}
else if( pFunc->zName==leadName || pFunc->zName==lagName ){
int nArg = pWin->pOwner->x.pList->nExpr;
int iEph = pMWin->iEphCsr;
int csr = pWin->csrApp;
int lbl = sqlite3VdbeMakeLabel(v);
int tmpReg = sqlite3GetTempReg(pParse);
if( nArg<3 ){
sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
}else{
sqlite3VdbeAddOp3(v, OP_Column, iEph, pWin->iArgCol+2, pWin->regResult);
}
sqlite3VdbeAddOp2(v, OP_Rowid, iEph, tmpReg);
if( nArg<2 ){
int val = (pFunc->zName==leadName ? 1 : -1);
sqlite3VdbeAddOp2(v, OP_AddImm, tmpReg, val);
}else{
int op = (pFunc->zName==leadName ? OP_Add : OP_Subtract);
int tmpReg2 = sqlite3GetTempReg(pParse);
sqlite3VdbeAddOp3(v, OP_Column, iEph, pWin->iArgCol+1, tmpReg2);
sqlite3VdbeAddOp3(v, op, tmpReg2, tmpReg, tmpReg);
sqlite3ReleaseTempReg(pParse, tmpReg2);
}
sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, lbl, tmpReg);
VdbeCoverage(v);
sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult);
sqlite3VdbeResolveLabel(v, lbl);
sqlite3ReleaseTempReg(pParse, tmpReg);
}
}
sqlite3VdbeAddOp2(v, OP_Gosub, regGosub, addrGosub);
}
/*
** Invoke the code generated by windowReturnOneRow() and, optionally, the
** xInverse() function for each window function, for one or more rows
** from the Window.iEphCsr temp table. This routine generates VM code
** similar to:
**
** while( regCtr>0 ){
** regCtr--;
** windowReturnOneRow()
** if( bInverse ){
** AggInverse
** }
** Next (Window.iEphCsr)
** }
*/
static void windowReturnRows(
Parse *pParse,
Window *pMWin, /* List of window functions */
int regCtr, /* Register containing number of rows */
int regGosub, /* Register for Gosub addrGosub */
int addrGosub, /* Address of sub-routine for ReturnOneRow */
int regInvArg, /* Array of registers for xInverse args */
int regInvSize /* Register containing size of partition */
){
int addr;
Vdbe *v = sqlite3GetVdbe(pParse);
windowAggFinal(pParse, pMWin, 0);
addr = sqlite3VdbeAddOp3(v, OP_IfPos, regCtr, sqlite3VdbeCurrentAddr(v)+2 ,1);
VdbeCoverage(v);
sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
windowReturnOneRow(pParse, pMWin, regGosub, addrGosub);
if( regInvArg ){
windowAggStep(pParse, pMWin, pMWin->iEphCsr, 1, regInvArg, regInvSize);
}
sqlite3VdbeAddOp2(v, OP_Next, pMWin->iEphCsr, addr);
VdbeCoverage(v);
sqlite3VdbeJumpHere(v, addr+1); /* The OP_Goto */
}
/*
** Generate code to set the accumulator register for each window function
** in the linked list passed as the second argument to NULL. And perform
** any equivalent initialization required by any built-in window functions
** in the list.
*/
static int windowInitAccum(Parse *pParse, Window *pMWin){
Vdbe *v = sqlite3GetVdbe(pParse);
int regArg;
int nArg = 0;
Window *pWin;
for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
FuncDef *pFunc = pWin->pFunc;
sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
nArg = MAX(nArg, windowArgCount(pWin));
if( pFunc->zName==nth_valueName
|| pFunc->zName==first_valueName
){
sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp);
sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
}
if( (pFunc->funcFlags & SQLITE_FUNC_MINMAX) && pWin->csrApp ){
assert( pWin->eStart!=TK_UNBOUNDED );
sqlite3VdbeAddOp1(v, OP_ResetSorter, pWin->csrApp);
sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
}
}
regArg = pParse->nMem+1;
pParse->nMem += nArg;
return regArg;
}
/*
** This function does the work of sqlite3WindowCodeStep() for all "ROWS"
** window frame types except for "BETWEEN UNBOUNDED PRECEDING AND CURRENT
** ROW". Pseudo-code for each follows.
**
** ROWS BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING
**
** ...
** if( new partition ){
** Gosub flush_partition
** }
** Insert (record in eph-table)
** sqlite3WhereEnd()
** Gosub flush_partition
**
** flush_partition:
** Once {
** OpenDup (iEphCsr -> csrStart)
** OpenDup (iEphCsr -> csrEnd)
** }
** regStart = <expr1> // PRECEDING expression
** regEnd = <expr2> // FOLLOWING expression
** if( regStart<0 || regEnd<0 ){ error! }
** Rewind (csr,csrStart,csrEnd) // if EOF goto flush_partition_done
** Next(csrEnd) // if EOF skip Aggstep
** Aggstep (csrEnd)
** if( (regEnd--)<=0 ){
** AggFinal (xValue)
** Gosub addrGosub
** Next(csr) // if EOF goto flush_partition_done
** if( (regStart--)<=0 ){
** AggInverse (csrStart)
** Next(csrStart)
** }
** }
** flush_partition_done:
** ResetSorter (csr)
** Return
**
** ROWS BETWEEN <expr> PRECEDING AND CURRENT ROW
** ROWS BETWEEN CURRENT ROW AND <expr> FOLLOWING
** ROWS BETWEEN UNBOUNDED PRECEDING AND <expr> FOLLOWING
**
** These are similar to the above. For "CURRENT ROW", intialize the
** register to 0. For "UNBOUNDED PRECEDING" to infinity.
**
** ROWS BETWEEN <expr> PRECEDING AND UNBOUNDED FOLLOWING
** ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING
**
** Rewind (csr,csrStart,csrEnd) // if EOF goto flush_partition_done
** while( 1 ){
** Next(csrEnd) // Exit while(1) at EOF
** Aggstep (csrEnd)
** }
** while( 1 ){
** AggFinal (xValue)
** Gosub addrGosub
** Next(csr) // if EOF goto flush_partition_done
** if( (regStart--)<=0 ){
** AggInverse (csrStart)
** Next(csrStart)
** }
** }
**
** For the "CURRENT ROW AND UNBOUNDED FOLLOWING" case, the final if()
** condition is always true (as if regStart were initialized to 0).
**
** RANGE BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING
**
** This is the only RANGE case handled by this routine. It modifies the
** second while( 1 ) loop in "ROWS BETWEEN CURRENT ... UNBOUNDED..." to
** be:
**
** while( 1 ){
** AggFinal (xValue)
** while( 1 ){
** regPeer++
** Gosub addrGosub
** Next(csr) // if EOF goto flush_partition_done
** if( new peer ) break;
** }
** while( (regPeer--)>0 ){
** AggInverse (csrStart)
** Next(csrStart)
** }
** }
**
** ROWS BETWEEN <expr> FOLLOWING AND <expr> FOLLOWING
**
** regEnd = regEnd - regStart
** Rewind (csr,csrStart,csrEnd) // if EOF goto flush_partition_done
** Aggstep (csrEnd)
** Next(csrEnd) // if EOF fall-through
** if( (regEnd--)<=0 ){
** if( (regStart--)<=0 ){
** AggFinal (xValue)
** Gosub addrGosub
** Next(csr) // if EOF goto flush_partition_done
** }
** AggInverse (csrStart)
** Next (csrStart)
** }
**
** ROWS BETWEEN <expr> PRECEDING AND <expr> PRECEDING
**
** Replace the bit after "Rewind" in the above with:
**
** if( (regEnd--)<=0 ){
** AggStep (csrEnd)
** Next (csrEnd)
** }
** AggFinal (xValue)
** Gosub addrGosub
** Next(csr) // if EOF goto flush_partition_done
** if( (regStart--)<=0 ){
** AggInverse (csr2)
** Next (csr2)
** }
**
*/
static void windowCodeRowExprStep(
Parse *pParse,
Select *p,
WhereInfo *pWInfo,
int regGosub,
int addrGosub
){
Window *pMWin = p->pWin;
Vdbe *v = sqlite3GetVdbe(pParse);
int regFlushPart; /* Register for "Gosub flush_partition" */
int lblFlushPart; /* Label for "Gosub flush_partition" */
int lblFlushDone; /* Label for "Gosub flush_partition_done" */
int regArg;
int addr;
int csrStart = pParse->nTab++;
int csrEnd = pParse->nTab++;
int regStart; /* Value of <expr> PRECEDING */
int regEnd; /* Value of <expr> FOLLOWING */
int addrGoto;
int addrTop;
int addrIfPos1 = 0;
int addrIfPos2 = 0;
int regSize = 0;
assert( pMWin->eStart==TK_PRECEDING
|| pMWin->eStart==TK_CURRENT
|| pMWin->eStart==TK_FOLLOWING
|| pMWin->eStart==TK_UNBOUNDED
);
assert( pMWin->eEnd==TK_FOLLOWING
|| pMWin->eEnd==TK_CURRENT
|| pMWin->eEnd==TK_UNBOUNDED
|| pMWin->eEnd==TK_PRECEDING
);
/* Allocate register and label for the "flush_partition" sub-routine. */
regFlushPart = ++pParse->nMem;
lblFlushPart = sqlite3VdbeMakeLabel(v);
lblFlushDone = sqlite3VdbeMakeLabel(v);
regStart = ++pParse->nMem;
regEnd = ++pParse->nMem;
windowPartitionCache(pParse, p, pWInfo, regFlushPart, lblFlushPart, ®Size);
addrGoto = sqlite3VdbeAddOp0(v, OP_Goto);
/* Start of "flush_partition" */
sqlite3VdbeResolveLabel(v, lblFlushPart);
sqlite3VdbeAddOp2(v, OP_Once, 0, sqlite3VdbeCurrentAddr(v)+3);
VdbeCoverage(v);
VdbeComment((v, "Flush_partition subroutine"));
sqlite3VdbeAddOp2(v, OP_OpenDup, csrStart, pMWin->iEphCsr);
sqlite3VdbeAddOp2(v, OP_OpenDup, csrEnd, pMWin->iEphCsr);
/* If either regStart or regEnd are not non-negative integers, throw
** an exception. */
if( pMWin->pStart ){
sqlite3ExprCode(pParse, pMWin->pStart, regStart);
windowCheckIntValue(pParse, regStart, 0);
}
if( pMWin->pEnd ){
sqlite3ExprCode(pParse, pMWin->pEnd, regEnd);
windowCheckIntValue(pParse, regEnd, 1);
}
/* If this is "ROWS <expr1> FOLLOWING AND ROWS <expr2> FOLLOWING", do:
**
** if( regEnd<regStart ){
** // The frame always consists of 0 rows
** regStart = regSize;
** }
** regEnd = regEnd - regStart;
*/
if( pMWin->pEnd && pMWin->eStart==TK_FOLLOWING ){
assert( pMWin->pStart!=0 );
assert( pMWin->eEnd==TK_FOLLOWING );
sqlite3VdbeAddOp3(v, OP_Ge, regStart, sqlite3VdbeCurrentAddr(v)+2, regEnd);
VdbeCoverageNeverNull(v);
sqlite3VdbeAddOp2(v, OP_Copy, regSize, regStart);
sqlite3VdbeAddOp3(v, OP_Subtract, regStart, regEnd, regEnd);
}
if( pMWin->pStart && pMWin->eEnd==TK_PRECEDING ){
assert( pMWin->pEnd!=0 );
assert( pMWin->eStart==TK_PRECEDING );
sqlite3VdbeAddOp3(v, OP_Le, regStart, sqlite3VdbeCurrentAddr(v)+3, regEnd);
VdbeCoverageNeverNull(v);
sqlite3VdbeAddOp2(v, OP_Copy, regSize, regStart);
sqlite3VdbeAddOp2(v, OP_Copy, regSize, regEnd);
}
/* Initialize the accumulator register for each window function to NULL */
regArg = windowInitAccum(pParse, pMWin);
sqlite3VdbeAddOp2(v, OP_Rewind, pMWin->iEphCsr, lblFlushDone);
VdbeCoverage(v);
sqlite3VdbeAddOp2(v, OP_Rewind, csrStart, lblFlushDone);
VdbeCoverageNeverTaken(v);
sqlite3VdbeChangeP5(v, 1);
sqlite3VdbeAddOp2(v, OP_Rewind, csrEnd, lblFlushDone);
VdbeCoverageNeverTaken(v);
sqlite3VdbeChangeP5(v, 1);
/* Invoke AggStep function for each window function using the row that
** csrEnd currently points to. Or, if csrEnd is already at EOF,
** do nothing. */
addrTop = sqlite3VdbeCurrentAddr(v);
if( pMWin->eEnd==TK_PRECEDING ){
addrIfPos1 = sqlite3VdbeAddOp3(v, OP_IfPos, regEnd, 0 , 1);
VdbeCoverage(v);
}
sqlite3VdbeAddOp2(v, OP_Next, csrEnd, sqlite3VdbeCurrentAddr(v)+2);
VdbeCoverage(v);
addr = sqlite3VdbeAddOp0(v, OP_Goto);
windowAggStep(pParse, pMWin, csrEnd, 0, regArg, regSize);
if( pMWin->eEnd==TK_UNBOUNDED ){
sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
sqlite3VdbeJumpHere(v, addr);
addrTop = sqlite3VdbeCurrentAddr(v);
}else{
sqlite3VdbeJumpHere(v, addr);
if( pMWin->eEnd==TK_PRECEDING ){
sqlite3VdbeJumpHere(v, addrIfPos1);
}
}
if( pMWin->eEnd==TK_FOLLOWING ){
addrIfPos1 = sqlite3VdbeAddOp3(v, OP_IfPos, regEnd, 0 , 1);
VdbeCoverage(v);
}
if( pMWin->eStart==TK_FOLLOWING ){
addrIfPos2 = sqlite3VdbeAddOp3(v, OP_IfPos, regStart, 0 , 1);
VdbeCoverage(v);
}
windowAggFinal(pParse, pMWin, 0);
windowReturnOneRow(pParse, pMWin, regGosub, addrGosub);
sqlite3VdbeAddOp2(v, OP_Next, pMWin->iEphCsr, sqlite3VdbeCurrentAddr(v)+2);
VdbeCoverage(v);
sqlite3VdbeAddOp2(v, OP_Goto, 0, lblFlushDone);
if( pMWin->eStart==TK_FOLLOWING ){
sqlite3VdbeJumpHere(v, addrIfPos2);
}
if( pMWin->eStart==TK_CURRENT
|| pMWin->eStart==TK_PRECEDING
|| pMWin->eStart==TK_FOLLOWING
){
int lblSkipInverse = sqlite3VdbeMakeLabel(v);;
if( pMWin->eStart==TK_PRECEDING ){
sqlite3VdbeAddOp3(v, OP_IfPos, regStart, lblSkipInverse, 1);
VdbeCoverage(v);
}
if( pMWin->eStart==TK_FOLLOWING ){
sqlite3VdbeAddOp2(v, OP_Next, csrStart, sqlite3VdbeCurrentAddr(v)+2);
VdbeCoverage(v);
sqlite3VdbeAddOp2(v, OP_Goto, 0, lblSkipInverse);
}else{
sqlite3VdbeAddOp2(v, OP_Next, csrStart, sqlite3VdbeCurrentAddr(v)+1);
VdbeCoverageAlwaysTaken(v);
}
windowAggStep(pParse, pMWin, csrStart, 1, regArg, regSize);
sqlite3VdbeResolveLabel(v, lblSkipInverse);
}
if( pMWin->eEnd==TK_FOLLOWING ){
sqlite3VdbeJumpHere(v, addrIfPos1);
}
sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
/* flush_partition_done: */
sqlite3VdbeResolveLabel(v, lblFlushDone);
sqlite3VdbeAddOp1(v, OP_ResetSorter, pMWin->iEphCsr);
sqlite3VdbeAddOp1(v, OP_Return, regFlushPart);
VdbeComment((v, "end flush_partition subroutine"));
/* Jump to here to skip over flush_partition */
sqlite3VdbeJumpHere(v, addrGoto);
}
/*
** This function does the work of sqlite3WindowCodeStep() for cases that
** would normally be handled by windowCodeDefaultStep() when there are
** one or more built-in window-functions that require the entire partition
** to be cached in a temp table before any rows can be returned. Additionally.
** "RANGE BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING" is always handled by
** this function.
**
** Pseudo-code corresponding to the VM code generated by this function
** for each type of window follows.
**
** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
**
** flush_partition:
** Once {
** OpenDup (iEphCsr -> csrLead)
** }
** Integer ctr 0
** foreach row (csrLead){
** if( new peer ){
** AggFinal (xValue)
** for(i=0; i<ctr; i++){
** Gosub addrGosub
** Next iEphCsr
** }
** Integer ctr 0
** }
** AggStep (csrLead)
** Incr ctr
** }
**
** AggFinal (xFinalize)
** for(i=0; i<ctr; i++){
** Gosub addrGosub
** Next iEphCsr
** }
**
** ResetSorter (csr)
** Return
**
** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
**
** As above, except that the "if( new peer )" branch is always taken.
**
** RANGE BETWEEN CURRENT ROW AND CURRENT ROW
**
** As above, except that each of the for() loops becomes:
**
** for(i=0; i<ctr; i++){
** Gosub addrGosub
** AggInverse (iEphCsr)
** Next iEphCsr
** }
**
** RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
**
** flush_partition:
** Once {
** OpenDup (iEphCsr -> csrLead)
** }
** foreach row (csrLead) {
** AggStep (csrLead)
** }
** foreach row (iEphCsr) {
** Gosub addrGosub
** }
**
** RANGE BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING
**
** flush_partition:
** Once {
** OpenDup (iEphCsr -> csrLead)
** }
** foreach row (csrLead){
** AggStep (csrLead)
** }
** Rewind (csrLead)
** Integer ctr 0
** foreach row (csrLead){
** if( new peer ){
** AggFinal (xValue)
** for(i=0; i<ctr; i++){
** Gosub addrGosub
** AggInverse (iEphCsr)
** Next iEphCsr
** }
** Integer ctr 0
** }
** Incr ctr
** }
**
** AggFinal (xFinalize)
** for(i=0; i<ctr; i++){
** Gosub addrGosub
** Next iEphCsr
** }
**
** ResetSorter (csr)
** Return
*/
static void windowCodeCacheStep(
Parse *pParse,
Select *p,
WhereInfo *pWInfo,
int regGosub,
int addrGosub
){
Window *pMWin = p->pWin;
Vdbe *v = sqlite3GetVdbe(pParse);
int k;
int addr;
ExprList *pPart = pMWin->pPartition;
ExprList *pOrderBy = pMWin->pOrderBy;
int nPeer = pOrderBy ? pOrderBy->nExpr : 0;
int regNewPeer;
int addrGoto; /* Address of Goto used to jump flush_par.. */
int addrNext; /* Jump here for next iteration of loop */
int regFlushPart;
int lblFlushPart;
int csrLead;
int regCtr;
int regArg; /* Register array to martial function args */
int regSize;
int lblEmpty;
int bReverse = pMWin->pOrderBy && pMWin->eStart==TK_CURRENT
&& pMWin->eEnd==TK_UNBOUNDED;
assert( (pMWin->eStart==TK_UNBOUNDED && pMWin->eEnd==TK_CURRENT)
|| (pMWin->eStart==TK_UNBOUNDED && pMWin->eEnd==TK_UNBOUNDED)
|| (pMWin->eStart==TK_CURRENT && pMWin->eEnd==TK_CURRENT)
|| (pMWin->eStart==TK_CURRENT && pMWin->eEnd==TK_UNBOUNDED)
);
lblEmpty = sqlite3VdbeMakeLabel(v);
regNewPeer = pParse->nMem+1;
pParse->nMem += nPeer;
/* Allocate register and label for the "flush_partition" sub-routine. */
regFlushPart = ++pParse->nMem;
lblFlushPart = sqlite3VdbeMakeLabel(v);
csrLead = pParse->nTab++;
regCtr = ++pParse->nMem;
windowPartitionCache(pParse, p, pWInfo, regFlushPart, lblFlushPart, ®Size);
addrGoto = sqlite3VdbeAddOp0(v, OP_Goto);
/* Start of "flush_partition" */
sqlite3VdbeResolveLabel(v, lblFlushPart);
sqlite3VdbeAddOp2(v, OP_Once, 0, sqlite3VdbeCurrentAddr(v)+2);
VdbeCoverage(v);
sqlite3VdbeAddOp2(v, OP_OpenDup, csrLead, pMWin->iEphCsr);
/* Initialize the accumulator register for each window function to NULL */
regArg = windowInitAccum(pParse, pMWin);
sqlite3VdbeAddOp2(v, OP_Integer, 0, regCtr);
sqlite3VdbeAddOp2(v, OP_Rewind, csrLead, lblEmpty);
VdbeCoverage(v);
sqlite3VdbeAddOp2(v, OP_Rewind, pMWin->iEphCsr, lblEmpty);
VdbeCoverageNeverTaken(v);
if( bReverse ){
int addr2 = sqlite3VdbeCurrentAddr(v);
windowAggStep(pParse, pMWin, csrLead, 0, regArg, regSize);
sqlite3VdbeAddOp2(v, OP_Next, csrLead, addr2);
VdbeCoverage(v);
sqlite3VdbeAddOp2(v, OP_Rewind, csrLead, lblEmpty);
VdbeCoverageNeverTaken(v);
}
addrNext = sqlite3VdbeCurrentAddr(v);
if( pOrderBy && (pMWin->eEnd==TK_CURRENT || pMWin->eStart==TK_CURRENT) ){
int bCurrent = (pMWin->eStart==TK_CURRENT);
int addrJump = 0; /* Address of OP_Jump below */
if( pMWin->eType==TK_RANGE ){
int iOff = pMWin->nBufferCol + (pPart ? pPart->nExpr : 0);
int regPeer = pMWin->regPart + (pPart ? pPart->nExpr : 0);
KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOrderBy, 0, 0);
for(k=0; k<nPeer; k++){
sqlite3VdbeAddOp3(v, OP_Column, csrLead, iOff+k, regNewPeer+k);
}
addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPeer, regPeer, nPeer);
sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
addrJump = sqlite3VdbeAddOp3(v, OP_Jump, addr+2, 0, addr+2);
VdbeCoverage(v);
sqlite3VdbeAddOp3(v, OP_Copy, regNewPeer, regPeer, nPeer-1);
}
windowReturnRows(pParse, pMWin, regCtr, regGosub, addrGosub,
(bCurrent ? regArg : 0), (bCurrent ? regSize : 0)
);
if( addrJump ) sqlite3VdbeJumpHere(v, addrJump);
}
if( bReverse==0 ){
windowAggStep(pParse, pMWin, csrLead, 0, regArg, regSize);
}
sqlite3VdbeAddOp2(v, OP_AddImm, regCtr, 1);
sqlite3VdbeAddOp2(v, OP_Next, csrLead, addrNext);
VdbeCoverage(v);
windowReturnRows(pParse, pMWin, regCtr, regGosub, addrGosub, 0, 0);
sqlite3VdbeResolveLabel(v, lblEmpty);
sqlite3VdbeAddOp1(v, OP_ResetSorter, pMWin->iEphCsr);
sqlite3VdbeAddOp1(v, OP_Return, regFlushPart);
/* Jump to here to skip over flush_partition */
sqlite3VdbeJumpHere(v, addrGoto);
}
/*
** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
**
** ...
** if( new partition ){
** AggFinal (xFinalize)
** Gosub addrGosub
** ResetSorter eph-table
** }
** else if( new peer ){
** AggFinal (xValue)
** Gosub addrGosub
** ResetSorter eph-table
** }
** AggStep
** Insert (record into eph-table)
** sqlite3WhereEnd()
** AggFinal (xFinalize)
** Gosub addrGosub
**
** RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
**
** As above, except take no action for a "new peer". Invoke
** the sub-routine once only for each partition.
**
** RANGE BETWEEN CURRENT ROW AND CURRENT ROW
**
** As above, except that the "new peer" condition is handled in the
** same way as "new partition" (so there is no "else if" block).
**
** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
**
** As above, except assume every row is a "new peer".
*/
static void windowCodeDefaultStep(
Parse *pParse,
Select *p,
WhereInfo *pWInfo,
int regGosub,
int addrGosub
){
Window *pMWin = p->pWin;
Vdbe *v = sqlite3GetVdbe(pParse);
int k;
int iSubCsr = p->pSrc->a[0].iCursor;
int nSub = p->pSrc->a[0].pTab->nCol;
int reg = pParse->nMem+1;
int regRecord = reg+nSub;
int regRowid = regRecord+1;
int addr;
ExprList *pPart = pMWin->pPartition;
ExprList *pOrderBy = pMWin->pOrderBy;
assert( pMWin->eType==TK_RANGE
|| (pMWin->eStart==TK_UNBOUNDED && pMWin->eEnd==TK_CURRENT)
);
assert( (pMWin->eStart==TK_UNBOUNDED && pMWin->eEnd==TK_CURRENT)
|| (pMWin->eStart==TK_UNBOUNDED && pMWin->eEnd==TK_UNBOUNDED)
|| (pMWin->eStart==TK_CURRENT && pMWin->eEnd==TK_CURRENT)
|| (pMWin->eStart==TK_CURRENT && pMWin->eEnd==TK_UNBOUNDED && !pOrderBy)
);
if( pMWin->eEnd==TK_UNBOUNDED ){
pOrderBy = 0;
}
pParse->nMem += nSub + 2;
/* Load the individual column values of the row returned by
** the sub-select into an array of registers. */
for(k=0; k<nSub; k++){
sqlite3VdbeAddOp3(v, OP_Column, iSubCsr, k, reg+k);
}
/* Check if this is the start of a new partition or peer group. */
if( pPart || pOrderBy ){
int nPart = (pPart ? pPart->nExpr : 0);
int addrGoto = 0;
int addrJump = 0;
int nPeer = (pOrderBy ? pOrderBy->nExpr : 0);
if( pPart ){
int regNewPart = reg + pMWin->nBufferCol;
KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pPart, 0, 0);
addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPart, pMWin->regPart,nPart);
sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
addrJump = sqlite3VdbeAddOp3(v, OP_Jump, addr+2, 0, addr+2);
VdbeCoverageEqNe(v);
windowAggFinal(pParse, pMWin, 1);
if( pOrderBy ){
addrGoto = sqlite3VdbeAddOp0(v, OP_Goto);
}
}
if( pOrderBy ){
int regNewPeer = reg + pMWin->nBufferCol + nPart;
int regPeer = pMWin->regPart + nPart;
if( addrJump ) sqlite3VdbeJumpHere(v, addrJump);
if( pMWin->eType==TK_RANGE ){
KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOrderBy, 0, 0);
addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPeer, regPeer, nPeer);
sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
addrJump = sqlite3VdbeAddOp3(v, OP_Jump, addr+2, 0, addr+2);
VdbeCoverage(v);
}else{
addrJump = 0;
}
windowAggFinal(pParse, pMWin, pMWin->eStart==TK_CURRENT);
if( addrGoto ) sqlite3VdbeJumpHere(v, addrGoto);
}
sqlite3VdbeAddOp2(v, OP_Rewind, pMWin->iEphCsr,sqlite3VdbeCurrentAddr(v)+3);
VdbeCoverage(v);
sqlite3VdbeAddOp2(v, OP_Gosub, regGosub, addrGosub);
sqlite3VdbeAddOp2(v, OP_Next, pMWin->iEphCsr, sqlite3VdbeCurrentAddr(v)-1);
VdbeCoverage(v);
sqlite3VdbeAddOp1(v, OP_ResetSorter, pMWin->iEphCsr);
sqlite3VdbeAddOp3(
v, OP_Copy, reg+pMWin->nBufferCol, pMWin->regPart, nPart+nPeer-1
);
if( addrJump ) sqlite3VdbeJumpHere(v, addrJump);
}
/* Invoke step function for window functions */
windowAggStep(pParse, pMWin, -1, 0, reg, 0);
/* Buffer the current row in the ephemeral table. */
if( pMWin->nBufferCol>0 ){
sqlite3VdbeAddOp3(v, OP_MakeRecord, reg, pMWin->nBufferCol, regRecord);
}else{
sqlite3VdbeAddOp2(v, OP_Blob, 0, regRecord);
sqlite3VdbeAppendP4(v, (void*)"", 0);
}
sqlite3VdbeAddOp2(v, OP_NewRowid, pMWin->iEphCsr, regRowid);
sqlite3VdbeAddOp3(v, OP_Insert, pMWin->iEphCsr, regRecord, regRowid);
/* End the database scan loop. */
sqlite3WhereEnd(pWInfo);
windowAggFinal(pParse, pMWin, 1);
sqlite3VdbeAddOp2(v, OP_Rewind, pMWin->iEphCsr,sqlite3VdbeCurrentAddr(v)+3);
VdbeCoverage(v);
sqlite3VdbeAddOp2(v, OP_Gosub, regGosub, addrGosub);
sqlite3VdbeAddOp2(v, OP_Next, pMWin->iEphCsr, sqlite3VdbeCurrentAddr(v)-1);
VdbeCoverage(v);
}
/*
** Allocate and return a duplicate of the Window object indicated by the
** third argument. Set the Window.pOwner field of the new object to
** pOwner.
*/
Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p){
Window *pNew = 0;
if( ALWAYS(p) ){
pNew = sqlite3DbMallocZero(db, sizeof(Window));
if( pNew ){
pNew->zName = sqlite3DbStrDup(db, p->zName);
pNew->pFilter = sqlite3ExprDup(db, p->pFilter, 0);
pNew->pPartition = sqlite3ExprListDup(db, p->pPartition, 0);
pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, 0);
pNew->eType = p->eType;
pNew->eEnd = p->eEnd;
pNew->eStart = p->eStart;
pNew->pStart = sqlite3ExprDup(db, p->pStart, 0);
pNew->pEnd = sqlite3ExprDup(db, p->pEnd, 0);
pNew->pOwner = pOwner;
}
}
return pNew;
}
/*
** Return a copy of the linked list of Window objects passed as the
** second argument.
*/
Window *sqlite3WindowListDup(sqlite3 *db, Window *p){
Window *pWin;
Window *pRet = 0;
Window **pp = &pRet;
for(pWin=p; pWin; pWin=pWin->pNextWin){
*pp = sqlite3WindowDup(db, 0, pWin);
if( *pp==0 ) break;
pp = &((*pp)->pNextWin);
}
return pRet;
}
/*
** sqlite3WhereBegin() has already been called for the SELECT statement
** passed as the second argument when this function is invoked. It generates
** code to populate the Window.regResult register for each window function and
** invoke the sub-routine at instruction addrGosub once for each row.
** This function calls sqlite3WhereEnd() before returning.
*/
void sqlite3WindowCodeStep(
Parse *pParse, /* Parse context */
Select *p, /* Rewritten SELECT statement */
WhereInfo *pWInfo, /* Context returned by sqlite3WhereBegin() */
int regGosub, /* Register for OP_Gosub */
int addrGosub /* OP_Gosub here to return each row */
){
Window *pMWin = p->pWin;
/* There are three different functions that may be used to do the work
** of this one, depending on the window frame and the specific built-in
** window functions used (if any).
**
** windowCodeRowExprStep() handles all "ROWS" window frames, except for:
**
** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
**
** The exception is because windowCodeRowExprStep() implements all window
** frame types by caching the entire partition in a temp table, and
** "ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW" is easy enough to
** implement without such a cache.
**
** windowCodeCacheStep() is used for:
**
** RANGE BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING
**
** It is also used for anything not handled by windowCodeRowExprStep()
** that invokes a built-in window function that requires the entire
** partition to be cached in a temp table before any rows are returned
** (e.g. nth_value() or percent_rank()).
**
** Finally, assuming there is no built-in window function that requires
** the partition to be cached, windowCodeDefaultStep() is used for:
**
** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
** RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
** RANGE BETWEEN CURRENT ROW AND CURRENT ROW
** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
**
** windowCodeDefaultStep() is the only one of the three functions that
** does not cache each partition in a temp table before beginning to
** return rows.
*/
if( pMWin->eType==TK_ROWS
&& (pMWin->eStart!=TK_UNBOUNDED||pMWin->eEnd!=TK_CURRENT||!pMWin->pOrderBy)
){
VdbeModuleComment((pParse->pVdbe, "Begin RowExprStep()"));
windowCodeRowExprStep(pParse, p, pWInfo, regGosub, addrGosub);
}else{
Window *pWin;
int bCache = 0; /* True to use CacheStep() */
if( pMWin->eStart==TK_CURRENT && pMWin->eEnd==TK_UNBOUNDED ){
bCache = 1;
}else{
for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
FuncDef *pFunc = pWin->pFunc;
if( (pFunc->funcFlags & SQLITE_FUNC_WINDOW_SIZE)
|| (pFunc->zName==nth_valueName)
|| (pFunc->zName==first_valueName)
|| (pFunc->zName==leadName)
|| (pFunc->zName==lagName)
){
bCache = 1;
break;
}
}
}
/* Otherwise, call windowCodeDefaultStep(). */
if( bCache ){
VdbeModuleComment((pParse->pVdbe, "Begin CacheStep()"));
windowCodeCacheStep(pParse, p, pWInfo, regGosub, addrGosub);
}else{
VdbeModuleComment((pParse->pVdbe, "Begin DefaultStep()"));
windowCodeDefaultStep(pParse, p, pWInfo, regGosub, addrGosub);
}
}
}
#endif /* SQLITE_OMIT_WINDOWFUNC */