Blob Blame History Raw
/* gcm.c

   Galois counter mode, specified by NIST,
   http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf

   See also the gcm paper at
   http://www.cryptobarn.com/papers/gcm-spec.pdf.

   Copyright (C) 2011, 2013 Niels Möller
   Copyright (C) 2011 Katholieke Universiteit Leuven
   
   Contributed by Nikos Mavrogiannopoulos

   This file is part of GNU Nettle.

   GNU Nettle is free software: you can redistribute it and/or
   modify it under the terms of either:

     * the GNU Lesser General Public License as published by the Free
       Software Foundation; either version 3 of the License, or (at your
       option) any later version.

   or

     * the GNU General Public License as published by the Free
       Software Foundation; either version 2 of the License, or (at your
       option) any later version.

   or both in parallel, as here.

   GNU Nettle is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   General Public License for more details.

   You should have received copies of the GNU General Public License and
   the GNU Lesser General Public License along with this program.  If
   not, see http://www.gnu.org/licenses/.
*/

#if HAVE_CONFIG_H
# include "config.h"
#endif

#include <assert.h>
#include <stdlib.h>
#include <string.h>

#include "gcm.h"

#include "memxor.h"
#include "nettle-internal.h"
#include "macros.h"

#define GHASH_POLYNOMIAL 0xE1UL

static void
gcm_gf_add (union nettle_block16 *r,
	    const union nettle_block16 *x, const union nettle_block16 *y)
{
  r->w[0] = x->w[0] ^ y->w[0];
  r->w[1] = x->w[1] ^ y->w[1];
#if SIZEOF_LONG == 4
  r->w[2] = x->w[2] ^ y->w[2];
  r->w[3] = x->w[3] ^ y->w[3];
#endif      
}
/* Multiplication by 010...0; a big-endian shift right. If the bit
   shifted out is one, the defining polynomial is added to cancel it
   out. r == x is allowed. */
static void
gcm_gf_shift (union nettle_block16 *r, const union nettle_block16 *x)
{
  long mask;

  /* Shift uses big-endian representation. */
#if WORDS_BIGENDIAN
# if SIZEOF_LONG == 4
  mask = - (x->w[3] & 1);
  r->w[3] = (x->w[3] >> 1) | ((x->w[2] & 1) << 31);
  r->w[2] = (x->w[2] >> 1) | ((x->w[1] & 1) << 31);
  r->w[1] = (x->w[1] >> 1) | ((x->w[0] & 1) << 31);
  r->w[0] = (x->w[0] >> 1) ^ (mask & (GHASH_POLYNOMIAL << 24)); 
# elif SIZEOF_LONG == 8
  mask = - (x->w[1] & 1);
  r->w[1] = (x->w[1] >> 1) | ((x->w[0] & 1) << 63);
  r->w[0] = (x->w[0] >> 1) ^ (mask & (GHASH_POLYNOMIAL << 56));
# else
#  error Unsupported word size. */
#endif
#else /* ! WORDS_BIGENDIAN */
# if SIZEOF_LONG == 4
#define RSHIFT_WORD(x) \
  ((((x) & 0xfefefefeUL) >> 1) \
   | (((x) & 0x00010101) << 15))
  mask = - ((x->w[3] >> 24) & 1);
  r->w[3] = RSHIFT_WORD(x->w[3]) | ((x->w[2] >> 17) & 0x80);
  r->w[2] = RSHIFT_WORD(x->w[2]) | ((x->w[1] >> 17) & 0x80);
  r->w[1] = RSHIFT_WORD(x->w[1]) | ((x->w[0] >> 17) & 0x80);
  r->w[0] = RSHIFT_WORD(x->w[0]) ^ (mask & GHASH_POLYNOMIAL);
# elif SIZEOF_LONG == 8
#define RSHIFT_WORD(x) \
  ((((x) & 0xfefefefefefefefeUL) >> 1) \
   | (((x) & 0x0001010101010101UL) << 15))
  mask = - ((x->w[1] >> 56) & 1);
  r->w[1] = RSHIFT_WORD(x->w[1]) | ((x->w[0] >> 49) & 0x80);
  r->w[0] = RSHIFT_WORD(x->w[0]) ^ (mask & GHASH_POLYNOMIAL);
# else
#  error Unsupported word size. */
# endif
# undef RSHIFT_WORD
#endif /* ! WORDS_BIGENDIAN */
}

#if GCM_TABLE_BITS == 0
/* Sets x <- x * y mod r, using the plain bitwise algorithm from the
   specification. y may be shorter than a full block, missing bytes
   are assumed zero. */
static void
gcm_gf_mul (union nettle_block16 *x, const union nettle_block16 *y)
{
  union nettle_block16 V;
  union nettle_block16 Z;
  unsigned i;

  memcpy(V.b, x, sizeof(V));
  memset(Z.b, 0, sizeof(Z));

  for (i = 0; i < GCM_BLOCK_SIZE; i++)
    {
      uint8_t b = y->b[i];
      unsigned j;
      for (j = 0; j < 8; j++, b <<= 1)
	{
	  if (b & 0x80)
	    gcm_gf_add(&Z, &Z, &V);
	  
	  gcm_gf_shift(&V, &V);
	}
    }
  memcpy (x->b, Z.b, sizeof(Z));
}
#else /* GCM_TABLE_BITS != 0 */

# if WORDS_BIGENDIAN
#  define W(left,right) (0x##left##right)
# else
#  define W(left,right) (0x##right##left)
# endif

# if GCM_TABLE_BITS == 4
static const uint16_t
shift_table[0x10] = {
  W(00,00),W(1c,20),W(38,40),W(24,60),W(70,80),W(6c,a0),W(48,c0),W(54,e0),
  W(e1,00),W(fd,20),W(d9,40),W(c5,60),W(91,80),W(8d,a0),W(a9,c0),W(b5,e0),
};

static void
gcm_gf_shift_4(union nettle_block16 *x)
{
  unsigned long *w = x->w;
  unsigned long reduce;

  /* Shift uses big-endian representation. */
#if WORDS_BIGENDIAN
# if SIZEOF_LONG == 4
  reduce = shift_table[w[3] & 0xf];
  w[3] = (w[3] >> 4) | ((w[2] & 0xf) << 28);
  w[2] = (w[2] >> 4) | ((w[1] & 0xf) << 28);
  w[1] = (w[1] >> 4) | ((w[0] & 0xf) << 28);
  w[0] = (w[0] >> 4) ^ (reduce << 16);
# elif SIZEOF_LONG == 8
  reduce = shift_table[w[1] & 0xf];
  w[1] = (w[1] >> 4) | ((w[0] & 0xf) << 60);
  w[0] = (w[0] >> 4) ^ (reduce << 48);
# else
#  error Unsupported word size. */
#endif
#else /* ! WORDS_BIGENDIAN */
# if SIZEOF_LONG == 4
#define RSHIFT_WORD(x) \
  ((((x) & 0xf0f0f0f0UL) >> 4)			\
   | (((x) & 0x000f0f0f) << 12))
  reduce = shift_table[(w[3] >> 24) & 0xf];
  w[3] = RSHIFT_WORD(w[3]) | ((w[2] >> 20) & 0xf0);
  w[2] = RSHIFT_WORD(w[2]) | ((w[1] >> 20) & 0xf0);
  w[1] = RSHIFT_WORD(w[1]) | ((w[0] >> 20) & 0xf0);
  w[0] = RSHIFT_WORD(w[0]) ^ reduce;
# elif SIZEOF_LONG == 8
#define RSHIFT_WORD(x) \
  ((((x) & 0xf0f0f0f0f0f0f0f0UL) >> 4) \
   | (((x) & 0x000f0f0f0f0f0f0fUL) << 12))
  reduce = shift_table[(w[1] >> 56) & 0xf];
  w[1] = RSHIFT_WORD(w[1]) | ((w[0] >> 52) & 0xf0);
  w[0] = RSHIFT_WORD(w[0]) ^ reduce;
# else
#  error Unsupported word size. */
# endif
# undef RSHIFT_WORD
#endif /* ! WORDS_BIGENDIAN */
}

static void
gcm_gf_mul (union nettle_block16 *x, const union nettle_block16 *table)
{
  union nettle_block16 Z;
  unsigned i;

  memset(Z.b, 0, sizeof(Z));

  for (i = GCM_BLOCK_SIZE; i-- > 0;)
    {
      uint8_t b = x->b[i];

      gcm_gf_shift_4(&Z);
      gcm_gf_add(&Z, &Z, &table[b & 0xf]);
      gcm_gf_shift_4(&Z);
      gcm_gf_add(&Z, &Z, &table[b >> 4]);
    }
  memcpy (x->b, Z.b, sizeof(Z));
}
# elif GCM_TABLE_BITS == 8
#  if HAVE_NATIVE_gcm_hash8

#define gcm_hash _nettle_gcm_hash8
void
_nettle_gcm_hash8 (const struct gcm_key *key, union nettle_block16 *x,
		   size_t length, const uint8_t *data);
#  else /* !HAVE_NATIVE_gcm_hash8 */
static const uint16_t
shift_table[0x100] = {
  W(00,00),W(01,c2),W(03,84),W(02,46),W(07,08),W(06,ca),W(04,8c),W(05,4e),
  W(0e,10),W(0f,d2),W(0d,94),W(0c,56),W(09,18),W(08,da),W(0a,9c),W(0b,5e),
  W(1c,20),W(1d,e2),W(1f,a4),W(1e,66),W(1b,28),W(1a,ea),W(18,ac),W(19,6e),
  W(12,30),W(13,f2),W(11,b4),W(10,76),W(15,38),W(14,fa),W(16,bc),W(17,7e),
  W(38,40),W(39,82),W(3b,c4),W(3a,06),W(3f,48),W(3e,8a),W(3c,cc),W(3d,0e),
  W(36,50),W(37,92),W(35,d4),W(34,16),W(31,58),W(30,9a),W(32,dc),W(33,1e),
  W(24,60),W(25,a2),W(27,e4),W(26,26),W(23,68),W(22,aa),W(20,ec),W(21,2e),
  W(2a,70),W(2b,b2),W(29,f4),W(28,36),W(2d,78),W(2c,ba),W(2e,fc),W(2f,3e),
  W(70,80),W(71,42),W(73,04),W(72,c6),W(77,88),W(76,4a),W(74,0c),W(75,ce),
  W(7e,90),W(7f,52),W(7d,14),W(7c,d6),W(79,98),W(78,5a),W(7a,1c),W(7b,de),
  W(6c,a0),W(6d,62),W(6f,24),W(6e,e6),W(6b,a8),W(6a,6a),W(68,2c),W(69,ee),
  W(62,b0),W(63,72),W(61,34),W(60,f6),W(65,b8),W(64,7a),W(66,3c),W(67,fe),
  W(48,c0),W(49,02),W(4b,44),W(4a,86),W(4f,c8),W(4e,0a),W(4c,4c),W(4d,8e),
  W(46,d0),W(47,12),W(45,54),W(44,96),W(41,d8),W(40,1a),W(42,5c),W(43,9e),
  W(54,e0),W(55,22),W(57,64),W(56,a6),W(53,e8),W(52,2a),W(50,6c),W(51,ae),
  W(5a,f0),W(5b,32),W(59,74),W(58,b6),W(5d,f8),W(5c,3a),W(5e,7c),W(5f,be),
  W(e1,00),W(e0,c2),W(e2,84),W(e3,46),W(e6,08),W(e7,ca),W(e5,8c),W(e4,4e),
  W(ef,10),W(ee,d2),W(ec,94),W(ed,56),W(e8,18),W(e9,da),W(eb,9c),W(ea,5e),
  W(fd,20),W(fc,e2),W(fe,a4),W(ff,66),W(fa,28),W(fb,ea),W(f9,ac),W(f8,6e),
  W(f3,30),W(f2,f2),W(f0,b4),W(f1,76),W(f4,38),W(f5,fa),W(f7,bc),W(f6,7e),
  W(d9,40),W(d8,82),W(da,c4),W(db,06),W(de,48),W(df,8a),W(dd,cc),W(dc,0e),
  W(d7,50),W(d6,92),W(d4,d4),W(d5,16),W(d0,58),W(d1,9a),W(d3,dc),W(d2,1e),
  W(c5,60),W(c4,a2),W(c6,e4),W(c7,26),W(c2,68),W(c3,aa),W(c1,ec),W(c0,2e),
  W(cb,70),W(ca,b2),W(c8,f4),W(c9,36),W(cc,78),W(cd,ba),W(cf,fc),W(ce,3e),
  W(91,80),W(90,42),W(92,04),W(93,c6),W(96,88),W(97,4a),W(95,0c),W(94,ce),
  W(9f,90),W(9e,52),W(9c,14),W(9d,d6),W(98,98),W(99,5a),W(9b,1c),W(9a,de),
  W(8d,a0),W(8c,62),W(8e,24),W(8f,e6),W(8a,a8),W(8b,6a),W(89,2c),W(88,ee),
  W(83,b0),W(82,72),W(80,34),W(81,f6),W(84,b8),W(85,7a),W(87,3c),W(86,fe),
  W(a9,c0),W(a8,02),W(aa,44),W(ab,86),W(ae,c8),W(af,0a),W(ad,4c),W(ac,8e),
  W(a7,d0),W(a6,12),W(a4,54),W(a5,96),W(a0,d8),W(a1,1a),W(a3,5c),W(a2,9e),
  W(b5,e0),W(b4,22),W(b6,64),W(b7,a6),W(b2,e8),W(b3,2a),W(b1,6c),W(b0,ae),
  W(bb,f0),W(ba,32),W(b8,74),W(b9,b6),W(bc,f8),W(bd,3a),W(bf,7c),W(be,be),
};

static void
gcm_gf_shift_8(union nettle_block16 *x)
{
  unsigned long *w = x->w;
  unsigned long reduce;

  /* Shift uses big-endian representation. */
#if WORDS_BIGENDIAN
# if SIZEOF_LONG == 4
  reduce = shift_table[w[3] & 0xff];
  w[3] = (w[3] >> 8) | ((w[2] & 0xff) << 24);
  w[2] = (w[2] >> 8) | ((w[1] & 0xff) << 24);
  w[1] = (w[1] >> 8) | ((w[0] & 0xff) << 24);
  w[0] = (w[0] >> 8) ^ (reduce << 16);
# elif SIZEOF_LONG == 8
  reduce = shift_table[w[1] & 0xff];
  w[1] = (w[1] >> 8) | ((w[0] & 0xff) << 56);
  w[0] = (w[0] >> 8) ^ (reduce << 48);
# else
#  error Unsupported word size. */
#endif
#else /* ! WORDS_BIGENDIAN */
# if SIZEOF_LONG == 4
  reduce = shift_table[(w[3] >> 24) & 0xff];
  w[3] = (w[3] << 8) | (w[2] >> 24);
  w[2] = (w[2] << 8) | (w[1] >> 24);
  w[1] = (w[1] << 8) | (w[0] >> 24);
  w[0] = (w[0] << 8) ^ reduce;
# elif SIZEOF_LONG == 8
  reduce = shift_table[(w[1] >> 56) & 0xff];
  w[1] = (w[1] << 8) | (w[0] >> 56);
  w[0] = (w[0] << 8) ^ reduce;
# else
#  error Unsupported word size. */
# endif
#endif /* ! WORDS_BIGENDIAN */
}

static void
gcm_gf_mul (union nettle_block16 *x, const union nettle_block16 *table)
{
  union nettle_block16 Z;
  unsigned i;

  memcpy(Z.b, table[x->b[GCM_BLOCK_SIZE-1]].b, GCM_BLOCK_SIZE);

  for (i = GCM_BLOCK_SIZE-2; i > 0; i--)
    {
      gcm_gf_shift_8(&Z);
      gcm_gf_add(&Z, &Z, &table[x->b[i]]);
    }
  gcm_gf_shift_8(&Z);
  gcm_gf_add(x, &Z, &table[x->b[0]]);
}
#  endif /* ! HAVE_NATIVE_gcm_hash8 */
# else /* GCM_TABLE_BITS != 8 */
#  error Unsupported table size. 
# endif /* GCM_TABLE_BITS != 8 */

#undef W

#endif /* GCM_TABLE_BITS */

/* Increment the rightmost 32 bits. */
#define INC32(block) INCREMENT(4, (block.b) + GCM_BLOCK_SIZE - 4)

/* Initialization of GCM.
 * @ctx: The context of GCM
 * @cipher: The context of the underlying block cipher
 * @f: The underlying cipher encryption function
 */
void
gcm_set_key(struct gcm_key *key,
	    const void *cipher, nettle_cipher_func *f)
{
  /* Middle element if GCM_TABLE_BITS > 0, otherwise the first
     element */
  unsigned i = (1<<GCM_TABLE_BITS)/2;

  /* H */  
  memset(key->h[0].b, 0, GCM_BLOCK_SIZE);
  f (cipher, GCM_BLOCK_SIZE, key->h[i].b, key->h[0].b);
  
#if GCM_TABLE_BITS
  /* Algorithm 3 from the gcm paper. First do powers of two, then do
     the rest by adding. */
  while (i /= 2)
    gcm_gf_shift(&key->h[i], &key->h[2*i]);
  for (i = 2; i < 1<<GCM_TABLE_BITS; i *= 2)
    {
      unsigned j;
      for (j = 1; j < i; j++)
	gcm_gf_add(&key->h[i+j], &key->h[i],&key->h[j]);
    }
#endif
}

#ifndef gcm_hash
static void
gcm_hash(const struct gcm_key *key, union nettle_block16 *x,
	 size_t length, const uint8_t *data)
{
  for (; length >= GCM_BLOCK_SIZE;
       length -= GCM_BLOCK_SIZE, data += GCM_BLOCK_SIZE)
    {
      memxor (x->b, data, GCM_BLOCK_SIZE);
      gcm_gf_mul (x, key->h);
    }
  if (length > 0)
    {
      memxor (x->b, data, length);
      gcm_gf_mul (x, key->h);
    }
}
#endif /* !gcm_hash */

static void
gcm_hash_sizes(const struct gcm_key *key, union nettle_block16 *x,
	       uint64_t auth_size, uint64_t data_size)
{
  uint8_t buffer[GCM_BLOCK_SIZE];

  data_size *= 8;
  auth_size *= 8;

  WRITE_UINT64 (buffer, auth_size);
  WRITE_UINT64 (buffer + 8, data_size);

  gcm_hash(key, x, GCM_BLOCK_SIZE, buffer);
}

/* NOTE: The key is needed only if length != GCM_IV_SIZE */
void
gcm_set_iv(struct gcm_ctx *ctx, const struct gcm_key *key,
	   size_t length, const uint8_t *iv)
{
  if (length == GCM_IV_SIZE)
    {
      memcpy (ctx->iv.b, iv, GCM_BLOCK_SIZE - 4);
      ctx->iv.b[GCM_BLOCK_SIZE - 4] = 0;
      ctx->iv.b[GCM_BLOCK_SIZE - 3] = 0;
      ctx->iv.b[GCM_BLOCK_SIZE - 2] = 0;
      ctx->iv.b[GCM_BLOCK_SIZE - 1] = 1;
    }
  else
    {
      memset(ctx->iv.b, 0, GCM_BLOCK_SIZE);
      gcm_hash(key, &ctx->iv, length, iv);
      gcm_hash_sizes(key, &ctx->iv, 0, length);
    }

  memcpy (ctx->ctr.b, ctx->iv.b, GCM_BLOCK_SIZE);
  INC32 (ctx->ctr);

  /* Reset the rest of the message-dependent state. */
  memset(ctx->x.b, 0, sizeof(ctx->x));
  ctx->auth_size = ctx->data_size = 0;
}

void
gcm_update(struct gcm_ctx *ctx, const struct gcm_key *key,
	   size_t length, const uint8_t *data)
{
  assert(ctx->auth_size % GCM_BLOCK_SIZE == 0);
  assert(ctx->data_size == 0);

  gcm_hash(key, &ctx->x, length, data);

  ctx->auth_size += length;
}

static void
gcm_crypt(struct gcm_ctx *ctx, const void *cipher, nettle_cipher_func *f,
	  size_t length, uint8_t *dst, const uint8_t *src)
{
  uint8_t buffer[GCM_BLOCK_SIZE];

  if (src != dst)
    {
      for (; length >= GCM_BLOCK_SIZE;
           (length -= GCM_BLOCK_SIZE,
	    src += GCM_BLOCK_SIZE, dst += GCM_BLOCK_SIZE))
        {
          f (cipher, GCM_BLOCK_SIZE, dst, ctx->ctr.b);
          memxor (dst, src, GCM_BLOCK_SIZE);
          INC32 (ctx->ctr);
        }
    }
  else
    {
      for (; length >= GCM_BLOCK_SIZE;
           (length -= GCM_BLOCK_SIZE,
	    src += GCM_BLOCK_SIZE, dst += GCM_BLOCK_SIZE))
        {
          f (cipher, GCM_BLOCK_SIZE, buffer, ctx->ctr.b);
          memxor3 (dst, src, buffer, GCM_BLOCK_SIZE);
          INC32 (ctx->ctr);
        }
    }
  if (length > 0)
    {
      /* A final partial block */
      f (cipher, GCM_BLOCK_SIZE, buffer, ctx->ctr.b);
      memxor3 (dst, src, buffer, length);
      INC32 (ctx->ctr);
    }
}

void
gcm_encrypt (struct gcm_ctx *ctx, const struct gcm_key *key,
	     const void *cipher, nettle_cipher_func *f,
	     size_t length, uint8_t *dst, const uint8_t *src)
{
  assert(ctx->data_size % GCM_BLOCK_SIZE == 0);

  gcm_crypt(ctx, cipher, f, length, dst, src);
  gcm_hash(key, &ctx->x, length, dst);

  ctx->data_size += length;
}

void
gcm_decrypt(struct gcm_ctx *ctx, const struct gcm_key *key,
	    const void *cipher, nettle_cipher_func *f,
	    size_t length, uint8_t *dst, const uint8_t *src)
{
  assert(ctx->data_size % GCM_BLOCK_SIZE == 0);

  gcm_hash(key, &ctx->x, length, src);
  gcm_crypt(ctx, cipher, f, length, dst, src);

  ctx->data_size += length;
}

void
gcm_digest(struct gcm_ctx *ctx, const struct gcm_key *key,
	   const void *cipher, nettle_cipher_func *f,
	   size_t length, uint8_t *digest)
{
  uint8_t buffer[GCM_BLOCK_SIZE];

  assert (length <= GCM_BLOCK_SIZE);

  gcm_hash_sizes(key, &ctx->x, ctx->auth_size, ctx->data_size);

  f (cipher, GCM_BLOCK_SIZE, buffer, ctx->iv.b);
  memxor3 (digest, ctx->x.b, buffer, length);

  return;
}