Blob Blame History Raw
/* GStreamer
 * Copyright (C) 2005 Wim Taymans <wim@fluendo.com>
 *
 * gstsystemclock.c: Unit test for GstSystemClock
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Library General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public
 * License along with this library; if not, write to the
 * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
 * Boston, MA 02110-1301, USA.
 */
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <gst/check/gstcheck.h>

static GMutex af_lock;
static GCond af_cond;

/* see if the defines make sense */
GST_START_TEST (test_range)
{
  GstClockTime time, time2;

  time = GST_SECOND;
  fail_unless (time == G_GUINT64_CONSTANT (1000000000));

  time2 = time / 1000;
  fail_unless (time2 == 1000000);
  fail_unless (time2 == GST_MSECOND);
  fail_unless (time2 == GST_TIME_AS_USECONDS (time));

  time2 = time / 1000000;
  fail_unless (time2 == 1000);
  fail_unless (time2 == GST_USECOND);
  fail_unless (time2 == GST_TIME_AS_MSECONDS (time));
}

GST_END_TEST;

GST_START_TEST (test_signedness)
{
  GstClockTime time[] = { 0, 1, G_MAXUINT64 / GST_SECOND };
  GstClockTimeDiff diff[] =
      { 0, 1, -1, G_MAXINT64 / GST_SECOND, G_MININT64 / GST_SECOND };
  guint i;

  for (i = 0; i < G_N_ELEMENTS (time); i++) {
    fail_if (time[i] != (time[i] * GST_SECOND / GST_SECOND));
  }
  for (i = 0; i < G_N_ELEMENTS (diff); i++) {
    fail_if (diff[i] != (diff[i] * GST_SECOND / GST_SECOND));
  }
}

GST_END_TEST;

#define TIME_UNIT (GST_SECOND / 5)
static void
gst_clock_debug (GstClock * clock)
{
  GstClockTime time;

  time = gst_clock_get_time (clock);
  GST_DEBUG ("Clock info: time %" GST_TIME_FORMAT, GST_TIME_ARGS (time));
}

static gboolean
ok_callback (GstClock * clock, GstClockTime time,
    GstClockID id, gpointer user_data)
{
  GST_LOG ("unlocked async id %p", id);
  return FALSE;
}

static gboolean
error_callback (GstClock * clock, GstClockTime time,
    GstClockID id, gpointer user_data)
{
  GST_WARNING ("unlocked unscheduled async id %p, this is wrong", id);
  fail_if (TRUE);

  return FALSE;
}

GMutex store_lock;

static gboolean
store_callback (GstClock * clock, GstClockTime time,
    GstClockID id, gpointer user_data)
{
  GList **list = user_data;

  GST_DEBUG ("unlocked async id %p", id);
  g_mutex_lock (&store_lock);
  *list = g_list_append (*list, id);
  g_mutex_unlock (&store_lock);
  return FALSE;
}

static gboolean
notify_callback (GstClock * clock, GstClockTime time,
    GstClockID id, gpointer user_data)
{
  gboolean *ret = (gboolean *) user_data;

  if (ret != NULL)
    *ret = TRUE;

  return FALSE;
}

GST_START_TEST (test_set_default)
{
  GstClock *clock, *static_clock;

  /* obtain the default system clock, which keeps a static ref and bumps the
   * refcount before returning */
  static_clock = gst_system_clock_obtain ();
  fail_unless (static_clock != NULL, "Could not create default system clock");
  g_assert_cmpint (GST_OBJECT_REFCOUNT (static_clock), ==, 2);

  /* set a new default clock to a different instance which should replace the
   * static clock with this one, and unref the static clock */
  clock = g_object_new (GST_TYPE_SYSTEM_CLOCK, "name", "TestClock", NULL);
  gst_object_ref_sink (clock);
  gst_system_clock_set_default (clock);
  g_assert_cmpint (GST_OBJECT_REFCOUNT (static_clock), ==, 1);
  g_object_unref (static_clock);
  static_clock = gst_system_clock_obtain ();
  fail_unless (static_clock == clock);
  g_assert_cmpint (GST_OBJECT_REFCOUNT (clock), ==, 3);
  g_object_unref (static_clock);

  /* Reset the default clock to the static one */
  gst_system_clock_set_default (NULL);
  static_clock = gst_system_clock_obtain ();
  fail_unless (static_clock != clock);
  g_assert_cmpint (GST_OBJECT_REFCOUNT (clock), ==, 1);
  g_assert_cmpint (GST_OBJECT_REFCOUNT (static_clock), ==, 2);
  g_object_unref (clock);
  g_object_unref (static_clock);
}

GST_END_TEST;

GST_START_TEST (test_single_shot)
{
  GstClock *clock;
  GstClockID id, id2;
  GstClockTime base;
  GstClockReturn result;

  clock = gst_system_clock_obtain ();
  fail_unless (clock != NULL, "Could not create instance of GstSystemClock");

  gst_clock_debug (clock);
  base = gst_clock_get_time (clock);

  id = gst_clock_new_single_shot_id (clock, base + TIME_UNIT);
  fail_unless (id != NULL, "Could not create single shot id");

  GST_DEBUG ("waiting one time unit");
  result = gst_clock_id_wait (id, NULL);
  gst_clock_debug (clock);
  fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK (result=%d)",
      result);
  fail_unless (gst_clock_get_time (clock) > (base + TIME_UNIT),
      "target time has not been reached");

  GST_DEBUG ("waiting in the past");
  result = gst_clock_id_wait (id, NULL);
  gst_clock_debug (clock);
  fail_unless (result == GST_CLOCK_EARLY,
      "Waiting did not return EARLY(result=%d)", result);
  gst_clock_id_unref (id);

  id = gst_clock_new_single_shot_id (clock, base + 2 * TIME_UNIT);
  GST_DEBUG ("waiting one second async id %p", id);
  result = gst_clock_id_wait_async (id, ok_callback, NULL, NULL);
  fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK");
  g_usleep (TIME_UNIT / (2 * 1000));
  gst_clock_id_unschedule (id);
  gst_clock_id_unref (id);

  id = gst_clock_new_single_shot_id (clock, base + 5 * TIME_UNIT);
  GST_DEBUG ("waiting one second async, with cancel on id %p", id);
  result = gst_clock_id_wait_async (id, error_callback, NULL, NULL);
  fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK");
  g_usleep (TIME_UNIT / (2 * 1000));
  GST_DEBUG ("cancel id %p after half a time unit", id);
  gst_clock_id_unschedule (id);
  gst_clock_id_unref (id);
  GST_DEBUG ("canceled id %p", id);

  GST_DEBUG ("waiting multiple one second async, with cancel");
  id = gst_clock_new_single_shot_id (clock, base + 5 * TIME_UNIT);
  id2 = gst_clock_new_single_shot_id (clock, base + 6 * TIME_UNIT);
  GST_DEBUG ("waiting id %p", id);
  result = gst_clock_id_wait_async (id, ok_callback, NULL, NULL);
  fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK");

  GST_DEBUG ("waiting id %p", id2);
  result = gst_clock_id_wait_async (id2, error_callback, NULL, NULL);
  fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK");
  g_usleep (TIME_UNIT / (2 * 1000));
  GST_DEBUG ("cancel id %p after half a time unit", id2);
  gst_clock_id_unschedule (id2);
  GST_DEBUG ("canceled id %p", id2);
  gst_clock_id_unref (id2);

  /* wait for the entry to time out */
  g_usleep (TIME_UNIT / 1000 * 5);
  fail_unless (((GstClockEntry *) id)->status == GST_CLOCK_OK,
      "Waiting did not finish");
  gst_clock_id_unref (id);

  gst_object_unref (clock);
}

GST_END_TEST;

GST_START_TEST (test_periodic_shot)
{
  GstClock *clock;
  GstClockID id, id2;
  GstClockTime base;
  GstClockReturn result;

  clock = gst_system_clock_obtain ();
  fail_unless (clock != NULL, "Could not create instance of GstSystemClock");

  gst_clock_debug (clock);
  base = gst_clock_get_time (clock);

  /* signal every half a time unit */
  id = gst_clock_new_periodic_id (clock, base + TIME_UNIT, TIME_UNIT / 2);
  fail_unless (id != NULL, "Could not create periodic id");

  GST_DEBUG ("waiting one time unit");
  result = gst_clock_id_wait (id, NULL);
  gst_clock_debug (clock);
  fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK");

  GST_DEBUG ("waiting for the next");
  result = gst_clock_id_wait (id, NULL);
  gst_clock_debug (clock);
  fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK");

  GST_DEBUG ("waiting for the next async %p", id);
  result = gst_clock_id_wait_async (id, ok_callback, NULL, NULL);
  fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK");
  g_usleep (TIME_UNIT / (2 * 1000));

  GST_DEBUG ("waiting some more for the next async %p", id);
  result = gst_clock_id_wait_async (id, ok_callback, NULL, NULL);
  fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK");
  g_usleep (TIME_UNIT / (2 * 1000));

  id2 = gst_clock_new_periodic_id (clock, base + TIME_UNIT, TIME_UNIT / 2);
  fail_unless (id2 != NULL, "Could not create second periodic id");

  GST_DEBUG ("waiting some more for another async %p", id2);
  result = gst_clock_id_wait_async (id2, ok_callback, NULL, NULL);
  fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK");
  g_usleep (TIME_UNIT / (2 * 1000));

  GST_DEBUG ("unschedule %p", id);
  gst_clock_id_unschedule (id);

  /* entry cannot be used again */
  result = gst_clock_id_wait_async (id, error_callback, NULL, NULL);
  fail_unless (result == GST_CLOCK_UNSCHEDULED,
      "Waiting did not return UNSCHEDULED");
  result = gst_clock_id_wait (id, NULL);
  fail_unless (result == GST_CLOCK_UNSCHEDULED,
      "Waiting did not return UNSCHEDULED");
  g_usleep (TIME_UNIT / (2 * 1000));

  /* clean up */
  gst_clock_id_unref (id);
  gst_clock_id_unschedule (id2);
  gst_clock_id_unref (id2);

  gst_object_unref (clock);
}

GST_END_TEST;

GST_START_TEST (test_async_order)
{
  GstClock *clock;
  GstClockID id1, id2;
  GList *cb_list = NULL, *next;
  GstClockTime base;
  GstClockReturn result;

  clock = gst_system_clock_obtain ();
  fail_unless (clock != NULL, "Could not create instance of GstSystemClock");

  gst_clock_debug (clock);
  base = gst_clock_get_time (clock);

  id1 = gst_clock_new_single_shot_id (clock, base + 2 * TIME_UNIT);
  id2 = gst_clock_new_single_shot_id (clock, base + 1 * TIME_UNIT);
  result = gst_clock_id_wait_async (id1, store_callback, &cb_list, NULL);
  fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK");
  g_usleep (TIME_UNIT / (2 * 1000));
  result = gst_clock_id_wait_async (id2, store_callback, &cb_list, NULL);
  fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK");
  g_usleep (TIME_UNIT / 1000);
  /* at this point at least one of the timers should have timed out */
  g_mutex_lock (&store_lock);
  fail_unless (cb_list != NULL, "expected notification");
  fail_unless (cb_list->data == id2,
      "Expected notification for id2 to come first");
  g_mutex_unlock (&store_lock);
  g_usleep (TIME_UNIT / 1000);
  g_mutex_lock (&store_lock);
  /* now both should have timed out */
  next = g_list_next (cb_list);
  fail_unless (next != NULL, "expected second notification");
  fail_unless (next->data == id1, "Missing notification for id1");
  g_mutex_unlock (&store_lock);

  gst_clock_id_unref (id1);
  gst_clock_id_unref (id2);
  g_list_free (cb_list);

  gst_object_unref (clock);
}

GST_END_TEST;

GST_START_TEST (test_async_order_stress_test)
{
#define ALARM_COUNT 20
  GstClock *clock;
  GstClockID id[ALARM_COUNT];
  GList *cb_list = NULL, *cb_list_it;
  GstClockTime base;
  GstClockReturn result;
  unsigned int i;

  clock = gst_system_clock_obtain ();
  fail_unless (clock != NULL, "Could not create instance of GstSystemClock");

  gst_clock_debug (clock);
  base = gst_clock_get_time (clock);

  /* keep inserting at the beginning of the list.
   * We expect the alarm thread to keep detecting the new entries and to
   * switch to wait on the first entry on the list
   */
  for (i = ALARM_COUNT; i > 0; --i) {
    id[i - 1] = gst_clock_new_single_shot_id (clock, base + i * TIME_UNIT);
    result =
        gst_clock_id_wait_async (id[i - 1], store_callback, &cb_list, NULL);
    fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK");
  }

  g_usleep (TIME_UNIT * (ALARM_COUNT + 1) / 1000);
  /* at this point all the timers should have timed out */
  g_mutex_lock (&store_lock);
  fail_unless (cb_list != NULL, "expected notification");
  cb_list_it = cb_list;
  /* alarms must trigger in order.
   * Will fail if alarm thread did not properly switch to wait on first entry
   * from the list
   */
  for (i = 0; i < ALARM_COUNT; ++i) {
    fail_unless (cb_list_it != NULL, "No notification received for id[%d]", i);
    fail_unless (cb_list_it->data == id[i],
        "Expected notification for id[%d]", i);
    cb_list_it = g_list_next (cb_list_it);
  }
  g_mutex_unlock (&store_lock);

  for (i = 0; i < ALARM_COUNT; ++i)
    gst_clock_id_unref (id[i]);
  g_list_free (cb_list);

  gst_object_unref (clock);
}

GST_END_TEST;

struct test_async_sync_interaction_data
{
  GMutex lock;

  GstClockID sync_id;
  GstClockID sync_id2;

  GstClockID async_id;
  GstClockID async_id2;
  GstClockID async_id3;
};

static gboolean
test_async_sync_interaction_cb (GstClock * clock, GstClockTime time,
    GstClockID id, gpointer user_data)
{
  struct test_async_sync_interaction_data *td =
      (struct test_async_sync_interaction_data *) (user_data);

  g_mutex_lock (&td->lock);
  /* The first async callback is ignored */
  if (id == td->async_id)
    goto out;

  if (id != td->async_id2 && id != td->async_id3)
    goto out;

  /* Unschedule the sync callback */
  if (id == td->async_id3) {
    gst_clock_id_unschedule (td->sync_id);
    gst_clock_id_unschedule (td->async_id2);
  }
out:
  g_mutex_unlock (&td->lock);
  return FALSE;
}

GST_START_TEST (test_async_sync_interaction)
{
  /* This test schedules an async callback, then before it completes, schedules
   * an earlier async callback, and quickly unschedules the first, and inserts
   * a THIRD even earlier async callback. It then attempts to wait on a
   * sync clock ID. While that's sleeping, the 3rd async callback should fire
   * and unschedule it. This tests for problems with unscheduling async and
   * sync callbacks on the system clock. */
  GstClock *clock;
  GstClockReturn result;
  GstClockTime base;
  GstClockTimeDiff jitter;
  struct test_async_sync_interaction_data td;
  int i;

  clock = gst_system_clock_obtain ();
  fail_unless (clock != NULL, "Could not create instance of GstSystemClock");

  g_mutex_init (&td.lock);

  for (i = 0; i < 50; i++) {
    gst_clock_debug (clock);
    base = gst_clock_get_time (clock);
    g_mutex_lock (&td.lock);
    td.async_id = gst_clock_new_single_shot_id (clock, base + 40 * GST_MSECOND);
    td.async_id2 =
        gst_clock_new_single_shot_id (clock, base + 30 * GST_MSECOND);
    td.async_id3 =
        gst_clock_new_single_shot_id (clock, base + 20 * GST_MSECOND);
    td.sync_id2 = gst_clock_new_single_shot_id (clock, base + 10 * GST_MSECOND);
    td.sync_id = gst_clock_new_single_shot_id (clock, base + 50 * GST_MSECOND);
    g_mutex_unlock (&td.lock);

    result = gst_clock_id_wait_async (td.async_id,
        test_async_sync_interaction_cb, &td, NULL);
    fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK");

    /* Wait 10ms, then unschedule async_id and schedule async_id2 */
    result = gst_clock_id_wait (td.sync_id2, &jitter);
    fail_unless (result == GST_CLOCK_OK || result == GST_CLOCK_EARLY,
        "Waiting did not return OK or EARLY");
    /* async_id2 is earlier than async_id - should become head of the queue */
    result = gst_clock_id_wait_async (td.async_id2,
        test_async_sync_interaction_cb, &td, NULL);
    fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK");
    gst_clock_id_unschedule (td.async_id);

    /* async_id3 is earlier than async_id2 - should become head of the queue */
    result = gst_clock_id_wait_async (td.async_id3,
        test_async_sync_interaction_cb, &td, NULL);
    fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK");

    /* While this is sleeping, the async3 id should fire and unschedule it */
    result = gst_clock_id_wait (td.sync_id, &jitter);
    fail_unless (result == GST_CLOCK_UNSCHEDULED || result == GST_CLOCK_EARLY,
        "Waiting did not return UNSCHEDULED (was %d)", result);

    gst_clock_id_unschedule (td.async_id3);
    g_mutex_lock (&td.lock);

    gst_clock_id_unref (td.sync_id);
    gst_clock_id_unref (td.sync_id2);
    gst_clock_id_unref (td.async_id);
    gst_clock_id_unref (td.async_id2);
    gst_clock_id_unref (td.async_id3);
    g_mutex_unlock (&td.lock);
  }

  g_mutex_clear (&td.lock);
  gst_object_unref (clock);
}

GST_END_TEST;

GST_START_TEST (test_periodic_multi)
{
  GstClock *clock;
  GstClockID clock_id;
  GstClockID clock_id_async;
  GstClockTime base;
  GstClockReturn result;
  gboolean got_callback = FALSE;

  clock = gst_system_clock_obtain ();
  fail_unless (clock != NULL, "Could not create instance of GstSystemClock");

  gst_clock_debug (clock);
  base = gst_clock_get_time (clock);

  clock_id = gst_clock_new_periodic_id (clock, base + TIME_UNIT, TIME_UNIT);
  gst_clock_id_wait (clock_id, NULL);
  fail_unless (gst_clock_get_time (clock) >= base + TIME_UNIT);
  fail_unless (gst_clock_get_time (clock) < base + 2 * TIME_UNIT);

  /* now perform a concurrent wait and wait_async */

  clock_id_async =
      gst_clock_new_periodic_id (clock, base + TIME_UNIT, TIME_UNIT);
  result =
      gst_clock_id_wait_async (clock_id_async, notify_callback, &got_callback,
      NULL);
  fail_unless (result == GST_CLOCK_OK, "Async waiting did not return OK");

  result = gst_clock_id_wait (clock_id, NULL);
  fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK");
  fail_unless (gst_clock_get_time (clock) >= base + 2 * TIME_UNIT);
  /* give the async thread some time to call our callback: */
  g_usleep (TIME_UNIT / (10 * 1000));
  fail_unless (got_callback == TRUE, "got no async callback (1)");
  fail_unless (gst_clock_get_time (clock) < base + 3 * TIME_UNIT);
  got_callback = FALSE;

  result = gst_clock_id_wait (clock_id, NULL);
  fail_unless (result == GST_CLOCK_OK, "Waiting did not return OK");
  fail_unless (gst_clock_get_time (clock) >= base + 3 * TIME_UNIT);
  /* give the async thread some time to call our callback: */
  g_usleep (TIME_UNIT / (10 * 1000));
  fail_unless (got_callback == TRUE, "got no async callback (2)");
  fail_unless (gst_clock_get_time (clock) < base + 4 * TIME_UNIT);

  /* clean up */
  gst_clock_id_unref (clock_id);
  gst_clock_id_unschedule (clock_id_async);
  gst_clock_id_unref (clock_id_async);
  gst_object_unref (clock);
}

GST_END_TEST;

GST_START_TEST (test_diff)
{
  GstClockTime time1[] = { 0, (GstClockTime) - 1, 0, 1, 2 * GST_SECOND,
    (GstClockTime) - GST_SECOND, (GstClockTime) - GST_SECOND
  };
  GstClockTime time2[] =
      { 0, 1, 1, 0, 1 * GST_SECOND, (GstClockTime) - GST_SECOND, GST_SECOND };
  GstClockTimeDiff d[] = { 0, 2, 1, -1, -GST_SECOND, 0, 2 * GST_SECOND };
  guint i;

  for (i = 0; i < G_N_ELEMENTS (d); i++) {
    fail_if (d[i] != GST_CLOCK_DIFF (time1[i], time2[i]));
  }
}

GST_END_TEST;

/* test if a blocking wait, unblocked by an async entry continues to be
 * scheduled */
typedef struct
{
  GstClock *clock;
  GstClockID id;
  GstClockTimeDiff jitter;
  GstClockReturn ret;
} MixedInfo;

static gpointer
mixed_thread (MixedInfo * info)
{
  info->ret = gst_clock_id_wait (info->id, &info->jitter);
  return NULL;
}

static gboolean
mixed_async_cb (GstClock * clock, GstClockTime time,
    GstClockID id, gpointer user_data)
{
  return TRUE;
}

GST_START_TEST (test_mixed)
{
  GThread *thread;
  GError *error = NULL;
  MixedInfo info;
  GstClockTime base;
  GstClockID id;

  info.clock = gst_system_clock_obtain ();
  fail_unless (info.clock != NULL,
      "Could not create instance of GstSystemClock");

  /* get current time of the clock as base time */
  base = gst_clock_get_time (info.clock);

  /* create entry to wait for 1 second */
  info.id = gst_clock_new_single_shot_id (info.clock, base + GST_SECOND);

  /* make and start an entry that is scheduled every 10ms */
  id = gst_clock_new_periodic_id (info.clock, base, 10 * GST_MSECOND);

  /* start waiting for the entry */
  thread =
      g_thread_try_new ("gst-check", (GThreadFunc) mixed_thread, &info, &error);
  fail_unless (error == NULL, "error creating thread");
  fail_unless (thread != NULL, "Could not create thread");

  /* wait half a second so we are sure to be in the thread */
  g_usleep (G_USEC_PER_SEC / 2);

  /* start scheduling the entry */
  gst_clock_id_wait_async (id, mixed_async_cb, NULL, NULL);

  /* wait for thread to finish */
  g_thread_join (thread);
  /* entry must have timed out correctly */
  fail_unless (info.ret == GST_CLOCK_OK, "clock return was %d", info.ret);

  gst_clock_id_unschedule (id);
  gst_clock_id_unref (id);
  gst_clock_id_unref (info.id);
  gst_object_unref (info.clock);
}

GST_END_TEST;

static gboolean
test_async_full_slave_callback (GstClock * master, GstClockTime time,
    GstClockID id, GstClock * clock)
{
  GstClockTime stime, mtime;
  gdouble r_squared;

  /* notify the test case that we started */
  GST_INFO ("callback started");
  g_mutex_lock (&af_lock);
  g_cond_signal (&af_cond);

  /* wait for the test case to unref "clock" and signal */
  GST_INFO ("waiting for test case to signal");
  g_cond_wait (&af_cond, &af_lock);

  stime = gst_clock_get_internal_time (clock);
  mtime = gst_clock_get_time (master);

  gst_clock_add_observation (clock, stime, mtime, &r_squared);

  g_cond_signal (&af_cond);
  g_mutex_unlock (&af_lock);
  GST_INFO ("callback finished");

  return TRUE;
}

GST_START_TEST (test_async_full)
{
  GstClock *master, *slave;
  GstClockID *clockid;

  /* create master and slave */
  master =
      g_object_new (GST_TYPE_SYSTEM_CLOCK, "name", "TestClockMaster", NULL);
  gst_object_ref_sink (master);
  slave = g_object_new (GST_TYPE_SYSTEM_CLOCK, "name", "TestClockMaster", NULL);
  gst_object_ref_sink (slave);
  GST_OBJECT_FLAG_SET (slave, GST_CLOCK_FLAG_CAN_SET_MASTER);
  g_object_set (slave, "timeout", 50 * GST_MSECOND, NULL);

  fail_unless (GST_OBJECT_REFCOUNT (master) == 1);
  fail_unless (GST_OBJECT_REFCOUNT (slave) == 1);

  /* register a periodic shot on the master to calibrate the slave */
  g_mutex_lock (&af_lock);
  clockid = gst_clock_new_periodic_id (master,
      gst_clock_get_time (master), gst_clock_get_timeout (slave));
  gst_clock_id_wait_async (clockid,
      (GstClockCallback) test_async_full_slave_callback,
      gst_object_ref (slave), (GDestroyNotify) gst_object_unref);

  /* wait for the shot to be fired and test_async_full_slave_callback to be
   * called */
  GST_INFO ("waiting for the slave callback to start");
  g_cond_wait (&af_cond, &af_lock);
  GST_INFO ("slave callback running, unreffing slave");

  /* unref the slave clock while the slave_callback is running. This should be
   * safe since the master clock now stores a ref to the slave */
  gst_object_unref (slave);

  /* unref the clock entry. This should be safe as well since the clock thread
   * refs the entry before executing it */
  gst_clock_id_unschedule (clockid);
  gst_clock_id_unref (clockid);

  /* signal and wait for the callback to complete */
  g_cond_signal (&af_cond);

  GST_INFO ("waiting for callback to finish");
  g_cond_wait (&af_cond, &af_lock);
  GST_INFO ("callback finished");
  g_mutex_unlock (&af_lock);

  gst_object_unref (master);
}

GST_END_TEST;

GST_START_TEST (test_resolution)
{
  GstClock *clock;
  GstClockTime now_t, prev_t, resolution;
  int i;

  now_t = prev_t = GST_CLOCK_TIME_NONE;
  clock = gst_system_clock_obtain ();
  fail_unless (clock != NULL, "Could not create default system clock");
  resolution = gst_clock_get_resolution (clock);
  fail_unless (resolution != GST_CLOCK_TIME_NONE);

  for (i = 0; i < 100000; ++i) {
    now_t = gst_clock_get_internal_time (clock);
    fail_unless (now_t != GST_CLOCK_TIME_NONE);
    if (prev_t != GST_CLOCK_TIME_NONE) {
      GstClockTime diff;
      fail_unless (now_t >= prev_t);
      diff = now_t - prev_t;
      fail_unless (diff == 0 || diff >= resolution);
    }
    prev_t = now_t;
    g_thread_yield ();
  }
  g_object_unref (clock);
  clock = NULL;
}

GST_END_TEST;

typedef struct
{
  GThread *thread_wait;
  GThread *thread_unschedule;
  GMutex lock;
  gboolean running;
  GstClockID id;
  gboolean unschedule;
  gint32 time_offset_min;
  gint32 time_offset_max;
  gboolean dont_unschedule_positive_offset;
} WaitUnscheduleData;

static gpointer
single_shot_wait_thread_func (gpointer data)
{
  WaitUnscheduleData *d = data;
  GstClock *clock = gst_system_clock_obtain ();

  while (d->running) {
    GstClockTime now;
    gint offset;
    GstClockID id;

    now = gst_clock_get_time (clock);
    offset = g_random_int_range (d->time_offset_min, d->time_offset_max);

    g_mutex_lock (&d->lock);
    d->unschedule = d->dont_unschedule_positive_offset ? offset < 0 : TRUE;
    id = d->id =
        gst_clock_new_single_shot_id (clock, now + (GstClockTime) offset);
    g_mutex_unlock (&d->lock);

    fail_unless (id != NULL, "Could not create single shot id");

    gst_clock_id_wait (id, NULL);

    g_mutex_lock (&d->lock);
    gst_clock_id_unref (id);
    d->id = NULL;
    g_mutex_unlock (&d->lock);
  }

  g_object_unref (clock);

  return NULL;
}

static gpointer
unschedule_thread_func (gpointer data)
{
  WaitUnscheduleData *d = data;

  while (d->running) {
    g_mutex_lock (&d->lock);
    if (d->id && d->unschedule) {
      g_thread_yield ();
      gst_clock_id_unschedule (d->id);
    }
    g_mutex_unlock (&d->lock);
    g_thread_yield ();
  }

  return NULL;
}

GST_START_TEST (test_stress_cleanup_unschedule)
{
  WaitUnscheduleData *data;
  gint i, num;

  num = g_get_num_processors () * 6;
  data = g_newa (WaitUnscheduleData, num);

  for (i = 0; i < num; i++) {
    WaitUnscheduleData *d = &data[i];

    /* Don't unschedule waits with positive offsets in order to trigger
     * gst_system_clock_wait_wakeup() */
    d->dont_unschedule_positive_offset = TRUE;
    /* Overweight of negative offsets in order to trigger GST_CLOCK_EARLY more
     * frequently */
    d->time_offset_min = -GST_MSECOND;
    d->time_offset_max = GST_MSECOND / 10;

    /* Initialize test */
    d->id = NULL;
    d->running = TRUE;
    g_mutex_init (&d->lock);
    d->thread_wait = g_thread_new ("wait", single_shot_wait_thread_func, d);
    d->thread_unschedule = g_thread_new ("unschedule", unschedule_thread_func,
        d);
  }

  /* Test duration */
  g_usleep (G_USEC_PER_SEC);

  /* Stop and free test data */
  for (i = 0; i < num; i++) {
    WaitUnscheduleData *d = &data[i];
    d->running = FALSE;
    g_thread_join (d->thread_wait);
    g_thread_join (d->thread_unschedule);
    g_mutex_clear (&d->lock);
  }
}

GST_END_TEST;


GST_START_TEST (test_stress_reschedule)
{
  WaitUnscheduleData *data;
  gint i, num;

  num = g_get_num_processors () * 6;
  data = g_newa (WaitUnscheduleData, num);

  for (i = 0; i < num; i++) {
    WaitUnscheduleData *d = &data[i];

    /* Try to unschedule all waits */
    d->dont_unschedule_positive_offset = FALSE;
    /* Small positive offsets in order to have both negative and positive
     * diffs when a reschedule is needed. */
    d->time_offset_min = 0;
    d->time_offset_max = GST_MSECOND;

    d->id = NULL;
    d->running = TRUE;
    g_mutex_init (&d->lock);
    d->thread_wait = g_thread_new ("wait", single_shot_wait_thread_func, d);
    d->thread_unschedule = g_thread_new ("unschedule", unschedule_thread_func,
        d);
  }

  /* Test duration */
  g_usleep (G_USEC_PER_SEC);

  /* Stop and free test data */
  for (i = 0; i < num; i++) {
    WaitUnscheduleData *d = &data[i];
    d->running = FALSE;
    g_thread_join (d->thread_wait);
    g_thread_join (d->thread_unschedule);
    g_mutex_clear (&d->lock);
  }
}

GST_END_TEST;


static Suite *
gst_systemclock_suite (void)
{
  Suite *s = suite_create ("GstSystemClock");
  TCase *tc_chain = tcase_create ("waiting");

  suite_add_tcase (s, tc_chain);
  tcase_add_test (tc_chain, test_range);
  tcase_add_test (tc_chain, test_signedness);
  tcase_add_test (tc_chain, test_single_shot);
  tcase_add_test (tc_chain, test_periodic_shot);
  tcase_add_test (tc_chain, test_periodic_multi);
  tcase_add_test (tc_chain, test_async_order);
  tcase_add_test (tc_chain, test_async_order_stress_test);
  tcase_add_test (tc_chain, test_async_sync_interaction);
  tcase_add_test (tc_chain, test_diff);
  tcase_add_test (tc_chain, test_mixed);
  tcase_add_test (tc_chain, test_async_full);
  tcase_add_test (tc_chain, test_set_default);
  tcase_add_test (tc_chain, test_resolution);
  tcase_add_test (tc_chain, test_stress_cleanup_unschedule);
  tcase_add_test (tc_chain, test_stress_reschedule);

  return s;
}

GST_CHECK_MAIN (gst_systemclock);