Blob Blame History Raw
/* GLIB - Library of useful routines for C programming
 * Copyright (C) 1995-1997  Peter Mattis, Spencer Kimball and Josh MacDonald
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

/*
 * Modified by the GLib Team and others 1997-2000.  See the AUTHORS
 * file for a list of people on the GLib Team.  See the ChangeLog
 * files for a list of changes.  These files are distributed with
 * GLib at ftp://ftp.gtk.org/pub/gtk/. 
 */

/* 
 * MT safe
 */

#include "config.h"

#include <string.h>
#include <stdlib.h>

#include "garray.h"

#include "gbytes.h"
#include "ghash.h"
#include "gslice.h"
#include "gmem.h"
#include "gtestutils.h"
#include "gthread.h"
#include "gmessages.h"
#include "gqsort.h"


/**
 * SECTION:arrays
 * @title: Arrays
 * @short_description: arrays of arbitrary elements which grow
 *     automatically as elements are added
 *
 * Arrays are similar to standard C arrays, except that they grow
 * automatically as elements are added.
 *
 * Array elements can be of any size (though all elements of one array
 * are the same size), and the array can be automatically cleared to
 * '0's and zero-terminated.
 *
 * To create a new array use g_array_new().
 *
 * To add elements to an array, use g_array_append_val(),
 * g_array_append_vals(), g_array_prepend_val(), and
 * g_array_prepend_vals().
 *
 * To access an element of an array, use g_array_index().
 *
 * To set the size of an array, use g_array_set_size().
 *
 * To free an array, use g_array_free().
 *
 * Here is an example that stores integers in a #GArray:
 * |[<!-- language="C" -->
 *   GArray *garray;
 *   gint i;
 *   // We create a new array to store gint values.
 *   // We don't want it zero-terminated or cleared to 0's.
 *   garray = g_array_new (FALSE, FALSE, sizeof (gint));
 *   for (i = 0; i < 10000; i++)
 *     g_array_append_val (garray, i);
 *   for (i = 0; i < 10000; i++)
 *     if (g_array_index (garray, gint, i) != i)
 *       g_print ("ERROR: got %d instead of %d\n",
 *                g_array_index (garray, gint, i), i);
 *   g_array_free (garray, TRUE);
 * ]|
 */

#define MIN_ARRAY_SIZE  16

typedef struct _GRealArray  GRealArray;

/**
 * GArray:
 * @data: a pointer to the element data. The data may be moved as
 *     elements are added to the #GArray.
 * @len: the number of elements in the #GArray not including the
 *     possible terminating zero element.
 *
 * Contains the public fields of a GArray.
 */
struct _GRealArray
{
  guint8 *data;
  guint   len;
  guint   alloc;
  guint   elt_size;
  guint   zero_terminated : 1;
  guint   clear : 1;
  gint    ref_count;
  GDestroyNotify clear_func;
};

/**
 * g_array_index:
 * @a: a #GArray
 * @t: the type of the elements
 * @i: the index of the element to return
 *
 * Returns the element of a #GArray at the given index. The return
 * value is cast to the given type.
 *
 * This example gets a pointer to an element in a #GArray:
 * |[<!-- language="C" -->
 *   EDayViewEvent *event;
 *   // This gets a pointer to the 4th element in the array of
 *   // EDayViewEvent structs.
 *   event = &g_array_index (events, EDayViewEvent, 3);
 * ]|
 *
 * Returns: the element of the #GArray at the index given by @i
 */

#define g_array_elt_len(array,i) ((array)->elt_size * (i))
#define g_array_elt_pos(array,i) ((array)->data + g_array_elt_len((array),(i)))
#define g_array_elt_zero(array, pos, len)                               \
  (memset (g_array_elt_pos ((array), pos), 0,  g_array_elt_len ((array), len)))
#define g_array_zero_terminate(array) G_STMT_START{                     \
  if ((array)->zero_terminated)                                         \
    g_array_elt_zero ((array), (array)->len, 1);                        \
}G_STMT_END

static guint g_nearest_pow        (gint        num) G_GNUC_CONST;
static void  g_array_maybe_expand (GRealArray *array,
                                   gint        len);

/**
 * g_array_new:
 * @zero_terminated: %TRUE if the array should have an extra element at
 *     the end which is set to 0
 * @clear_: %TRUE if #GArray elements should be automatically cleared
 *     to 0 when they are allocated
 * @element_size: the size of each element in bytes
 *
 * Creates a new #GArray with a reference count of 1.
 *
 * Returns: the new #GArray
 */
GArray*
g_array_new (gboolean zero_terminated,
             gboolean clear,
             guint    elt_size)
{
  g_return_val_if_fail (elt_size > 0, NULL);

  return g_array_sized_new (zero_terminated, clear, elt_size, 0);
}

/**
 * g_array_sized_new:
 * @zero_terminated: %TRUE if the array should have an extra element at
 *     the end with all bits cleared
 * @clear_: %TRUE if all bits in the array should be cleared to 0 on
 *     allocation
 * @element_size: size of each element in the array
 * @reserved_size: number of elements preallocated
 *
 * Creates a new #GArray with @reserved_size elements preallocated and
 * a reference count of 1. This avoids frequent reallocation, if you
 * are going to add many elements to the array. Note however that the
 * size of the array is still 0.
 *
 * Returns: the new #GArray
 */
GArray*
g_array_sized_new (gboolean zero_terminated,
                   gboolean clear,
                   guint    elt_size,
                   guint    reserved_size)
{
  GRealArray *array;
  
  g_return_val_if_fail (elt_size > 0, NULL);

  array = g_slice_new (GRealArray);

  array->data            = NULL;
  array->len             = 0;
  array->alloc           = 0;
  array->zero_terminated = (zero_terminated ? 1 : 0);
  array->clear           = (clear ? 1 : 0);
  array->elt_size        = elt_size;
  array->ref_count       = 1;
  array->clear_func      = NULL;

  if (array->zero_terminated || reserved_size != 0)
    {
      g_array_maybe_expand (array, reserved_size);
      g_array_zero_terminate(array);
    }

  return (GArray*) array;
}

/**
 * g_array_set_clear_func:
 * @array: A #GArray
 * @clear_func: a function to clear an element of @array
 *
 * Sets a function to clear an element of @array.
 *
 * The @clear_func will be called when an element in the array
 * data segment is removed and when the array is freed and data
 * segment is deallocated as well. @clear_func will be passed a
 * pointer to the element to clear, rather than the element itself.
 *
 * Note that in contrast with other uses of #GDestroyNotify
 * functions, @clear_func is expected to clear the contents of
 * the array element it is given, but not free the element itself.
 *
 * Since: 2.32
 */
void
g_array_set_clear_func (GArray         *array,
                        GDestroyNotify  clear_func)
{
  GRealArray *rarray = (GRealArray *) array;

  g_return_if_fail (array != NULL);

  rarray->clear_func = clear_func;
}

/**
 * g_array_ref:
 * @array: A #GArray
 *
 * Atomically increments the reference count of @array by one.
 * This function is thread-safe and may be called from any thread.
 *
 * Returns: The passed in #GArray
 *
 * Since: 2.22
 */
GArray *
g_array_ref (GArray *array)
{
  GRealArray *rarray = (GRealArray*) array;
  g_return_val_if_fail (array, NULL);

  g_atomic_int_inc (&rarray->ref_count);

  return array;
}

typedef enum
{
  FREE_SEGMENT = 1 << 0,
  PRESERVE_WRAPPER = 1 << 1
} ArrayFreeFlags;

static gchar *array_free (GRealArray *, ArrayFreeFlags);

/**
 * g_array_unref:
 * @array: A #GArray
 *
 * Atomically decrements the reference count of @array by one. If the
 * reference count drops to 0, all memory allocated by the array is
 * released. This function is thread-safe and may be called from any
 * thread.
 *
 * Since: 2.22
 */
void
g_array_unref (GArray *array)
{
  GRealArray *rarray = (GRealArray*) array;
  g_return_if_fail (array);

  if (g_atomic_int_dec_and_test (&rarray->ref_count))
    array_free (rarray, FREE_SEGMENT);
}

/**
 * g_array_get_element_size:
 * @array: A #GArray
 *
 * Gets the size of the elements in @array.
 *
 * Returns: Size of each element, in bytes
 *
 * Since: 2.22
 */
guint
g_array_get_element_size (GArray *array)
{
  GRealArray *rarray = (GRealArray*) array;

  g_return_val_if_fail (array, 0);

  return rarray->elt_size;
}

/**
 * g_array_free:
 * @array: a #GArray
 * @free_segment: if %TRUE the actual element data is freed as well
 *
 * Frees the memory allocated for the #GArray. If @free_segment is
 * %TRUE it frees the memory block holding the elements as well and
 * also each element if @array has a @element_free_func set. Pass
 * %FALSE if you want to free the #GArray wrapper but preserve the
 * underlying array for use elsewhere. If the reference count of @array
 * is greater than one, the #GArray wrapper is preserved but the size
 * of @array will be set to zero.
 *
 * If array elements contain dynamically-allocated memory, they should
 * be freed separately.
 *
 * This function is not thread-safe. If using a #GArray from multiple
 * threads, use only the atomic g_array_ref() and g_array_unref()
 * functions.
 *
 * Returns: the element data if @free_segment is %FALSE, otherwise
 *     %NULL. The element data should be freed using g_free().
 */
gchar*
g_array_free (GArray   *farray,
              gboolean  free_segment)
{
  GRealArray *array = (GRealArray*) farray;
  ArrayFreeFlags flags;

  g_return_val_if_fail (array, NULL);

  flags = (free_segment ? FREE_SEGMENT : 0);

  /* if others are holding a reference, preserve the wrapper but do free/return the data */
  if (!g_atomic_int_dec_and_test (&array->ref_count))
    flags |= PRESERVE_WRAPPER;

  return array_free (array, flags);
}

static gchar *
array_free (GRealArray     *array,
            ArrayFreeFlags  flags)
{
  gchar *segment;

  if (flags & FREE_SEGMENT)
    {
      if (array->clear_func != NULL)
        {
          guint i;

          for (i = 0; i < array->len; i++)
            array->clear_func (g_array_elt_pos (array, i));
        }

      g_free (array->data);
      segment = NULL;
    }
  else
    segment = (gchar*) array->data;

  if (flags & PRESERVE_WRAPPER)
    {
      array->data            = NULL;
      array->len             = 0;
      array->alloc           = 0;
    }
  else
    {
      g_slice_free1 (sizeof (GRealArray), array);
    }

  return segment;
}

/**
 * g_array_append_vals:
 * @array: a #GArray
 * @data: (not nullable): a pointer to the elements to append to the end of the array
 * @len: the number of elements to append
 *
 * Adds @len elements onto the end of the array.
 *
 * Returns: the #GArray
 */
/**
 * g_array_append_val:
 * @a: a #GArray
 * @v: the value to append to the #GArray
 *
 * Adds the value on to the end of the array. The array will grow in
 * size automatically if necessary.
 *
 * g_array_append_val() is a macro which uses a reference to the value
 * parameter @v. This means that you cannot use it with literal values
 * such as "27". You must use variables.
 *
 * Returns: the #GArray
 */
GArray*
g_array_append_vals (GArray       *farray,
                     gconstpointer data,
                     guint         len)
{
  GRealArray *array = (GRealArray*) farray;

  g_return_val_if_fail (array, NULL);

  if (len == 0)
    return farray;

  g_array_maybe_expand (array, len);

  memcpy (g_array_elt_pos (array, array->len), data, 
          g_array_elt_len (array, len));

  array->len += len;

  g_array_zero_terminate (array);

  return farray;
}

/**
 * g_array_prepend_vals:
 * @array: a #GArray
 * @data: (not nullable): a pointer to the elements to prepend to the start of the array
 * @len: the number of elements to prepend
 *
 * Adds @len elements onto the start of the array.
 *
 * This operation is slower than g_array_append_vals() since the
 * existing elements in the array have to be moved to make space for
 * the new elements.
 *
 * Returns: the #GArray
 */
/**
 * g_array_prepend_val:
 * @a: a #GArray
 * @v: the value to prepend to the #GArray
 *
 * Adds the value on to the start of the array. The array will grow in
 * size automatically if necessary.
 *
 * This operation is slower than g_array_append_val() since the
 * existing elements in the array have to be moved to make space for
 * the new element.
 *
 * g_array_prepend_val() is a macro which uses a reference to the value
 * parameter @v. This means that you cannot use it with literal values
 * such as "27". You must use variables.
 *
 * Returns: the #GArray
 */
GArray*
g_array_prepend_vals (GArray        *farray,
                      gconstpointer  data,
                      guint          len)
{
  GRealArray *array = (GRealArray*) farray;

  g_return_val_if_fail (array, NULL);

  if (len == 0)
    return farray;

  g_array_maybe_expand (array, len);

  memmove (g_array_elt_pos (array, len), g_array_elt_pos (array, 0),
           g_array_elt_len (array, array->len));

  memcpy (g_array_elt_pos (array, 0), data, g_array_elt_len (array, len));

  array->len += len;

  g_array_zero_terminate (array);

  return farray;
}

/**
 * g_array_insert_vals:
 * @array: a #GArray
 * @index_: the index to place the elements at
 * @data: (not nullable): a pointer to the elements to insert
 * @len: the number of elements to insert
 *
 * Inserts @len elements into a #GArray at the given index.
 *
 * Returns: the #GArray
 */
/**
 * g_array_insert_val:
 * @a: a #GArray
 * @i: the index to place the element at
 * @v: the value to insert into the array
 *
 * Inserts an element into an array at the given index.
 *
 * g_array_insert_val() is a macro which uses a reference to the value
 * parameter @v. This means that you cannot use it with literal values
 * such as "27". You must use variables.
 *
 * Returns: the #GArray
 */
GArray*
g_array_insert_vals (GArray        *farray,
                     guint          index_,
                     gconstpointer  data,
                     guint          len)
{
  GRealArray *array = (GRealArray*) farray;

  g_return_val_if_fail (array, NULL);

  if (len == 0)
    return farray;

  g_array_maybe_expand (array, len);

  memmove (g_array_elt_pos (array, len + index_),
           g_array_elt_pos (array, index_),
           g_array_elt_len (array, array->len - index_));

  memcpy (g_array_elt_pos (array, index_), data, g_array_elt_len (array, len));

  array->len += len;

  g_array_zero_terminate (array);

  return farray;
}

/**
 * g_array_set_size:
 * @array: a #GArray
 * @length: the new size of the #GArray
 *
 * Sets the size of the array, expanding it if necessary. If the array
 * was created with @clear_ set to %TRUE, the new elements are set to 0.
 *
 * Returns: the #GArray
 */
GArray*
g_array_set_size (GArray *farray,
                  guint   length)
{
  GRealArray *array = (GRealArray*) farray;

  g_return_val_if_fail (array, NULL);

  if (length > array->len)
    {
      g_array_maybe_expand (array, length - array->len);
      
      if (array->clear)
        g_array_elt_zero (array, array->len, length - array->len);
    }
  else if (length < array->len)
    g_array_remove_range (farray, length, array->len - length);
  
  array->len = length;
  
  g_array_zero_terminate (array);
  
  return farray;
}

/**
 * g_array_remove_index:
 * @array: a #GArray
 * @index_: the index of the element to remove
 *
 * Removes the element at the given index from a #GArray. The following
 * elements are moved down one place.
 *
 * Returns: the #GArray
 */
GArray*
g_array_remove_index (GArray *farray,
                      guint   index_)
{
  GRealArray* array = (GRealArray*) farray;

  g_return_val_if_fail (array, NULL);

  g_return_val_if_fail (index_ < array->len, NULL);

  if (array->clear_func != NULL)
    array->clear_func (g_array_elt_pos (array, index_));

  if (index_ != array->len - 1)
    memmove (g_array_elt_pos (array, index_),
             g_array_elt_pos (array, index_ + 1),
             g_array_elt_len (array, array->len - index_ - 1));

  array->len -= 1;

  if (G_UNLIKELY (g_mem_gc_friendly))
    g_array_elt_zero (array, array->len, 1);
  else
    g_array_zero_terminate (array);

  return farray;
}

/**
 * g_array_remove_index_fast:
 * @array: a @GArray
 * @index_: the index of the element to remove
 *
 * Removes the element at the given index from a #GArray. The last
 * element in the array is used to fill in the space, so this function
 * does not preserve the order of the #GArray. But it is faster than
 * g_array_remove_index().
 *
 * Returns: the #GArray
 */
GArray*
g_array_remove_index_fast (GArray *farray,
                           guint   index_)
{
  GRealArray* array = (GRealArray*) farray;

  g_return_val_if_fail (array, NULL);

  g_return_val_if_fail (index_ < array->len, NULL);

  if (array->clear_func != NULL)
    array->clear_func (g_array_elt_pos (array, index_));

  if (index_ != array->len - 1)
    memcpy (g_array_elt_pos (array, index_),
            g_array_elt_pos (array, array->len - 1),
            g_array_elt_len (array, 1));
  
  array->len -= 1;

  if (G_UNLIKELY (g_mem_gc_friendly))
    g_array_elt_zero (array, array->len, 1);
  else
    g_array_zero_terminate (array);

  return farray;
}

/**
 * g_array_remove_range:
 * @array: a @GArray
 * @index_: the index of the first element to remove
 * @length: the number of elements to remove
 *
 * Removes the given number of elements starting at the given index
 * from a #GArray.  The following elements are moved to close the gap.
 *
 * Returns: the #GArray
 *
 * Since: 2.4
 */
GArray*
g_array_remove_range (GArray *farray,
                      guint   index_,
                      guint   length)
{
  GRealArray *array = (GRealArray*) farray;

  g_return_val_if_fail (array, NULL);
  g_return_val_if_fail (index_ <= array->len, NULL);
  g_return_val_if_fail (index_ + length <= array->len, NULL);

  if (array->clear_func != NULL)
    {
      guint i;

      for (i = 0; i < length; i++)
        array->clear_func (g_array_elt_pos (array, index_ + i));
    }

  if (index_ + length != array->len)
    memmove (g_array_elt_pos (array, index_),
             g_array_elt_pos (array, index_ + length),
             (array->len - (index_ + length)) * array->elt_size);

  array->len -= length;
  if (G_UNLIKELY (g_mem_gc_friendly))
    g_array_elt_zero (array, array->len, length);
  else
    g_array_zero_terminate (array);

  return farray;
}

/**
 * g_array_sort:
 * @array: a #GArray
 * @compare_func: comparison function
 *
 * Sorts a #GArray using @compare_func which should be a qsort()-style
 * comparison function (returns less than zero for first arg is less
 * than second arg, zero for equal, greater zero if first arg is
 * greater than second arg).
 *
 * This is guaranteed to be a stable sort since version 2.32.
 */
void
g_array_sort (GArray       *farray,
              GCompareFunc  compare_func)
{
  GRealArray *array = (GRealArray*) farray;

  g_return_if_fail (array != NULL);

  /* Don't use qsort as we want a guaranteed stable sort */
  g_qsort_with_data (array->data,
                     array->len,
                     array->elt_size,
                     (GCompareDataFunc)compare_func,
                     NULL);
}

/**
 * g_array_sort_with_data:
 * @array: a #GArray
 * @compare_func: comparison function
 * @user_data: data to pass to @compare_func
 *
 * Like g_array_sort(), but the comparison function receives an extra
 * user data argument.
 *
 * This is guaranteed to be a stable sort since version 2.32.
 *
 * There used to be a comment here about making the sort stable by
 * using the addresses of the elements in the comparison function.
 * This did not actually work, so any such code should be removed.
 */
void
g_array_sort_with_data (GArray           *farray,
                        GCompareDataFunc  compare_func,
                        gpointer          user_data)
{
  GRealArray *array = (GRealArray*) farray;

  g_return_if_fail (array != NULL);

  g_qsort_with_data (array->data,
                     array->len,
                     array->elt_size,
                     compare_func,
                     user_data);
}

/* Returns the smallest power of 2 greater than n, or n if
 * such power does not fit in a guint
 */
static guint
g_nearest_pow (gint num)
{
  guint n = 1;

  while (n < num && n > 0)
    n <<= 1;

  return n ? n : num;
}

static void
g_array_maybe_expand (GRealArray *array,
                      gint        len)
{
  guint want_alloc = g_array_elt_len (array, array->len + len + 
                                      array->zero_terminated);

  if (want_alloc > array->alloc)
    {
      want_alloc = g_nearest_pow (want_alloc);
      want_alloc = MAX (want_alloc, MIN_ARRAY_SIZE);

      array->data = g_realloc (array->data, want_alloc);

      if (G_UNLIKELY (g_mem_gc_friendly))
        memset (array->data + array->alloc, 0, want_alloc - array->alloc);

      array->alloc = want_alloc;
    }
}

/**
 * SECTION:arrays_pointer
 * @title: Pointer Arrays
 * @short_description: arrays of pointers to any type of data, which
 *     grow automatically as new elements are added
 *
 * Pointer Arrays are similar to Arrays but are used only for storing
 * pointers.
 *
 * If you remove elements from the array, elements at the end of the
 * array are moved into the space previously occupied by the removed
 * element. This means that you should not rely on the index of particular
 * elements remaining the same. You should also be careful when deleting
 * elements while iterating over the array.
 *
 * To create a pointer array, use g_ptr_array_new().
 *
 * To add elements to a pointer array, use g_ptr_array_add().
 *
 * To remove elements from a pointer array, use g_ptr_array_remove(),
 * g_ptr_array_remove_index() or g_ptr_array_remove_index_fast().
 *
 * To access an element of a pointer array, use g_ptr_array_index().
 *
 * To set the size of a pointer array, use g_ptr_array_set_size().
 *
 * To free a pointer array, use g_ptr_array_free().
 *
 * An example using a #GPtrArray:
 * |[<!-- language="C" -->
 *   GPtrArray *array;
 *   gchar *string1 = "one";
 *   gchar *string2 = "two";
 *   gchar *string3 = "three";
 *
 *   array = g_ptr_array_new ();
 *   g_ptr_array_add (array, (gpointer) string1);
 *   g_ptr_array_add (array, (gpointer) string2);
 *   g_ptr_array_add (array, (gpointer) string3);
 *
 *   if (g_ptr_array_index (array, 0) != (gpointer) string1)
 *     g_print ("ERROR: got %p instead of %p\n",
 *              g_ptr_array_index (array, 0), string1);
 *
 *   g_ptr_array_free (array, TRUE);
 * ]|
 */

typedef struct _GRealPtrArray  GRealPtrArray;

/**
 * GPtrArray:
 * @pdata: points to the array of pointers, which may be moved when the
 *     array grows
 * @len: number of pointers in the array
 *
 * Contains the public fields of a pointer array.
 */
struct _GRealPtrArray
{
  gpointer       *pdata;
  guint           len;
  guint           alloc;
  gint            ref_count;
  GDestroyNotify  element_free_func;
};

/**
 * g_ptr_array_index:
 * @array: a #GPtrArray
 * @index_: the index of the pointer to return
 *
 * Returns the pointer at the given index of the pointer array.
 *
 * This does not perform bounds checking on the given @index_,
 * so you are responsible for checking it against the array length.
 *
 * Returns: the pointer at the given index
 */

static void g_ptr_array_maybe_expand (GRealPtrArray *array,
                                      gint           len);

/**
 * g_ptr_array_new:
 *
 * Creates a new #GPtrArray with a reference count of 1.
 *
 * Returns: the new #GPtrArray
 */
GPtrArray*
g_ptr_array_new (void)
{
  return g_ptr_array_sized_new (0);
}

/**
 * g_ptr_array_sized_new:
 * @reserved_size: number of pointers preallocated
 *
 * Creates a new #GPtrArray with @reserved_size pointers preallocated
 * and a reference count of 1. This avoids frequent reallocation, if
 * you are going to add many pointers to the array. Note however that
 * the size of the array is still 0.
 *
 * Returns: the new #GPtrArray
 */
GPtrArray*  
g_ptr_array_sized_new (guint reserved_size)
{
  GRealPtrArray *array;

  array = g_slice_new (GRealPtrArray);

  array->pdata = NULL;
  array->len = 0;
  array->alloc = 0;
  array->ref_count = 1;
  array->element_free_func = NULL;

  if (reserved_size != 0)
    g_ptr_array_maybe_expand (array, reserved_size);

  return (GPtrArray*) array;  
}

/**
 * g_ptr_array_new_with_free_func:
 * @element_free_func: (nullable): A function to free elements with
 *     destroy @array or %NULL
 *
 * Creates a new #GPtrArray with a reference count of 1 and use
 * @element_free_func for freeing each element when the array is destroyed
 * either via g_ptr_array_unref(), when g_ptr_array_free() is called with
 * @free_segment set to %TRUE or when removing elements.
 *
 * Returns: A new #GPtrArray
 *
 * Since: 2.22
 */
GPtrArray*
g_ptr_array_new_with_free_func (GDestroyNotify element_free_func)
{
  GPtrArray *array;

  array = g_ptr_array_new ();
  g_ptr_array_set_free_func (array, element_free_func);

  return array;
}

/**
 * g_ptr_array_new_full:
 * @reserved_size: number of pointers preallocated
 * @element_free_func: (nullable): A function to free elements with
 *     destroy @array or %NULL
 *
 * Creates a new #GPtrArray with @reserved_size pointers preallocated
 * and a reference count of 1. This avoids frequent reallocation, if
 * you are going to add many pointers to the array. Note however that
 * the size of the array is still 0. It also set @element_free_func
 * for freeing each element when the array is destroyed either via
 * g_ptr_array_unref(), when g_ptr_array_free() is called with
 * @free_segment set to %TRUE or when removing elements.
 *
 * Returns: A new #GPtrArray
 *
 * Since: 2.30
 */
GPtrArray*
g_ptr_array_new_full (guint          reserved_size,
                      GDestroyNotify element_free_func)
{
  GPtrArray *array;

  array = g_ptr_array_sized_new (reserved_size);
  g_ptr_array_set_free_func (array, element_free_func);

  return array;
}

/**
 * g_ptr_array_set_free_func:
 * @array: A #GPtrArray
 * @element_free_func: (nullable): A function to free elements with
 *     destroy @array or %NULL
 *
 * Sets a function for freeing each element when @array is destroyed
 * either via g_ptr_array_unref(), when g_ptr_array_free() is called
 * with @free_segment set to %TRUE or when removing elements.
 *
 * Since: 2.22
 */
void
g_ptr_array_set_free_func (GPtrArray      *array,
                           GDestroyNotify  element_free_func)
{
  GRealPtrArray *rarray = (GRealPtrArray *)array;

  g_return_if_fail (array);

  rarray->element_free_func = element_free_func;
}

/**
 * g_ptr_array_ref:
 * @array: a #GPtrArray
 *
 * Atomically increments the reference count of @array by one.
 * This function is thread-safe and may be called from any thread.
 *
 * Returns: The passed in #GPtrArray
 *
 * Since: 2.22
 */
GPtrArray*
g_ptr_array_ref (GPtrArray *array)
{
  GRealPtrArray *rarray = (GRealPtrArray *)array;

  g_return_val_if_fail (array, NULL);

  g_atomic_int_inc (&rarray->ref_count);

  return array;
}

static gpointer *ptr_array_free (GPtrArray *, ArrayFreeFlags);

/**
 * g_ptr_array_unref:
 * @array: A #GPtrArray
 *
 * Atomically decrements the reference count of @array by one. If the
 * reference count drops to 0, the effect is the same as calling
 * g_ptr_array_free() with @free_segment set to %TRUE. This function
 * is thread-safe and may be called from any thread.
 *
 * Since: 2.22
 */
void
g_ptr_array_unref (GPtrArray *array)
{
  GRealPtrArray *rarray = (GRealPtrArray *)array;

  g_return_if_fail (array);

  if (g_atomic_int_dec_and_test (&rarray->ref_count))
    ptr_array_free (array, FREE_SEGMENT);
}

/**
 * g_ptr_array_free:
 * @array: a #GPtrArray
 * @free_seg: if %TRUE the actual pointer array is freed as well
 *
 * Frees the memory allocated for the #GPtrArray. If @free_seg is %TRUE
 * it frees the memory block holding the elements as well. Pass %FALSE
 * if you want to free the #GPtrArray wrapper but preserve the
 * underlying array for use elsewhere. If the reference count of @array
 * is greater than one, the #GPtrArray wrapper is preserved but the
 * size of @array will be set to zero.
 *
 * If array contents point to dynamically-allocated memory, they should
 * be freed separately if @free_seg is %TRUE and no #GDestroyNotify
 * function has been set for @array.
 *
 * This function is not thread-safe. If using a #GPtrArray from multiple
 * threads, use only the atomic g_ptr_array_ref() and g_ptr_array_unref()
 * functions.
 *
 * Returns: the pointer array if @free_seg is %FALSE, otherwise %NULL.
 *     The pointer array should be freed using g_free().
 */
gpointer*
g_ptr_array_free (GPtrArray *array,
                  gboolean   free_segment)
{
  GRealPtrArray *rarray = (GRealPtrArray *)array;
  ArrayFreeFlags flags;

  g_return_val_if_fail (rarray, NULL);

  flags = (free_segment ? FREE_SEGMENT : 0);

  /* if others are holding a reference, preserve the wrapper but
   * do free/return the data
   */
  if (!g_atomic_int_dec_and_test (&rarray->ref_count))
    flags |= PRESERVE_WRAPPER;

  return ptr_array_free (array, flags);
}

static gpointer *
ptr_array_free (GPtrArray      *array,
                ArrayFreeFlags  flags)
{
  GRealPtrArray *rarray = (GRealPtrArray *)array;
  gpointer *segment;

  if (flags & FREE_SEGMENT)
    {
      if (rarray->element_free_func != NULL)
        g_ptr_array_foreach (array, (GFunc) rarray->element_free_func, NULL);
      g_free (rarray->pdata);
      segment = NULL;
    }
  else
    segment = rarray->pdata;

  if (flags & PRESERVE_WRAPPER)
    {
      rarray->pdata = NULL;
      rarray->len = 0;
      rarray->alloc = 0;
    }
  else
    {
      g_slice_free1 (sizeof (GRealPtrArray), rarray);
    }

  return segment;
}

static void
g_ptr_array_maybe_expand (GRealPtrArray *array,
                          gint           len)
{
  if ((array->len + len) > array->alloc)
    {
      guint old_alloc = array->alloc;
      array->alloc = g_nearest_pow (array->len + len);
      array->alloc = MAX (array->alloc, MIN_ARRAY_SIZE);
      array->pdata = g_realloc (array->pdata, sizeof (gpointer) * array->alloc);
      if (G_UNLIKELY (g_mem_gc_friendly))
        for ( ; old_alloc < array->alloc; old_alloc++)
          array->pdata [old_alloc] = NULL;
    }
}

/**
 * g_ptr_array_set_size:
 * @array: a #GPtrArray
 * @length: the new length of the pointer array
 *
 * Sets the size of the array. When making the array larger,
 * newly-added elements will be set to %NULL. When making it smaller,
 * if @array has a non-%NULL #GDestroyNotify function then it will be
 * called for the removed elements.
 */
void
g_ptr_array_set_size  (GPtrArray *array,
                       gint       length)
{
  GRealPtrArray *rarray = (GRealPtrArray *)array;

  g_return_if_fail (rarray);

  if (length > rarray->len)
    {
      int i;
      g_ptr_array_maybe_expand (rarray, (length - rarray->len));
      /* This is not 
       *     memset (array->pdata + array->len, 0,
       *            sizeof (gpointer) * (length - array->len));
       * to make it really portable. Remember (void*)NULL needn't be
       * bitwise zero. It of course is silly not to use memset (..,0,..).
       */
      for (i = rarray->len; i < length; i++)
        rarray->pdata[i] = NULL;
    }
  else if (length < rarray->len)
    g_ptr_array_remove_range (array, length, rarray->len - length);

  rarray->len = length;
}

/**
 * g_ptr_array_remove_index:
 * @array: a #GPtrArray
 * @index_: the index of the pointer to remove
 *
 * Removes the pointer at the given index from the pointer array.
 * The following elements are moved down one place. If @array has
 * a non-%NULL #GDestroyNotify function it is called for the removed
 * element.
 *
 * Returns: the pointer which was removed
 */
gpointer
g_ptr_array_remove_index (GPtrArray *array,
                          guint      index_)
{
  GRealPtrArray *rarray = (GRealPtrArray *)array;
  gpointer result;

  g_return_val_if_fail (rarray, NULL);

  g_return_val_if_fail (index_ < rarray->len, NULL);

  result = rarray->pdata[index_];
  
  if (rarray->element_free_func != NULL)
    rarray->element_free_func (rarray->pdata[index_]);

  if (index_ != rarray->len - 1)
    memmove (rarray->pdata + index_, rarray->pdata + index_ + 1,
             sizeof (gpointer) * (rarray->len - index_ - 1));
  
  rarray->len -= 1;

  if (G_UNLIKELY (g_mem_gc_friendly))
    rarray->pdata[rarray->len] = NULL;

  return result;
}

/**
 * g_ptr_array_remove_index_fast:
 * @array: a #GPtrArray
 * @index_: the index of the pointer to remove
 *
 * Removes the pointer at the given index from the pointer array.
 * The last element in the array is used to fill in the space, so
 * this function does not preserve the order of the array. But it
 * is faster than g_ptr_array_remove_index(). If @array has a non-%NULL
 * #GDestroyNotify function it is called for the removed element.
 *
 * Returns: the pointer which was removed
 */
gpointer
g_ptr_array_remove_index_fast (GPtrArray *array,
                               guint      index_)
{
  GRealPtrArray *rarray = (GRealPtrArray *)array;
  gpointer result;

  g_return_val_if_fail (rarray, NULL);

  g_return_val_if_fail (index_ < rarray->len, NULL);

  result = rarray->pdata[index_];

  if (rarray->element_free_func != NULL)
    rarray->element_free_func (rarray->pdata[index_]);

  if (index_ != rarray->len - 1)
    rarray->pdata[index_] = rarray->pdata[rarray->len - 1];

  rarray->len -= 1;

  if (G_UNLIKELY (g_mem_gc_friendly))
    rarray->pdata[rarray->len] = NULL;

  return result;
}

/**
 * g_ptr_array_remove_range:
 * @array: a @GPtrArray
 * @index_: the index of the first pointer to remove
 * @length: the number of pointers to remove
 *
 * Removes the given number of pointers starting at the given index
 * from a #GPtrArray. The following elements are moved to close the
 * gap. If @array has a non-%NULL #GDestroyNotify function it is
 * called for the removed elements.
 *
 * Returns: the @array
 *
 * Since: 2.4
 */
GPtrArray*
g_ptr_array_remove_range (GPtrArray *array,
                          guint      index_,
                          guint      length)
{
  GRealPtrArray *rarray = (GRealPtrArray *)array;
  guint n;

  g_return_val_if_fail (rarray != NULL, NULL);
  g_return_val_if_fail (index_ <= rarray->len, NULL);
  g_return_val_if_fail (index_ + length <= rarray->len, NULL);

  if (rarray->element_free_func != NULL)
    {
      for (n = index_; n < index_ + length; n++)
        rarray->element_free_func (rarray->pdata[n]);
    }

  if (index_ + length != rarray->len)
    {
      memmove (&rarray->pdata[index_],
               &rarray->pdata[index_ + length],
               (rarray->len - (index_ + length)) * sizeof (gpointer));
    }

  rarray->len -= length;
  if (G_UNLIKELY (g_mem_gc_friendly))
    {
      guint i;
      for (i = 0; i < length; i++)
        rarray->pdata[rarray->len + i] = NULL;
    }

  return array;
}

/**
 * g_ptr_array_remove:
 * @array: a #GPtrArray
 * @data: the pointer to remove
 *
 * Removes the first occurrence of the given pointer from the pointer
 * array. The following elements are moved down one place. If @array
 * has a non-%NULL #GDestroyNotify function it is called for the
 * removed element.
 *
 * It returns %TRUE if the pointer was removed, or %FALSE if the
 * pointer was not found.
 *
 * Returns: %TRUE if the pointer is removed, %FALSE if the pointer
 *     is not found in the array
 */
gboolean
g_ptr_array_remove (GPtrArray *array,
                    gpointer   data)
{
  guint i;

  g_return_val_if_fail (array, FALSE);

  for (i = 0; i < array->len; i += 1)
    {
      if (array->pdata[i] == data)
        {
          g_ptr_array_remove_index (array, i);
          return TRUE;
        }
    }

  return FALSE;
}

/**
 * g_ptr_array_remove_fast:
 * @array: a #GPtrArray
 * @data: the pointer to remove
 *
 * Removes the first occurrence of the given pointer from the pointer
 * array. The last element in the array is used to fill in the space,
 * so this function does not preserve the order of the array. But it
 * is faster than g_ptr_array_remove(). If @array has a non-%NULL
 * #GDestroyNotify function it is called for the removed element.
 *
 * It returns %TRUE if the pointer was removed, or %FALSE if the
 * pointer was not found.
 *
 * Returns: %TRUE if the pointer was found in the array
 */
gboolean
g_ptr_array_remove_fast (GPtrArray *array,
                         gpointer   data)
{
  GRealPtrArray *rarray = (GRealPtrArray *)array;
  guint i;

  g_return_val_if_fail (rarray, FALSE);

  for (i = 0; i < rarray->len; i += 1)
    {
      if (rarray->pdata[i] == data)
        {
          g_ptr_array_remove_index_fast (array, i);
          return TRUE;
        }
    }

  return FALSE;
}

/**
 * g_ptr_array_add:
 * @array: a #GPtrArray
 * @data: the pointer to add
 *
 * Adds a pointer to the end of the pointer array. The array will grow
 * in size automatically if necessary.
 */
void
g_ptr_array_add (GPtrArray *array,
                 gpointer   data)
{
  GRealPtrArray *rarray = (GRealPtrArray *)array;

  g_return_if_fail (rarray);

  g_ptr_array_maybe_expand (rarray, 1);

  rarray->pdata[rarray->len++] = data;
}

/**
 * g_ptr_array_insert:
 * @array: a #GPtrArray
 * @index_: the index to place the new element at, or -1 to append
 * @data: the pointer to add.
 *
 * Inserts an element into the pointer array at the given index. The 
 * array will grow in size automatically if necessary.
 *
 * Since: 2.40
 */
void
g_ptr_array_insert (GPtrArray *array,
                    gint       index_,
                    gpointer   data)
{
  GRealPtrArray *rarray = (GRealPtrArray *)array;

  g_return_if_fail (rarray);
  g_return_if_fail (index_ >= -1);
  g_return_if_fail (index_ <= (gint)rarray->len);

  g_ptr_array_maybe_expand (rarray, 1);

  if (index_ < 0)
    index_ = rarray->len;

  if (index_ < rarray->len)
    memmove (&(rarray->pdata[index_ + 1]),
             &(rarray->pdata[index_]),
             (rarray->len - index_) * sizeof (gpointer));

  rarray->len++;
  rarray->pdata[index_] = data;
}

/**
 * g_ptr_array_sort:
 * @array: a #GPtrArray
 * @compare_func: comparison function
 *
 * Sorts the array, using @compare_func which should be a qsort()-style
 * comparison function (returns less than zero for first arg is less
 * than second arg, zero for equal, greater than zero if irst arg is
 * greater than second arg).
 *
 * Note that the comparison function for g_ptr_array_sort() doesn't
 * take the pointers from the array as arguments, it takes pointers to
 * the pointers in the array.
 *
 * This is guaranteed to be a stable sort since version 2.32.
 */
void
g_ptr_array_sort (GPtrArray    *array,
                  GCompareFunc  compare_func)
{
  g_return_if_fail (array != NULL);

  /* Don't use qsort as we want a guaranteed stable sort */
  g_qsort_with_data (array->pdata,
                     array->len,
                     sizeof (gpointer),
                     (GCompareDataFunc)compare_func,
                     NULL);
}

/**
 * g_ptr_array_sort_with_data:
 * @array: a #GPtrArray
 * @compare_func: comparison function
 * @user_data: data to pass to @compare_func
 *
 * Like g_ptr_array_sort(), but the comparison function has an extra
 * user data argument.
 *
 * Note that the comparison function for g_ptr_array_sort_with_data()
 * doesn't take the pointers from the array as arguments, it takes
 * pointers to the pointers in the array.
 *
 * This is guaranteed to be a stable sort since version 2.32.
 */
void
g_ptr_array_sort_with_data (GPtrArray        *array,
                            GCompareDataFunc  compare_func,
                            gpointer          user_data)
{
  g_return_if_fail (array != NULL);

  g_qsort_with_data (array->pdata,
                     array->len,
                     sizeof (gpointer),
                     compare_func,
                     user_data);
}

/**
 * g_ptr_array_foreach:
 * @array: a #GPtrArray
 * @func: the function to call for each array element
 * @user_data: user data to pass to the function
 * 
 * Calls a function for each element of a #GPtrArray. @func must not
 * add elements to or remove elements from the array.
 *
 * Since: 2.4
 */
void
g_ptr_array_foreach (GPtrArray *array,
                     GFunc      func,
                     gpointer   user_data)
{
  guint i;

  g_return_if_fail (array);

  for (i = 0; i < array->len; i++)
    (*func) (array->pdata[i], user_data);
}

/**
 * g_ptr_array_find: (skip)
 * @haystack: pointer array to be searched
 * @needle: pointer to look for
 * @index_: (optional) (out caller-allocates): return location for the index of
 *    the element, if found
 *
 * Checks whether @needle exists in @haystack. If the element is found, %TRUE is
 * returned and the element’s index is returned in @index_ (if non-%NULL).
 * Otherwise, %FALSE is returned and @index_ is undefined. If @needle exists
 * multiple times in @haystack, the index of the first instance is returned.
 *
 * This does pointer comparisons only. If you want to use more complex equality
 * checks, such as string comparisons, use g_ptr_array_find_with_equal_func().
 *
 * Returns: %TRUE if @needle is one of the elements of @haystack
 * Since: 2.54
 */
gboolean
g_ptr_array_find (GPtrArray     *haystack,
                  gconstpointer  needle,
                  guint         *index_)
{
  return g_ptr_array_find_with_equal_func (haystack, needle, NULL, index_);
}

/**
 * g_ptr_array_find_with_equal_func: (skip)
 * @haystack: pointer array to be searched
 * @needle: pointer to look for
 * @equal_func: (nullable): the function to call for each element, which should
 *    return %TRUE when the desired element is found; or %NULL to use pointer
 *    equality
 * @index_: (optional) (out caller-allocates): return location for the index of
 *    the element, if found
 *
 * Checks whether @needle exists in @haystack, using the given @equal_func.
 * If the element is found, %TRUE is returned and the element’s index is
 * returned in @index_ (if non-%NULL). Otherwise, %FALSE is returned and @index_
 * is undefined. If @needle exists multiple times in @haystack, the index of
 * the first instance is returned.
 *
 * @equal_func is called with the element from the array as its first parameter,
 * and @needle as its second parameter. If @equal_func is %NULL, pointer
 * equality is used.
 *
 * Returns: %TRUE if @needle is one of the elements of @haystack
 * Since: 2.54
 */
gboolean
g_ptr_array_find_with_equal_func (GPtrArray     *haystack,
                                  gconstpointer  needle,
                                  GEqualFunc     equal_func,
                                  guint         *index_)
{
  guint i;

  g_return_val_if_fail (haystack != NULL, FALSE);

  if (equal_func == NULL)
    equal_func = g_direct_equal;

  for (i = 0; i < haystack->len; i++)
    {
      if (equal_func (g_ptr_array_index (haystack, i), needle))
        {
          if (index_ != NULL)
            *index_ = i;
          return TRUE;
        }
    }

  return FALSE;
}

/**
 * SECTION:arrays_byte
 * @title: Byte Arrays
 * @short_description: arrays of bytes
 *
 * #GByteArray is a mutable array of bytes based on #GArray, to provide arrays
 * of bytes which grow automatically as elements are added.
 *
 * To create a new #GByteArray use g_byte_array_new(). To add elements to a
 * #GByteArray, use g_byte_array_append(), and g_byte_array_prepend().
 *
 * To set the size of a #GByteArray, use g_byte_array_set_size().
 *
 * To free a #GByteArray, use g_byte_array_free().
 *
 * An example for using a #GByteArray:
 * |[<!-- language="C" -->
 *   GByteArray *gbarray;
 *   gint i;
 *
 *   gbarray = g_byte_array_new ();
 *   for (i = 0; i < 10000; i++)
 *     g_byte_array_append (gbarray, (guint8*) "abcd", 4);
 *
 *   for (i = 0; i < 10000; i++)
 *     {
 *       g_assert (gbarray->data[4*i] == 'a');
 *       g_assert (gbarray->data[4*i+1] == 'b');
 *       g_assert (gbarray->data[4*i+2] == 'c');
 *       g_assert (gbarray->data[4*i+3] == 'd');
 *     }
 *
 *   g_byte_array_free (gbarray, TRUE);
 * ]|
 *
 * See #GBytes if you are interested in an immutable object representing a
 * sequence of bytes.
 */

/**
 * GByteArray:
 * @data: a pointer to the element data. The data may be moved as
 *     elements are added to the #GByteArray
 * @len: the number of elements in the #GByteArray
 *
 * Contains the public fields of a GByteArray.
 */

/**
 * g_byte_array_new:
 *
 * Creates a new #GByteArray with a reference count of 1.
 *
 * Returns: (transfer full): the new #GByteArray
 */
GByteArray*
g_byte_array_new (void)
{
  return (GByteArray *)g_array_sized_new (FALSE, FALSE, 1, 0);
}

/**
 * g_byte_array_new_take:
 * @data: (transfer full) (array length=len): byte data for the array
 * @len: length of @data
 *
 * Create byte array containing the data. The data will be owned by the array
 * and will be freed with g_free(), i.e. it could be allocated using g_strdup().
 *
 * Since: 2.32
 *
 * Returns: (transfer full): a new #GByteArray
 */
GByteArray*
g_byte_array_new_take (guint8 *data,
                       gsize   len)
{
  GByteArray *array;
  GRealArray *real;

  array = g_byte_array_new ();
  real = (GRealArray *)array;
  g_assert (real->data == NULL);
  g_assert (real->len == 0);

  real->data = data;
  real->len = len;
  real->alloc = len;

  return array;
}

/**
 * g_byte_array_sized_new:
 * @reserved_size: number of bytes preallocated
 *
 * Creates a new #GByteArray with @reserved_size bytes preallocated.
 * This avoids frequent reallocation, if you are going to add many
 * bytes to the array. Note however that the size of the array is still
 * 0.
 *
 * Returns: the new #GByteArray
 */
GByteArray*
g_byte_array_sized_new (guint reserved_size)
{
  return (GByteArray *)g_array_sized_new (FALSE, FALSE, 1, reserved_size);
}

/**
 * g_byte_array_free:
 * @array: a #GByteArray
 * @free_segment: if %TRUE the actual byte data is freed as well
 *
 * Frees the memory allocated by the #GByteArray. If @free_segment is
 * %TRUE it frees the actual byte data. If the reference count of
 * @array is greater than one, the #GByteArray wrapper is preserved but
 * the size of @array will be set to zero.
 *
 * Returns: the element data if @free_segment is %FALSE, otherwise
 *          %NULL.  The element data should be freed using g_free().
 */
guint8*
g_byte_array_free (GByteArray *array,
                   gboolean    free_segment)
{
  return (guint8 *)g_array_free ((GArray *)array, free_segment);
}

/**
 * g_byte_array_free_to_bytes:
 * @array: (transfer full): a #GByteArray
 *
 * Transfers the data from the #GByteArray into a new immutable #GBytes.
 *
 * The #GByteArray is freed unless the reference count of @array is greater
 * than one, the #GByteArray wrapper is preserved but the size of @array
 * will be set to zero.
 *
 * This is identical to using g_bytes_new_take() and g_byte_array_free()
 * together.
 *
 * Since: 2.32
 *
 * Returns: (transfer full): a new immutable #GBytes representing same
 *     byte data that was in the array
 */
GBytes*
g_byte_array_free_to_bytes (GByteArray *array)
{
  gsize length;

  g_return_val_if_fail (array != NULL, NULL);

  length = array->len;
  return g_bytes_new_take (g_byte_array_free (array, FALSE), length);
}

/**
 * g_byte_array_ref:
 * @array: A #GByteArray
 *
 * Atomically increments the reference count of @array by one.
 * This function is thread-safe and may be called from any thread.
 *
 * Returns: The passed in #GByteArray
 *
 * Since: 2.22
 */
GByteArray*
g_byte_array_ref (GByteArray *array)
{
  return (GByteArray *)g_array_ref ((GArray *)array);
}

/**
 * g_byte_array_unref:
 * @array: A #GByteArray
 *
 * Atomically decrements the reference count of @array by one. If the
 * reference count drops to 0, all memory allocated by the array is
 * released. This function is thread-safe and may be called from any
 * thread.
 *
 * Since: 2.22
 */
void
g_byte_array_unref (GByteArray *array)
{
  g_array_unref ((GArray *)array);
}

/**
 * g_byte_array_append:
 * @array: a #GByteArray
 * @data: the byte data to be added
 * @len: the number of bytes to add
 *
 * Adds the given bytes to the end of the #GByteArray.
 * The array will grow in size automatically if necessary.
 *
 * Returns: the #GByteArray
 */
GByteArray*
g_byte_array_append (GByteArray   *array,
                     const guint8 *data,
                     guint         len)
{
  g_array_append_vals ((GArray *)array, (guint8 *)data, len);

  return array;
}

/**
 * g_byte_array_prepend:
 * @array: a #GByteArray
 * @data: the byte data to be added
 * @len: the number of bytes to add
 *
 * Adds the given data to the start of the #GByteArray.
 * The array will grow in size automatically if necessary.
 *
 * Returns: the #GByteArray
 */
GByteArray*
g_byte_array_prepend (GByteArray   *array,
                      const guint8 *data,
                      guint         len)
{
  g_array_prepend_vals ((GArray *)array, (guint8 *)data, len);

  return array;
}

/**
 * g_byte_array_set_size:
 * @array: a #GByteArray
 * @length: the new size of the #GByteArray
 *
 * Sets the size of the #GByteArray, expanding it if necessary.
 *
 * Returns: the #GByteArray
 */
GByteArray*
g_byte_array_set_size (GByteArray *array,
                       guint       length)
{
  g_array_set_size ((GArray *)array, length);

  return array;
}

/**
 * g_byte_array_remove_index:
 * @array: a #GByteArray
 * @index_: the index of the byte to remove
 *
 * Removes the byte at the given index from a #GByteArray.
 * The following bytes are moved down one place.
 *
 * Returns: the #GByteArray
 **/
GByteArray*
g_byte_array_remove_index (GByteArray *array,
                           guint       index_)
{
  g_array_remove_index ((GArray *)array, index_);

  return array;
}

/**
 * g_byte_array_remove_index_fast:
 * @array: a #GByteArray
 * @index_: the index of the byte to remove
 *
 * Removes the byte at the given index from a #GByteArray. The last
 * element in the array is used to fill in the space, so this function
 * does not preserve the order of the #GByteArray. But it is faster
 * than g_byte_array_remove_index().
 *
 * Returns: the #GByteArray
 */
GByteArray*
g_byte_array_remove_index_fast (GByteArray *array,
                                guint       index_)
{
  g_array_remove_index_fast ((GArray *)array, index_);

  return array;
}

/**
 * g_byte_array_remove_range:
 * @array: a @GByteArray
 * @index_: the index of the first byte to remove
 * @length: the number of bytes to remove
 *
 * Removes the given number of bytes starting at the given index from a
 * #GByteArray.  The following elements are moved to close the gap.
 *
 * Returns: the #GByteArray
 *
 * Since: 2.4
 */
GByteArray*
g_byte_array_remove_range (GByteArray *array,
                           guint       index_,
                           guint       length)
{
  g_return_val_if_fail (array, NULL);
  g_return_val_if_fail (index_ <= array->len, NULL);
  g_return_val_if_fail (index_ + length <= array->len, NULL);

  return (GByteArray *)g_array_remove_range ((GArray *)array, index_, length);
}

/**
 * g_byte_array_sort:
 * @array: a #GByteArray
 * @compare_func: comparison function
 *
 * Sorts a byte array, using @compare_func which should be a
 * qsort()-style comparison function (returns less than zero for first
 * arg is less than second arg, zero for equal, greater than zero if
 * first arg is greater than second arg).
 *
 * If two array elements compare equal, their order in the sorted array
 * is undefined. If you want equal elements to keep their order (i.e.
 * you want a stable sort) you can write a comparison function that,
 * if two elements would otherwise compare equal, compares them by
 * their addresses.
 */
void
g_byte_array_sort (GByteArray   *array,
                   GCompareFunc  compare_func)
{
  g_array_sort ((GArray *)array, compare_func);
}

/**
 * g_byte_array_sort_with_data:
 * @array: a #GByteArray
 * @compare_func: comparison function
 * @user_data: data to pass to @compare_func
 *
 * Like g_byte_array_sort(), but the comparison function takes an extra
 * user data argument.
 */
void
g_byte_array_sort_with_data (GByteArray       *array,
                             GCompareDataFunc  compare_func,
                             gpointer          user_data)
{
  g_array_sort_with_data ((GArray *)array, compare_func, user_data);
}