// SPDX-License-Identifier: BSD-3-Clause
/* Copyright (C) 2018 - 2020 Intel Corporation. */
#include <memkind.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <unistd.h>
#define NUM_THREADS 10
#define NUM_ALLOCS 100
static char path[PATH_MAX]="/tmp/";
static void print_err_message(int err)
{
char error_message[MEMKIND_ERROR_MESSAGE_SIZE];
memkind_error_message(err, error_message, MEMKIND_ERROR_MESSAGE_SIZE);
fprintf(stderr, "%s\n", error_message);
}
struct arg_struct {
int id;
struct memkind *kind;
int **ptr;
};
void *thread_onekind(void *arg);
static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
int main(int argc, char *argv[])
{
struct memkind *pmem_kind_unlimited = NULL;
int err = 0;
if (argc > 2) {
fprintf(stderr, "Usage: %s [pmem_kind_dir_path]\n", argv[0]);
return 1;
} else if (argc == 2 && (realpath(argv[1], path) == NULL)) {
fprintf(stderr, "Incorrect pmem_kind_dir_path %s\n", argv[1]);
return 1;
}
fprintf(stdout,
"This example shows how to use multithreading with one main pmem kind."
"\nPMEM kind directory: %s\n", path);
// Create PMEM partition with unlimited size
err = memkind_create_pmem(path, 0, &pmem_kind_unlimited);
if (err) {
print_err_message(err);
return 1;
}
// Create a few threads which will access to our main pmem_kind
pthread_t pmem_threads[NUM_THREADS];
int *pmem_tint[NUM_THREADS][NUM_ALLOCS];
int t = 0, i = 0;
struct arg_struct *args[NUM_THREADS];
for (t = 0; t<NUM_THREADS; t++) {
args[t] = malloc(sizeof(struct arg_struct));
args[t]->id = t;
args[t]->ptr = &pmem_tint[t][0];
args[t]->kind = pmem_kind_unlimited;
if (pthread_create(&pmem_threads[t], NULL, thread_onekind,
(void *)args[t])!= 0) {
fprintf(stderr, "Unable to create a thread.\n");
return 1;
}
}
sleep(1);
if (pthread_cond_broadcast(&cond) != 0) {
fprintf(stderr, "Unable to broadcast a condition.\n");
return 1;
}
for (t = 0; t < NUM_THREADS; t++) {
if (pthread_join(pmem_threads[t], NULL) != 0) {
fprintf(stderr, "Thread join failed.\n");
return 1;
}
}
// Check if we can read the values outside of threads and free resources
for (t = 0; t < NUM_THREADS; t++) {
for (i = 0; i < NUM_ALLOCS; i++) {
if(*pmem_tint[t][i] != t) {
fprintf(stderr,
"pmem_tint value has not been saved correctly in the thread.\n");
return 1;
}
memkind_free(args[t]->kind, *(args[t]->ptr+i));
}
free(args[t]);
}
fprintf(stdout, "Threads successfully allocated memory in the PMEM kind.\n");
return 0;
}
void *thread_onekind(void *arg)
{
struct arg_struct *args = (struct arg_struct *)arg;
int i;
if (pthread_mutex_lock(&mutex) != 0) {
fprintf(stderr, "Failed to acquire mutex.\n");
return NULL;
}
if (pthread_cond_wait(&cond, &mutex) != 0) {
fprintf(stderr, "Failed to block mutex on condition.\n");
return NULL;
}
if (pthread_mutex_unlock(&mutex) != 0) {
fprintf(stderr, "Failed to release mutex.\n");
return NULL;
}
// Lets alloc int and put there thread ID
for (i = 0; i < NUM_ALLOCS; i++) {
*(args->ptr+i) = (int *)memkind_malloc(args->kind, sizeof(int));
if (*(args->ptr+i) == NULL) {
fprintf(stderr, "Unable to allocate pmem int.\n");
return NULL;
}
**(args->ptr+i) = args->id;
}
return NULL;
}