Blob Blame History Raw
/* Functions to compute SHA512 message digest of files or memory blocks.
   according to the definition of SHA512 in FIPS 180-2.
   Copyright (C) 2007-2017 Free Software Foundation, Inc.

   This library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public License
   as published by the Free Software Foundation; either version 2.1 of
   the License, or (at your option) any later version.

   This library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with this library; if not, see
   <https://www.gnu.org/licenses/>.  */

/* Written by Ulrich Drepper <drepper@redhat.com>, 2007.  */

#include "crypt-port.h"
#include "alg-sha512.h"
#include "byteorder.h"

#if INCLUDE_sha512

/* Constants for SHA512 from FIPS 180-2:4.2.3.  */
static const uint64_t K[80] =
{
  UINT64_C (0x428a2f98d728ae22), UINT64_C (0x7137449123ef65cd),
  UINT64_C (0xb5c0fbcfec4d3b2f), UINT64_C (0xe9b5dba58189dbbc),
  UINT64_C (0x3956c25bf348b538), UINT64_C (0x59f111f1b605d019),
  UINT64_C (0x923f82a4af194f9b), UINT64_C (0xab1c5ed5da6d8118),
  UINT64_C (0xd807aa98a3030242), UINT64_C (0x12835b0145706fbe),
  UINT64_C (0x243185be4ee4b28c), UINT64_C (0x550c7dc3d5ffb4e2),
  UINT64_C (0x72be5d74f27b896f), UINT64_C (0x80deb1fe3b1696b1),
  UINT64_C (0x9bdc06a725c71235), UINT64_C (0xc19bf174cf692694),
  UINT64_C (0xe49b69c19ef14ad2), UINT64_C (0xefbe4786384f25e3),
  UINT64_C (0x0fc19dc68b8cd5b5), UINT64_C (0x240ca1cc77ac9c65),
  UINT64_C (0x2de92c6f592b0275), UINT64_C (0x4a7484aa6ea6e483),
  UINT64_C (0x5cb0a9dcbd41fbd4), UINT64_C (0x76f988da831153b5),
  UINT64_C (0x983e5152ee66dfab), UINT64_C (0xa831c66d2db43210),
  UINT64_C (0xb00327c898fb213f), UINT64_C (0xbf597fc7beef0ee4),
  UINT64_C (0xc6e00bf33da88fc2), UINT64_C (0xd5a79147930aa725),
  UINT64_C (0x06ca6351e003826f), UINT64_C (0x142929670a0e6e70),
  UINT64_C (0x27b70a8546d22ffc), UINT64_C (0x2e1b21385c26c926),
  UINT64_C (0x4d2c6dfc5ac42aed), UINT64_C (0x53380d139d95b3df),
  UINT64_C (0x650a73548baf63de), UINT64_C (0x766a0abb3c77b2a8),
  UINT64_C (0x81c2c92e47edaee6), UINT64_C (0x92722c851482353b),
  UINT64_C (0xa2bfe8a14cf10364), UINT64_C (0xa81a664bbc423001),
  UINT64_C (0xc24b8b70d0f89791), UINT64_C (0xc76c51a30654be30),
  UINT64_C (0xd192e819d6ef5218), UINT64_C (0xd69906245565a910),
  UINT64_C (0xf40e35855771202a), UINT64_C (0x106aa07032bbd1b8),
  UINT64_C (0x19a4c116b8d2d0c8), UINT64_C (0x1e376c085141ab53),
  UINT64_C (0x2748774cdf8eeb99), UINT64_C (0x34b0bcb5e19b48a8),
  UINT64_C (0x391c0cb3c5c95a63), UINT64_C (0x4ed8aa4ae3418acb),
  UINT64_C (0x5b9cca4f7763e373), UINT64_C (0x682e6ff3d6b2b8a3),
  UINT64_C (0x748f82ee5defb2fc), UINT64_C (0x78a5636f43172f60),
  UINT64_C (0x84c87814a1f0ab72), UINT64_C (0x8cc702081a6439ec),
  UINT64_C (0x90befffa23631e28), UINT64_C (0xa4506cebde82bde9),
  UINT64_C (0xbef9a3f7b2c67915), UINT64_C (0xc67178f2e372532b),
  UINT64_C (0xca273eceea26619c), UINT64_C (0xd186b8c721c0c207),
  UINT64_C (0xeada7dd6cde0eb1e), UINT64_C (0xf57d4f7fee6ed178),
  UINT64_C (0x06f067aa72176fba), UINT64_C (0x0a637dc5a2c898a6),
  UINT64_C (0x113f9804bef90dae), UINT64_C (0x1b710b35131c471b),
  UINT64_C (0x28db77f523047d84), UINT64_C (0x32caab7b40c72493),
  UINT64_C (0x3c9ebe0a15c9bebc), UINT64_C (0x431d67c49c100d4c),
  UINT64_C (0x4cc5d4becb3e42b6), UINT64_C (0x597f299cfc657e2a),
  UINT64_C (0x5fcb6fab3ad6faec), UINT64_C (0x6c44198c4a475817)
};


/* Process LEN bytes of BUFFER, accumulating context into CTX.
   It is assumed that LEN % 128 == 0.  */
static void
sha512_process_block (const void *buffer, size_t len, struct sha512_ctx *ctx)
{
  unsigned int t;
  const unsigned char *p = buffer;
  size_t nwords = len / sizeof (uint64_t);
  uint64_t a = ctx->H[0];
  uint64_t b = ctx->H[1];
  uint64_t c = ctx->H[2];
  uint64_t d = ctx->H[3];
  uint64_t e = ctx->H[4];
  uint64_t f = ctx->H[5];
  uint64_t g = ctx->H[6];
  uint64_t h = ctx->H[7];

  /* First increment the byte count.  FIPS 180-2 specifies the possible
     length of the file up to 2^128 bits.  Here we only compute the
     number of bytes.  Do a double word increment.  */
  ctx->total[0] += len;
  if (ctx->total[0] < len)
    ++ctx->total[1];

  /* Process all bytes in the buffer with 128 bytes in each round of
     the loop.  */
  while (nwords > 0)
    {
      uint64_t W[80];
      uint64_t a_save = a;
      uint64_t b_save = b;
      uint64_t c_save = c;
      uint64_t d_save = d;
      uint64_t e_save = e;
      uint64_t f_save = f;
      uint64_t g_save = g;
      uint64_t h_save = h;

      /* Operators defined in FIPS 180-2:4.1.2.  */
#define Ch(x, y, z) ((x & y) ^ (~x & z))
#define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
#define S0(x) (CYCLIC (x, 28) ^ CYCLIC (x, 34) ^ CYCLIC (x, 39))
#define S1(x) (CYCLIC (x, 14) ^ CYCLIC (x, 18) ^ CYCLIC (x, 41))
#define R0(x) (CYCLIC (x, 1) ^ CYCLIC (x, 8) ^ (x >> 7))
#define R1(x) (CYCLIC (x, 19) ^ CYCLIC (x, 61) ^ (x >> 6))

      /* It is unfortunate that C does not provide an operator for
         cyclic rotation.  Hope the C compiler is smart enough.  */
#define CYCLIC(w, s) ((w >> s) | (w << (64 - s)))

      /* Compute the message schedule according to FIPS 180-2:6.3.2 step 2.  */
      for (t = 0; t < 16; ++t)
        {
          W[t] = be64_to_cpu (p);
          p += 8;
        }
      for (t = 16; t < 80; ++t)
        W[t] = R1 (W[t - 2]) + W[t - 7] + R0 (W[t - 15]) + W[t - 16];

      /* The actual computation according to FIPS 180-2:6.3.2 step 3.  */
      for (t = 0; t < 80; ++t)
        {
          uint64_t T1 = h + S1 (e) + Ch (e, f, g) + K[t] + W[t];
          uint64_t T2 = S0 (a) + Maj (a, b, c);
          h = g;
          g = f;
          f = e;
          e = d + T1;
          d = c;
          c = b;
          b = a;
          a = T1 + T2;
        }

      /* Add the starting values of the context according to FIPS 180-2:6.3.2
         step 4.  */
      a += a_save;
      b += b_save;
      c += c_save;
      d += d_save;
      e += e_save;
      f += f_save;
      g += g_save;
      h += h_save;

      /* Prepare for the next round.  */
      nwords -= 16;
    }

  /* Put checksum in context given as argument.  */
  ctx->H[0] = a;
  ctx->H[1] = b;
  ctx->H[2] = c;
  ctx->H[3] = d;
  ctx->H[4] = e;
  ctx->H[5] = f;
  ctx->H[6] = g;
  ctx->H[7] = h;
}


/* Initialize structure containing state of computation.
   (FIPS 180-2:5.3.3)  */
void
sha512_init_ctx (struct sha512_ctx *ctx)
{
  ctx->H[0] = UINT64_C (0x6a09e667f3bcc908);
  ctx->H[1] = UINT64_C (0xbb67ae8584caa73b);
  ctx->H[2] = UINT64_C (0x3c6ef372fe94f82b);
  ctx->H[3] = UINT64_C (0xa54ff53a5f1d36f1);
  ctx->H[4] = UINT64_C (0x510e527fade682d1);
  ctx->H[5] = UINT64_C (0x9b05688c2b3e6c1f);
  ctx->H[6] = UINT64_C (0x1f83d9abfb41bd6b);
  ctx->H[7] = UINT64_C (0x5be0cd19137e2179);

  ctx->total[0] = ctx->total[1] = 0;
  ctx->buflen = 0;
}


/* Process the remaining bytes in the internal buffer and the usual
   prolog according to the standard and write the result to RESBUF.

   IMPORTANT: On some systems it is required that RESBUF is correctly
   aligned for a 32 bits value.  */
void *
sha512_finish_ctx (struct sha512_ctx *ctx, void *resbuf)
{
  /* Take yet unprocessed bytes into account.  */
  uint32_t bytes = ctx->buflen;
  size_t pad;
  unsigned int i;
  unsigned char *rp = resbuf;

  /* Now count remaining bytes.  */
  ctx->total[0] += bytes;
  if (ctx->total[0] < bytes)
    ++ctx->total[1];

  pad = bytes >= 112 ? 128 + 112 - bytes : 112 - bytes;
  /* The first byte of padding should be 0x80 and the rest should be
     zero.  (FIPS 180-2:5.1.2) */
  ctx->buffer[bytes] = 0x80u;
  XCRYPT_SECURE_MEMSET (&ctx->buffer[bytes+1], pad-1);

  /* Put the 128-bit file length in big-endian *bits* at the end of
     the buffer.  */
  cpu_to_be64 (&ctx->buffer[bytes + pad],
               (ctx->total[1] << 3) | (ctx->total[0] >> 61));
  cpu_to_be64 (&ctx->buffer[bytes + pad + 8],
               ctx->total[0] << 3);

  /* Process last bytes.  */
  sha512_process_block (ctx->buffer, bytes + pad + 16, ctx);

  /* Put result from CTX in first 64 bytes following RESBUF.  */
  for (i = 0; i < 8; ++i)
    cpu_to_be64 (rp + i*8, ctx->H[i]);

  XCRYPT_SECURE_MEMSET (ctx, sizeof (struct sha512_ctx));
  return resbuf;
}


void
sha512_process_bytes (const void *buffer, size_t len, struct sha512_ctx *ctx)
{
  /* When we already have some bits in our internal buffer concatenate
     both inputs first.  */
  if (ctx->buflen != 0)
    {
      uint32_t left_over = ctx->buflen;
      uint32_t add = 256 - left_over > len ? (uint32_t)len : 256 - left_over;

      memcpy (&ctx->buffer[left_over], buffer, add);
      ctx->buflen += add;

      if (ctx->buflen > 128)
        {
          sha512_process_block (ctx->buffer, ctx->buflen & ~127u, ctx);

          ctx->buflen &= 127;
          /* The regions in the following copy operation cannot overlap.  */
          memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~127u],
                  ctx->buflen);
        }

      buffer = (const char *) buffer + add;
      len -= add;
    }

  /* Process available complete blocks.  */
  if (len > 128)
    {
      sha512_process_block (buffer, len & ~127u, ctx);
      buffer = (const char *) buffer + (len & ~127u);
      len &= 127;
    }

  /* Move remaining bytes into internal buffer.  */
  if (len > 0)
    {
      size_t left_over = ctx->buflen;

      memcpy (&ctx->buffer[left_over], buffer, len);
      left_over += len;
      if (left_over >= 128)
        {
          sha512_process_block (ctx->buffer, 128, ctx);
          left_over -= 128;
          memcpy (ctx->buffer, &ctx->buffer[128], left_over);
        }
      ctx->buflen = (uint32_t)left_over;
    }
}

#endif