Blob Blame History Raw
/***********************************************************************
*                                                                      *
*               This software is part of the ast package               *
*          Copyright (c) 1985-2012 AT&T Intellectual Property          *
*                      and is licensed under the                       *
*                 Eclipse Public License, Version 1.0                  *
*                    by AT&T Intellectual Property                     *
*                                                                      *
*                A copy of the License is available at                 *
*          http://www.eclipse.org/org/documents/epl-v10.html           *
*         (with md5 checksum b35adb5213ca9657e911e9befb180842)         *
*                                                                      *
*              Information and Software Systems Research               *
*                            AT&T Research                             *
*                           Florham Park NJ                            *
*                                                                      *
*                 Glenn Fowler <gsf@research.att.com>                  *
*                  David Korn <dgk@research.att.com>                   *
*                   Phong Vo <kpv@research.att.com>                    *
*                                                                      *
***********************************************************************/
#if defined(_UWIN) && defined(_BLD_ast)

void _STUB_vmbest(){}

#else

#include	"vmhdr.h"

/*	Best-fit allocation method. This is based on a best-fit strategy
**	using a splay tree for storage of lists of free blocks of the same
**	size. Recent free blocks may be cached for fast reuse.
**
**	Written by Kiem-Phong Vo, kpv@research.att.com, 01/16/94.
*/

#ifdef DEBUG
static int	N_free;		/* # of free calls			*/
static int	N_alloc;	/* # of alloc calls			*/
static int	N_resize;	/* # of resize calls			*/
static int	N_wild;		/* # allocated from the wild block	*/
static int	N_last;		/* # allocated from last free block	*/
static int	N_reclaim;	/* # of bestreclaim calls		*/
#endif /*DEBUG*/

#define COMPACT		8	/* factor to decide when to compact	*/

/* Check to see if a block is in the free tree */
#if __STD_C
static int vmintree(Block_t* node, Block_t* b)
#else
static int vmintree(node,b)
Block_t*	node;
Block_t*	b;
#endif
{	Block_t*	t;

	for(t = node; t; t = LINK(t))
		if(t == b)
			return 1;
	if(LEFT(node) && vmintree(LEFT(node),b))
		return 1;
	if(RIGHT(node) && vmintree(RIGHT(node),b))
		return 1;
	return 0;
}

#if __STD_C
static int vmonlist(Block_t* list, Block_t* b)
#else
static int vmonlist(list,b)
Block_t*	list;
Block_t*	b;
#endif
{
	for(; list; list = LINK(list))
		if(list == b)
			return 1;
	return 0;
}

/* Check to see if a block is known to be free */
#if __STD_C
static int vmisfree(Vmdata_t* vd, Block_t* b)
#else
static int vmisfree(vd,b)
Vmdata_t*	vd;
Block_t*	b;
#endif
{
	if(SIZE(b) & (BUSY|JUNK|PFREE))
		return 0;

	if(b == vd->wild)
		return 1;

	if(SIZE(b) < MAXTINY)
		return vmonlist(TINY(vd)[INDEX(SIZE(b))], b);

	if(vd->root)
		return vmintree(vd->root, b);

	return 0;
}

/* Check to see if a block is known to be junked */
#if __STD_C
static int vmisjunk(Vmdata_t* vd, Block_t* b)
#else
static int vmisjunk(vd,b)
Vmdata_t*	vd;
Block_t*	b;
#endif
{
	Block_t*	t;

	if((SIZE(b)&BUSY) == 0 || (SIZE(b)&JUNK) == 0)
		return 0;

	if(b == vd->free) /* recently freed */
		return 1;

	/* check the list that b is supposed to be in */
	for(t = CACHE(vd)[C_INDEX(SIZE(b))]; t; t = LINK(t))
		if(t == b)
			return 1;

	/* on occasions, b may be put onto the catch-all list */
	if(C_INDEX(SIZE(b)) < S_CACHE)
		for(t = CACHE(vd)[S_CACHE]; t; t = LINK(t))
			if(t == b)
				return 1;

	return 0;
}

/* check to see if the free tree is in good shape */
#if __STD_C
static int vmchktree(Block_t* node)
#else
static int vmchktree(node)
Block_t*	node;
#endif
{	Block_t*	t;

	if(SIZE(node) & BITS)
		{ /**/ASSERT(0); return -1; }

	for(t = LINK(node); t; t = LINK(t))
		if(SIZE(t) != SIZE(node))
			{ /**/ASSERT(0); return -1; }

	if((t = LEFT(node)) )
	{	if(SIZE(t) >= SIZE(node) )
			{ /**/ASSERT(0); return -1; }
		else	return vmchktree(t);
	}
	if((t = RIGHT(node)) )
	{	if(SIZE(t) <= SIZE(node) )
			{ /**/ASSERT(0); return -1; }
		else	return vmchktree(t);
	}

	return 0;
}

#if __STD_C
int _vmbestcheck(Vmdata_t* vd, Block_t* freeb)
#else
int _vmbestcheck(vd, freeb)
Vmdata_t*	vd;
Block_t*	freeb; /* known to be free but not on any free list */
#endif
{
	reg Seg_t	*seg;
	reg Block_t	*b, *endb, *nextb;
	int		rv = 0;

	if(!CHECK())
		return 0;

	/* make sure the free tree is still in shape */
	if(vd->root && vmchktree(vd->root) < 0 )
		{ rv = -1; /**/ASSERT(0); }

	for(seg = vd->seg; seg && rv == 0; seg = seg->next)
	{	b = SEGBLOCK(seg);
		endb = (Block_t*)(seg->baddr - sizeof(Head_t));
		for(; b < endb && rv == 0; b = nextb)
		{	nextb = (Block_t*)((Vmuchar_t*)DATA(b) + (SIZE(b)&~BITS) );

			if(!ISBUSY(SIZE(b)) ) /* a completely free block */
			{	/* there should be no marked bits of any type */
				if(SIZE(b) & (BUSY|JUNK|PFREE) )
					{ rv = -1; /**/ASSERT(0); }

				/* next block must be busy and marked PFREE */
				if(!ISBUSY(SIZE(nextb)) || !ISPFREE(SIZE(nextb)) )
					{ rv = -1; /**/ASSERT(0); }

				/* must have a self-reference pointer */
				if(SELF(b) != b)
					{ rv = -1; /**/ASSERT(0); }

				/* segment pointer should be well-defined */
				if(!TINIEST(b) && SEG(b) != seg)
					{ rv = -1; /**/ASSERT(0); }

				/* must be on a free list */
				if(b != freeb && !vmisfree(vd, b) )
					{ rv = -1; /**/ASSERT(0); }
			}
			else
			{	/* segment pointer should be well-defined */
				if(SEG(b) != seg)
					{ rv = -1; /**/ASSERT(0); }

				/* next block should not be marked PFREE */
				if(ISPFREE(SIZE(nextb)) )
					{ rv = -1; /**/ASSERT(0); }

				/* if PFREE, last block should be free */
				if(ISPFREE(SIZE(b)) && LAST(b) != freeb &&
				   !vmisfree(vd, LAST(b)) )
					{ rv = -1; /**/ASSERT(0); }

				/* if free but unreclaimed, should be junk */
				if(ISJUNK(SIZE(b)) && !vmisjunk(vd, b))
					{ rv = -1; /**/ASSERT(0); }
			}
		}
	}

	return rv;
}

/* Tree rotation functions */
#define RROTATE(x,y)	(LEFT(x) = RIGHT(y), RIGHT(y) = (x), (x) = (y))
#define LROTATE(x,y)	(RIGHT(x) = LEFT(y), LEFT(y) = (x), (x) = (y))
#define RLINK(s,x)	((s) = LEFT(s) = (x))
#define LLINK(s,x)	((s) = RIGHT(s) = (x))

/* Find and delete a suitable element in the free tree. */
#if __STD_C
static Block_t* bestsearch(Vmdata_t* vd, reg size_t size, Block_t* wanted)
#else
static Block_t* bestsearch(vd, size, wanted)
Vmdata_t*	vd;
reg size_t	size;
Block_t*	wanted;
#endif
{
	reg size_t	s;
	reg Block_t	*t, *root, *l, *r;
	Block_t		link;

	/* extracting a tiniest block from its list */
	if((root = wanted) && size == TINYSIZE)
	{	reg Seg_t*	seg;

		l = TLEFT(root);
		if((r = LINK(root)) )
			TLEFT(r) = l;
		if(l)
			LINK(l) = r;
		else	TINY(vd)[0] = r;

		seg = vd->seg;
		if(!seg->next)
			SEG(root) = seg;
		else for(;; seg = seg->next)
		{	if((Vmuchar_t*)root > (Vmuchar_t*)seg->addr &&
			   (Vmuchar_t*)root < seg->baddr)
			{	SEG(root) = seg;
				break;
			}
		}

		return root;
	}

	/**/ASSERT(!vd->root || vmchktree(vd->root) == 0);

	/* find the right one to delete */
	l = r = &link;
	if((root = vd->root) ) do
	{	/**/ ASSERT(!ISBITS(size) && !ISBITS(SIZE(root)));
		if(size == (s = SIZE(root)) )
			break;
		if(size < s)
		{	if((t = LEFT(root)) )
			{	if(size <= (s = SIZE(t)) )
				{	RROTATE(root,t);
					if(size == s)
						break;
					t = LEFT(root);
				}
				else
				{	LLINK(l,t);
					t = RIGHT(t);
				}
			}
			RLINK(r,root);
		}
		else
		{	if((t = RIGHT(root)) )
			{	if(size >= (s = SIZE(t)) )
				{	LROTATE(root,t);
					if(size == s)
						break;
					t = RIGHT(root);
				}
				else
				{	RLINK(r,t);
					t = LEFT(t);
				}
			}
			LLINK(l,root);
		}
		/**/ ASSERT(root != t);
	} while((root = t) );

	if(root)	/* found it, now isolate it */
	{	RIGHT(l) = LEFT(root);
		LEFT(r) = RIGHT(root);
	}
	else		/* nothing exactly fit	*/
	{	LEFT(r) = NIL(Block_t*);
		RIGHT(l) = NIL(Block_t*);

		/* grab the least one from the right tree */
		if((root = LEFT(&link)) )
		{	while((t = LEFT(root)) )
				RROTATE(root,t);
			LEFT(&link) = RIGHT(root);
		}
	}

	if(root && (r = LINK(root)) )
	{	/* head of a link list, use next one for root */
		LEFT(r) = RIGHT(&link);
		RIGHT(r) = LEFT(&link);
	}
	else if(!(r = LEFT(&link)) )
		r = RIGHT(&link);
	else /* graft left tree to right tree */
	{	while((t = LEFT(r)) )
			RROTATE(r,t);
		LEFT(r) = RIGHT(&link);
	}
	vd->root = r; /**/ASSERT(!r || !ISBITS(SIZE(r)));

	/**/ASSERT(!vd->root || vmchktree(vd->root) == 0);
	/**/ASSERT(!wanted || wanted == root);

	return root;
}

/* Reclaim all delayed free blocks into the free tree */
#if __STD_C
static int bestreclaim(reg Vmdata_t* vd, Block_t* wanted, int c)
#else
static int bestreclaim(vd, wanted, c)
reg Vmdata_t*	vd;
Block_t*	wanted;
int		c;
#endif
{
	reg size_t	size, s;
	reg Block_t	*fp, *np, *t, *list;
	reg int		n, saw_wanted;

	/**/COUNT(N_reclaim);
	/**/ASSERT(_vmbestcheck(vd, NIL(Block_t*)) == 0);

	if((fp = vd->free) )
	{	LINK(fp) = CACHE(vd)[S_CACHE]; CACHE(vd)[S_CACHE] = fp;
		vd->free = NIL(Block_t*);
	}

	saw_wanted = wanted ? 0 : 1;
	for(n = S_CACHE; n >= c; --n)
	{	list = CACHE(vd)[n]; CACHE(vd)[n] = NIL(Block_t*);
		while((fp = list) )
		{	/* Note that below here we allow ISJUNK blocks to be
			** forward-merged even though they are not removed from
			** the list immediately. In this way, the list is
			** scanned only once. It works because the LINK and SIZE
			** fields are not destroyed during the merging. This can
			** be seen by observing that a tiniest block has a 2-word
			** header and a 2-word body. Merging a tiniest block
			** (1seg) and the next block (2seg) looks like this:
			**	1seg  size  link  left  2seg size link left ....
			**	1seg  size  link  left  rite xxxx xxxx .... self
			** After the merge, the 2seg word is replaced by the RIGHT
			** pointer of the new block and somewhere beyond the
			** two xxxx fields, the SELF pointer will replace some
			** other word. The important part is that the two xxxx
			** fields are kept intact.
			*/
			list = LINK(list); /**/ASSERT(!vmonlist(list,fp));

			size = SIZE(fp);
			if(!ISJUNK(size))	/* already done */
				continue;

			if(ISPFREE(size))	/* backward merge */
			{	fp = LAST(fp);
				s = SIZE(fp); /**/ASSERT(!(s&BITS));
				REMOVE(vd,fp,INDEX(s),t,bestsearch);
				size = (size&~BITS) + s + sizeof(Head_t);
			}
			else	size &= ~BITS;

			for(;;)	/* forward merge */
			{	np = (Block_t*)((Vmuchar_t*)fp+size+sizeof(Head_t));
				s = SIZE(np);	/**/ASSERT(s > 0);
				if(!ISBUSY(s))
				{	/**/ASSERT((s&BITS) == 0);
					if(np == vd->wild)
						vd->wild = NIL(Block_t*);
					else	REMOVE(vd,np,INDEX(s),t,bestsearch);
				}
				else if(ISJUNK(s))
				{	/* reclaim any touched junk list */
					if((int)C_INDEX(s) < c)
						c = (int)C_INDEX(s);
					SIZE(np) = 0;
					CLRBITS(s);
				}
				else	break;
				size += s + sizeof(Head_t);
			}
			SIZE(fp) = size;

			/* tell next block that this one is free */
			np = NEXT(fp);	/**/ASSERT(ISBUSY(SIZE(np)));
					/**/ASSERT(!ISJUNK(SIZE(np)));
			SETPFREE(SIZE(np));
			SELF(fp) = fp;

			if(fp == wanted) /* to be consumed soon */
			{	/**/ASSERT(!saw_wanted); /* should be seen just once */
				saw_wanted = 1;
				continue;
			}

			/* wilderness preservation */
			if(np->body.data >= vd->seg->baddr)
			{	vd->wild = fp;
				continue;
			}

			/* tiny block goes to tiny list */
			if(size < MAXTINY)
			{	s = INDEX(size);
				np = LINK(fp) = TINY(vd)[s];
				if(s == 0)	/* TINIEST block */
				{	if(np)
						TLEFT(np) = fp;
					TLEFT(fp) = NIL(Block_t*);
				}
				else
				{	if(np)
						LEFT(np)  = fp;
					LEFT(fp) = NIL(Block_t*);
					SETLINK(fp);
				}
				TINY(vd)[s] = fp;
				continue;
			}

			LEFT(fp) = RIGHT(fp) = LINK(fp) = NIL(Block_t*);
			if(!(np = vd->root) )	/* inserting into an empty tree	*/
			{	vd->root = fp;
				continue;
			}

			size = SIZE(fp);
			while(1)	/* leaf insertion */
			{	/**/ASSERT(np != fp);
				if((s = SIZE(np)) > size)
				{	if((t = LEFT(np)) )
					{	/**/ ASSERT(np != t);
						np = t;
					}
					else
					{	LEFT(np) = fp;
						break;
					}
				}
				else if(s < size)
				{	if((t = RIGHT(np)) )
					{	/**/ ASSERT(np != t);
						np = t;
					}
					else
					{	RIGHT(np) = fp;
						break;
					}
				}
				else /* s == size */
				{	if((t = LINK(np)) )
					{	LINK(fp) = t;
						LEFT(t) = fp;
					}
					LINK(np) = fp;
					LEFT(fp) = np;
					SETLINK(fp);
					break;
				}
			}
		}
	}

	/**/ASSERT(!wanted || saw_wanted == 1);
	/**/ASSERT(_vmbestcheck(vd, wanted) == 0);
	return saw_wanted;
}

#if __STD_C
static int bestcompact(Vmalloc_t* vm, int local)
#else
static int bestcompact(vm, local)
Vmalloc_t*	vm;
int		local;
#endif
{
	reg Seg_t	*seg, *next;
	reg Block_t	*bp, *tp;
	reg size_t	size, segsize, round;
	reg Vmdata_t*	vd = vm->data;

	SETLOCK(vm, local);

	bestreclaim(vd,NIL(Block_t*),0);

	for(seg = vd->seg; seg; seg = next)
	{	next = seg->next;

		bp = BLOCK(seg->baddr);
		if(!ISPFREE(SIZE(bp)) )
			continue;

		bp = LAST(bp);	/**/ASSERT(vmisfree(vd,bp));
		size = SIZE(bp);
		if(bp == vd->wild)
		{	/* During large block allocations, _Vmextend might
			** have been enlarged the rounding factor. Reducing
			** it a bit help avoiding getting large raw memory.
			*/
			if((round = vm->disc->round) == 0)
				round = _Vmpagesize;
			if(size > COMPACT*vd->incr && vd->incr > round)
				vd->incr /= 2;

			/* for the bottom segment, we don't necessarily want
			** to return raw memory too early. vd->pool has an
			** approximation of the average size of recently freed
			** blocks. If this is large, the application is managing
			** large blocks so we throttle back memory chopping
			** to avoid thrashing the underlying memory system.
			*/
			if(size <= COMPACT*vd->incr || size <= COMPACT*vd->pool)
				continue;

			vd->wild = NIL(Block_t*);
			vd->pool = 0;
		}
		else	REMOVE(vd,bp,INDEX(size),tp,bestsearch);
		tp = NEXT(bp); /* avoid strict-aliasing pun */
		CLRPFREE(SIZE(tp));

		if(size < (segsize = seg->size))
			size += sizeof(Head_t);

		if((size = (*_Vmtruncate)(vm,seg,size,0)) > 0)
		{	if(size >= segsize) /* entire segment deleted */
				continue;
			/**/ASSERT(SEG(BLOCK(seg->baddr)) == seg);

			if((size = (seg->baddr - ((Vmuchar_t*)bp) - sizeof(Head_t))) > 0)
				SIZE(bp) = size - sizeof(Head_t);
			else	bp = NIL(Block_t*);
		}

		if(bp)
		{	/**/ ASSERT(SIZE(bp) >= BODYSIZE);
			/**/ ASSERT(SEGWILD(bp));
			/**/ ASSERT(!vd->root || !vmintree(vd->root,bp));
			SIZE(bp) |= BUSY|JUNK;
			LINK(bp) = CACHE(vd)[C_INDEX(SIZE(bp))];
			CACHE(vd)[C_INDEX(SIZE(bp))] = bp;
		}
	}

	if(!local && _Vmtrace && (vd->mode&VM_TRACE) && VMETHOD(vd) == VM_MTBEST)
		(*_Vmtrace)(vm, (Vmuchar_t*)0, (Vmuchar_t*)0, 0, 0);

	CLRLOCK(vm, local); /**/ASSERT(_vmbestcheck(vd, NIL(Block_t*)) == 0);

	return 0;
}

#if __STD_C
static Void_t* bestalloc(Vmalloc_t* vm, size_t size , int local)
#else
static Void_t* bestalloc(vm, size, local)
Vmalloc_t*	vm;	/* region allocating from	*/
size_t		size;	/* desired block size		*/
int		local;	/* internal call		*/
#endif
{
	reg Vmdata_t*	vd = vm->data;
	reg size_t	s;
	reg int		n;
	reg Block_t	*tp, *np, *ap;
	size_t		orgsize = size;

	/**/COUNT(N_alloc);
	/**/ASSERT(local ? (vd->lock == 1) : 1 );

	SETLOCK(vm,local);

	/**/ ASSERT(_vmbestcheck(vd, NIL(Block_t*)) == 0);
	/**/ ASSERT(HEADSIZE == sizeof(Head_t));
	/**/ ASSERT(BODYSIZE == sizeof(Body_t));
	/**/ ASSERT((ALIGN%(BITS+1)) == 0 );
	/**/ ASSERT((sizeof(Head_t)%ALIGN) == 0 );
	/**/ ASSERT((sizeof(Body_t)%ALIGN) == 0 );
	/**/ ASSERT((BODYSIZE%ALIGN) == 0 );
	/**/ ASSERT(sizeof(Block_t) == (sizeof(Body_t)+sizeof(Head_t)) );

	/* for ANSI requirement that malloc(0) returns non-NULL pointer */
	size = size <= BODYSIZE ? BODYSIZE : ROUND(size,ALIGN);

	if((tp = vd->free) )	/* reuse last free piece if appropriate */
	{	/**/ASSERT(ISBUSY(SIZE(tp)) );
		/**/ASSERT(ISJUNK(SIZE(tp)) );
		/**/COUNT(N_last);

		vd->free = NIL(Block_t*);
		if((s = SIZE(tp)) >= size && s < (size << 1) )
		{	if(s >= size + (sizeof(Head_t)+BODYSIZE) )
			{	SIZE(tp) = size;
				np = NEXT(tp);
				SEG(np) = SEG(tp);
				SIZE(np) = ((s&~BITS) - (size+sizeof(Head_t)))|JUNK|BUSY;
				vd->free = np;
				SIZE(tp) |= s&BITS;
			}
			CLRJUNK(SIZE(tp));
			goto done;
		}

		LINK(tp) = CACHE(vd)[S_CACHE];
		CACHE(vd)[S_CACHE] = tp;
	}

	for(n = S_CACHE; n >= 0; --n)	/* best-fit except for coalescing */
	{	bestreclaim(vd,NIL(Block_t*),n);
		if(vd->root && (tp = bestsearch(vd,size,NIL(Block_t*))) )
			goto got_block;
	}

	/**/ASSERT(!vd->free);
	if((tp = vd->wild) && SIZE(tp) >= size)
	{	/**/COUNT(N_wild);
		vd->wild = NIL(Block_t*);
		goto got_block;
	}
	
	/* need to extend the arena */
	KPVCOMPACT(vm,bestcompact);
	if((tp = (*_Vmextend)(vm,size,bestsearch)) )
	{ got_block:
		/**/ ASSERT(!ISBITS(SIZE(tp)));
		/**/ ASSERT(SIZE(tp) >= size);
		/**/ ASSERT((SIZE(tp)%ALIGN) == 0);
		/**/ ASSERT(!vd->free);

		/* tell next block that we are no longer a free block */
		np = NEXT(tp);
		CLRPFREE(SIZE(np));	/**/ ASSERT(ISBUSY(SIZE(np)));

		if((s = SIZE(tp)-size) >= (sizeof(Head_t)+BODYSIZE) )
		{	SIZE(tp) = size;

			np = NEXT(tp);
			SEG(np) = SEG(tp);
			SIZE(np) = (s - sizeof(Head_t)) | BUSY|JUNK;

			if(VMWILD(vd,np))
			{	SIZE(np) &= ~BITS;
				SELF(np) = np;
				ap = NEXT(np); /**/ASSERT(ISBUSY(SIZE(ap)));
				SETPFREE(SIZE(ap));
				vd->wild = np;
			}
			else	vd->free = np;
		}

		SETBUSY(SIZE(tp));
	}

done:
	if(tp && !local && (vd->mode&VM_TRACE) && _Vmtrace && VMETHOD(vd) == VM_MTBEST)
		(*_Vmtrace)(vm,NIL(Vmuchar_t*),(Vmuchar_t*)DATA(tp),orgsize,0);

	CLRLOCK(vm,local); /**/ASSERT(_vmbestcheck(vd, NIL(Block_t*)) == 0);

	return tp ? DATA(tp) : NIL(Void_t*);
}

#if __STD_C
static long bestaddr(Vmalloc_t* vm, Void_t* addr, int local )
#else
static long bestaddr(vm, addr, local)
Vmalloc_t*	vm;	/* region allocating from	*/
Void_t*		addr;	/* address to check		*/
int		local;
#endif
{
	reg Seg_t*	seg;
	reg Block_t	*b, *endb;
	reg long	offset;
	reg Vmdata_t*	vd = vm->data;

	/**/ASSERT(local ? (vd->lock == 1) : 1 );
	SETLOCK(vm, local);

	offset = -1L; b = endb = NIL(Block_t*);
	for(seg = vd->seg; seg; seg = seg->next)
	{	b = SEGBLOCK(seg);
		endb = (Block_t*)(seg->baddr - sizeof(Head_t));
		if((Vmuchar_t*)addr > (Vmuchar_t*)b &&
		   (Vmuchar_t*)addr < (Vmuchar_t*)endb)
			break;
	}

	if(local ) /* from bestfree or bestresize */
	{	b = BLOCK(addr);
		if(seg && SEG(b) == seg && ISBUSY(SIZE(b)) && !ISJUNK(SIZE(b)) )
			offset = 0;
	}
	else if(seg)
	{	while(b < endb)
		{	reg Vmuchar_t*	data = (Vmuchar_t*)DATA(b);
			reg size_t	size = SIZE(b)&~BITS;

			if((Vmuchar_t*)addr >= data && (Vmuchar_t*)addr < data+size)
			{	if(ISJUNK(SIZE(b)) || !ISBUSY(SIZE(b)))
					offset = -1L;
				else	offset = (long)((Vmuchar_t*)addr - data);
				goto done;
			}

			b = (Block_t*)((Vmuchar_t*)DATA(b) + size);
		}
	}

done:	
	CLRLOCK(vm,local);
	return offset;
}

#if __STD_C
static int bestfree(Vmalloc_t* vm, Void_t* data, int local )
#else
static int bestfree(vm, data, local )
Vmalloc_t*	vm;
Void_t*		data;
int		local;
#endif
{
	reg Vmdata_t*	vd = vm->data;
	reg Block_t	*bp;
	reg size_t	s;

#ifdef DEBUG
	if(((char*)data - (char*)0) <= 1)
	{	_Vmassert |= VM_check;
		_vmbestcheck(vd, NIL(Block_t*));
		if (!data)
			_Vmassert &= ~VM_check;
		return 0;
	}
#else
	if(!data) /* ANSI-ism */
		return 0;
#endif

	/**/COUNT(N_free);
	/**/ASSERT(local ? (vd->lock == 1) : 1 );

	SETLOCK(vm, local);

	/**/ASSERT(KPVADDR(vm, data, bestaddr) == 0);
	/**/ASSERT(_vmbestcheck(vd, NIL(Block_t*)) == 0);
	bp = BLOCK(data); s = SIZE(bp);

	/* Keep an approximate average free block size.
	** This is used in bestcompact() to decide when to release
	** raw memory back to the underlying memory system.
	*/
	vd->pool = (vd->pool + (s&~BITS))/2;

	if(ISBUSY(s) && !ISJUNK(s))
	{	SETJUNK(SIZE(bp));
	        if(s < MAXCACHE)
	        {       /**/ASSERT(!vmonlist(CACHE(vd)[INDEX(s)], bp) );
	                LINK(bp) = CACHE(vd)[INDEX(s)];
	                CACHE(vd)[INDEX(s)] = bp;
	        }
	        else if(!vd->free)
	                vd->free = bp;
	        else
	        {       /**/ASSERT(!vmonlist(CACHE(vd)[S_CACHE], bp) );
	                LINK(bp) = CACHE(vd)[S_CACHE];
	                CACHE(vd)[S_CACHE] = bp;
	        }
	
		/* coalesce on freeing large blocks to avoid fragmentation */
		if(SIZE(bp) >= 2*vd->incr)
		{	bestreclaim(vd,NIL(Block_t*),0);
			if(vd->wild && SIZE(vd->wild) >= COMPACT*vd->incr)
				KPVCOMPACT(vm,bestcompact);
		}
	}

	if(!local && _Vmtrace && (vd->mode&VM_TRACE) && VMETHOD(vd) == VM_MTBEST )
		(*_Vmtrace)(vm,(Vmuchar_t*)data,NIL(Vmuchar_t*), (s&~BITS), 0);

	CLRLOCK(vm, local); /**/ASSERT(_vmbestcheck(vd, NIL(Block_t*)) == 0);

	return 0;
}

#if __STD_C
static Void_t* bestresize(Vmalloc_t* vm, Void_t* data, reg size_t size, int type, int local)
#else
static Void_t* bestresize(vm, data, size, type, local)
Vmalloc_t*	vm;		/* region allocating from	*/
Void_t*		data;		/* old block of data		*/
reg size_t	size;		/* new size			*/
int		type;		/* !=0 to move, <0 for not copy */
int		local;
#endif
{
	reg Block_t	*rp, *np, *t;
	size_t		s, bs;
	size_t		oldz = 0,  orgsize = size;
	Void_t		*oldd = 0, *orgdata = data;
	Vmdata_t	*vd = vm->data;

	/**/COUNT(N_resize);
	/**/ASSERT(local ? (vd->lock == 1) :  1);

	if(!data) /* resizing a NULL block is the same as allocating */
	{	data = bestalloc(vm, size, local);
		if(data && (type&VM_RSZERO) )
			memset((Void_t*)data, 0, size);
		return data;
	}
	if(size == 0) /* resizing to zero size is the same as freeing */
	{	(void)bestfree(vm, data, local);
		return NIL(Void_t*);
	}

	SETLOCK(vm, local);

	/**/ASSERT(KPVADDR(vm, data, bestaddr) == 0);
	/**/ASSERT(_vmbestcheck(vd, NIL(Block_t*)) == 0);
	size = size <= BODYSIZE ? BODYSIZE : ROUND(size,ALIGN);
	rp = BLOCK(data);	/**/ASSERT(ISBUSY(SIZE(rp)) && !ISJUNK(SIZE(rp)));
	oldz = SIZE(rp); CLRBITS(oldz);
	if(oldz < size)
	{	np = (Block_t*)((Vmuchar_t*)rp + oldz + sizeof(Head_t));
		do	/* forward merge as much as possible */
		{	s = SIZE(np); /**/ASSERT(!ISPFREE(s));
			if(np == vd->free)
			{	vd->free = NIL(Block_t*);
				CLRBITS(s);
			}
			else if(ISJUNK(s) )
			{	if(!bestreclaim(vd,np,(int)C_INDEX(s)) )
					/**/ASSERT(0); /* oops: did not see np! */
				s = SIZE(np); /**/ASSERT(s%ALIGN == 0);
			}
			else if(!ISBUSY(s) )
			{	if(np == vd->wild)
					vd->wild = NIL(Block_t*);
				else	REMOVE(vd,np,INDEX(s),t,bestsearch); 
			}
			else	break;

			SIZE(rp) += (s += sizeof(Head_t)); /**/ASSERT((s%ALIGN) == 0);
			np = (Block_t*)((Vmuchar_t*)np + s);
			CLRPFREE(SIZE(np));
		} while(SIZE(rp) < size);

		if(SIZE(rp) < size && size > vd->incr && SEGWILD(rp) )
		{	reg Seg_t*	seg;

			s = (size - SIZE(rp)) + sizeof(Head_t); s = ROUND(s,vd->incr);
			seg = SEG(rp);
			if((*vm->disc->memoryf)(vm,seg->addr,seg->extent,seg->extent+s,
				      vm->disc) == seg->addr )
			{	SIZE(rp) += s;
				seg->extent += s;
				seg->size += s;
				seg->baddr += s;
				s  = (SIZE(rp)&~BITS) + sizeof(Head_t);
				np = (Block_t*)((Vmuchar_t*)rp + s);
				SEG(np) = seg;
				SIZE(np) = BUSY;
			}
		}
	}

	if((s = SIZE(rp)) >= (size + (BODYSIZE+sizeof(Head_t))) )
	{	SIZE(rp) = size;
		np = NEXT(rp);
		SEG(np) = SEG(rp);
		SIZE(np) = (((s&~BITS)-size) - sizeof(Head_t))|BUSY|JUNK;
		CPYBITS(SIZE(rp),s);
		rp = np;
		goto do_free;
	}
	else if((bs = s&~BITS) < size)
	{	if(!(type&(VM_RSMOVE|VM_RSCOPY)) )
			data = NIL(Void_t*); /* old data is not moveable */
		else
		{	oldd = data;
			if((data = KPVALLOC(vm,size,bestalloc)) )
			{	if(type&VM_RSCOPY)
					memcpy(data, oldd, bs);

			do_free: /* reclaim these right away */
				SETJUNK(SIZE(rp));
				LINK(rp) = CACHE(vd)[S_CACHE];
				CACHE(vd)[S_CACHE] = rp;
				bestreclaim(vd, NIL(Block_t*), S_CACHE);
			}
		}
	}

	if(data && (type&VM_RSZERO) && (size = SIZE(BLOCK(data))&~BITS) > oldz )
		memset((Void_t*)((Vmuchar_t*)data + oldz), 0, size-oldz);

	if(!local && _Vmtrace && data && (vd->mode&VM_TRACE) && VMETHOD(vd) == VM_MTBEST)
		(*_Vmtrace)(vm, (Vmuchar_t*)orgdata, (Vmuchar_t*)data, orgsize, 0);

	CLRLOCK(vm, local); /**/ASSERT(_vmbestcheck(vd, NIL(Block_t*)) == 0);

	return data;
}

#if __STD_C
static long bestsize(Vmalloc_t* vm, Void_t* addr, int local )
#else
static long bestsize(vm, addr, local)
Vmalloc_t*	vm;	/* region allocating from	*/
Void_t*		addr;	/* address to check		*/
int		local;
#endif
{
	Seg_t		*seg;
	Block_t		*b, *endb;
	long		size;
	Vmdata_t	*vd = vm->data;

	SETLOCK(vm, local);

	size = -1L;
	for(seg = vd->seg; seg; seg = seg->next)
	{	b = SEGBLOCK(seg);
		endb = (Block_t*)(seg->baddr - sizeof(Head_t));
		if((Vmuchar_t*)addr <= (Vmuchar_t*)b ||
		   (Vmuchar_t*)addr >= (Vmuchar_t*)endb)
			continue;
		while(b < endb)
		{	if(addr == DATA(b))
			{	if(!ISBUSY(SIZE(b)) || ISJUNK(SIZE(b)) )
					size = -1L;
				else	size = (long)SIZE(b)&~BITS;
				goto done;
			}
			else if((Vmuchar_t*)addr <= (Vmuchar_t*)b)
				break;

			b = (Block_t*)((Vmuchar_t*)DATA(b) + (SIZE(b)&~BITS) );
		}
	}

done:
	CLRLOCK(vm, local);
	return size;
}

#if __STD_C
static Void_t* bestalign(Vmalloc_t* vm, size_t size, size_t align, int local)
#else
static Void_t* bestalign(vm, size, align, local)
Vmalloc_t*	vm;
size_t		size;
size_t		align;
int		local;
#endif
{
	Vmuchar_t	*data;
	Block_t		*tp, *np;
	Seg_t		*seg;
	size_t		s, extra;
	size_t		orgsize = size, orgalign = align;
	Vmdata_t	*vd = vm->data;

	if(size <= 0 || align <= 0)
		return NIL(Void_t*);

	SETLOCK(vm, local);

	/**/ASSERT(_vmbestcheck(vd, NIL(Block_t*)) == 0);
	size = size <= BODYSIZE ? BODYSIZE : ROUND(size,ALIGN);
	align = MULTIPLE(align,ALIGN);

	/* hack so that dbalign() can store header data */
	if(VMETHOD(vd) != VM_MTDEBUG)
		extra = 0;
	else
	{	extra = DB_HEAD;
		while(align < extra || (align - extra) < sizeof(Block_t))
			align *= 2;
	}

	/* reclaim all free blocks now to avoid fragmentation */
	bestreclaim(vd,NIL(Block_t*),0);

	s = size + 2*(align+sizeof(Head_t)+extra); 
	if(!(data = (Vmuchar_t*)KPVALLOC(vm,s,bestalloc)) )
		goto done;

	tp = BLOCK(data);
	seg = SEG(tp);

	/* get an aligned address that we can live with */
	if((s = (size_t)((VLONG(data)+extra)%align)) != 0)
		data += align-s; /**/ASSERT(((VLONG(data)+extra)%align) == 0);

	if((np = BLOCK(data)) != tp ) /* need to free left part */
	{	if(((Vmuchar_t*)np - (Vmuchar_t*)tp) < (ssize_t)(sizeof(Block_t)+extra) )
		{	data += align;
			np = BLOCK(data);
		} /**/ASSERT(((VLONG(data)+extra)%align) == 0);

		s  = (Vmuchar_t*)np - (Vmuchar_t*)tp;
		SIZE(np) = ((SIZE(tp)&~BITS) - s)|BUSY;
		SEG(np) = seg;

		SIZE(tp) = (s - sizeof(Head_t)) | (SIZE(tp)&BITS) | JUNK;
		/**/ ASSERT(SIZE(tp) >= sizeof(Body_t) );
		LINK(tp) = CACHE(vd)[C_INDEX(SIZE(tp))];
		CACHE(vd)[C_INDEX(SIZE(tp))] = tp;
	}

	/* free left-over if too big */
	if((s = SIZE(np) - size) >= sizeof(Block_t))
	{	SIZE(np) = size;

		tp = NEXT(np);
		SIZE(tp) = ((s & ~BITS) - sizeof(Head_t)) | BUSY | JUNK;
		SEG(tp) = seg;
		LINK(tp) = CACHE(vd)[C_INDEX(SIZE(tp))];
		CACHE(vd)[C_INDEX(SIZE(tp))] = tp;

		SIZE(np) |= s&BITS;
	}

	bestreclaim(vd,NIL(Block_t*),0); /* coalesce all free blocks */

	if(!local && _Vmtrace && (vd->mode&VM_TRACE) )
		(*_Vmtrace)(vm,NIL(Vmuchar_t*),data,orgsize,orgalign);

done:
	CLRLOCK(vm, local); /**/ASSERT(_vmbestcheck(vd, NIL(Block_t*)) == 0);

	return (Void_t*)data;
}

/* The below implements the discipline Vmdcsbrk and the heap region Vmheap.
** There are 5 alternative ways to get raw memory:
**	win32, sbrk, mmap_anon, mmap_zero and reusing the native malloc
** The selection of method done here is to enable our malloc implementation
** to work with concurrent threads. The sbrk/brk interface is unfortunately
** not atomic. Thus, we prefer mmap_anon or mmap_zero if they are available.
*/
#if _mem_win32
#undef	_mem_mmap_anon
#undef	_mem_mmap_zero
#undef	_mem_sbrk
#endif
#if _mem_mmap_anon
#undef	_mem_mmap_zero
#if !_PACKAGE_ast
#undef	_mem_sbrk
#endif
#endif
#if _mem_mmap_zero
#if !_PACKAGE_ast
#undef	_mem_sbrk
#endif
#endif

#if __linux__

/* make sure that allocated memory is addressable */

#include	<signal.h>
typedef void	(*Sig_f)(int);
static int	Gotsegv = 0;

static void sigsegv(int sig)
{	
	if(sig == SIGSEGV)
		Gotsegv = 1;
}
static int chkaddr(Vmuchar_t* addr, size_t nsize)
{
	Sig_f	segv;
	int	rv;

	Gotsegv = 0; /* catch segment fault */
	segv = signal(SIGSEGV, sigsegv);

	rv = *(addr+nsize-1);
	rv = Gotsegv ? -1 : rv;

	signal(SIGSEGV, segv); /* restore signal catcher */
	Gotsegv = 0;

	return rv;
}
#else

/* known !__linux__ guarantee that brk-addresses are valid */

#define	chkaddr(a,n)	(0)

#endif /*__linux__*/

#if _mem_win32 /* getting memory on a window system */
#if _PACKAGE_ast
#include	<ast_windows.h>
#else
#include	<windows.h>
#endif

static Void_t* win32mem(Void_t* caddr, size_t csize, size_t nsize)
{	/**/ ASSERT(csize > 0 || nsize > 0)
	if(csize == 0)
	{	caddr = (Void_t*)VirtualAlloc(0,nsize,MEM_COMMIT,PAGE_READWRITE);
		return caddr;
	}
	else if(nsize == 0)
	{	(void)VirtualFree((LPVOID)caddr,0,MEM_RELEASE);
		return caddr;
	}
	else	return NIL(Void_t*);
}
#endif /* _mem_win32 */

#if _mem_sbrk /* getting space via brk/sbrk - not concurrent-ready */
static Void_t* sbrkmem(Void_t* caddr, size_t csize, size_t nsize)
{
	Vmuchar_t	*addr = (Vmuchar_t*)sbrk(0);

	if(!addr || addr == (Vmuchar_t*)(-1) )
		return NIL(Void_t*);

	if(csize > 0 && addr != (Vmuchar_t*)caddr+csize)
		return NIL(Void_t*);
	else if(csize == 0)
		caddr = addr;

	/**/ASSERT(addr == (Vmuchar_t*)caddr+csize);
	if(nsize < csize)
		addr -= csize-nsize;
	else if((addr += nsize-csize) < (Vmuchar_t*)caddr )
		return NIL(Void_t*);

	if(brk(addr) != 0 )
		return NIL(Void_t*);
	else if(nsize > csize && chkaddr(caddr, nsize) < 0 )
	{	(void)brk((Vmuchar_t*)caddr+csize);
		return NIL(Void_t*);
	}
	else	return caddr;
}
#endif /* _mem_sbrk */

#if _mem_mmap_anon || _mem_mmap_zero /* get space using mmap */
#include		<fcntl.h>
#include		<sys/mman.h>

#ifndef MAP_ANON
#ifdef MAP_ANONYMOUS
#define	MAP_ANON	MAP_ANONYMOUS
#else
#define MAP_ANON	0
#endif
#endif /*MAP_ANON*/

#ifndef OPEN_MAX
#define	OPEN_MAX	64
#endif
#define FD_INIT		(-1)		/* uninitialized file desc	*/
#define FD_NONE		(-2)		/* no mapping with file desc	*/

typedef struct _mmdisc_s
{	Vmdisc_t	disc;
	int		fd;
	off_t		offset;
} Mmdisc_t;

static Void_t* mmapmem(Void_t* caddr, size_t csize, size_t nsize, Mmdisc_t* mmdc)
{
#if _mem_mmap_zero
	if(mmdc) /* /dev/zero mapping */
	{	if(mmdc->fd == FD_INIT ) /* open /dev/zero for mapping */
		{	int	fd;
			if((fd = open("/dev/zero", O_RDONLY)) < 0 )
			{	mmdc->fd = FD_NONE;
				return NIL(Void_t*);
			}
			mmdc->fd = _vmfd(fd);
		}

		if(mmdc->fd == FD_NONE)
			return NIL(Void_t*);
	}
#endif /* _mem_mmap_zero */

	/**/ASSERT(csize > 0 || nsize > 0);
	if(csize == 0)
	{	nsize = ROUND(nsize, _Vmpagesize);
		caddr = NIL(Void_t*);
#if _mem_mmap_zero
		if(mmdc && mmdc->fd >= 0 )
			caddr = mmap(0, nsize, PROT_READ|PROT_WRITE, MAP_PRIVATE, mmdc->fd, mmdc->offset);
#endif
#if _mem_mmap_anon
		if(!mmdc )
			caddr = mmap(0, nsize, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0);
#endif
		if(!caddr || caddr == (Void_t*)(-1))
			return NIL(Void_t*);
		else if(chkaddr((Vmuchar_t*)caddr, nsize) < 0 )
		{	(void)munmap(caddr, nsize);
			return NIL(Void_t*);
		}
		else
		{	if(mmdc)
				mmdc->offset += nsize;
			return caddr;
		}
	}
	else if(nsize == 0)
	{	Vmuchar_t	*addr = (Vmuchar_t*)sbrk(0);
		if(addr < (Vmuchar_t*)caddr ) /* in sbrk space */
			return NIL(Void_t*);
		else
		{	(void)munmap(caddr, csize);
			return caddr;
		}
	}
	else	return NIL(Void_t*);
}
#endif /* _mem_map_anon || _mem_mmap_zero */

#if _std_malloc /* using native malloc as a last resource */
static Void_t* mallocmem(Void_t* caddr, size_t csize, size_t nsize)
{
	/**/ASSERT(csize > 0 || nsize > 0);
	if(csize == 0)
		return (Void_t*)malloc(nsize);
	else if(nsize == 0)
	{	free(caddr);
		return caddr;
	}
	else	return NIL(Void_t*);
}
#endif

/* A discipline to get raw memory using VirtualAlloc/mmap/sbrk */
static Void_t* getmemory(Vmalloc_t* vm, Void_t* caddr, size_t csize, size_t nsize, Vmdisc_t* disc)
{
	Vmuchar_t	*addr;

	if((csize > 0 && !caddr) || (csize == 0 && nsize == 0) )
		return NIL(Void_t*);

#if _mem_win32
	if((addr = win32mem(caddr, csize, nsize)) )
		return (Void_t*)addr;
#endif
#if _mem_sbrk
#if 1 /* no sbrk() unless explicit VM_break */
	if((_Vmassert & VM_break) && (addr = sbrkmem(caddr, csize, nsize)) )
#else /* asoinit(0,0,0)==0 => the application did not request a specific aso method => sbrk() ok */
	if(((_Vmassert & VM_break) || !(_Vmassert & VM_mmap) && !asoinit(0, 0, 0)) && (addr = sbrkmem(caddr, csize, nsize)) )
#endif
		return (Void_t*)addr;
#endif
#if _mem_mmap_anon
	if((addr = mmapmem(caddr, csize, nsize, (Mmdisc_t*)0)) )
		return (Void_t*)addr;
#endif
#if _mem_mmap_zero
	if((addr = mmapmem(caddr, csize, nsize, (Mmdisc_t*)disc)) )
		return (Void_t*)addr;
#endif
#if _mem_sbrk
	if(!(_Vmassert & VM_break) && (addr = sbrkmem(caddr, csize, nsize)) )
		return (Void_t*)addr;
#endif
#if _std_malloc
	if((addr = mallocmem(caddr, csize, nsize)) )
		return (Void_t*)addr;
#endif 
	return NIL(Void_t*);
}

#if _mem_mmap_zero || _mem_mmap_anon
static Mmdisc_t _Vmdcsystem = { { getmemory, NIL(Vmexcept_f), 64*1024, sizeof(Mmdisc_t) }, FD_INIT, 0 };
#else
static Vmdisc_t _Vmdcsystem = { getmemory, NIL(Vmexcept_f), 0, sizeof(Vmdisc_t) };
#endif

static Vmethod_t _Vmbest =
{
	bestalloc,
	bestresize,
	bestfree,
	bestaddr,
	bestsize,
	bestcompact,
	bestalign,
	VM_MTBEST
};

/* The heap region */
static Vmdata_t	_Vmdata =
{
	0,				/* lock		*/
	VM_MTBEST|VM_SHARE,		/* mode		*/
	0,				/* incr		*/
	0,				/* pool		*/
	NIL(Seg_t*),			/* seg		*/
	NIL(Block_t*),			/* free		*/
	NIL(Block_t*),			/* wild		*/
	NIL(Block_t*)			/* root		*/
					/* tiny[]	*/
					/* cache[]	*/
};
Vmalloc_t _Vmheap =
{
	{ bestalloc,
	  bestresize,
	  bestfree,
	  bestaddr,
	  bestsize,
	  bestcompact,
	  bestalign,
	  VM_MTBEST
	},
	NIL(char*),			/* file		*/
	0,				/* line		*/
	0,				/* func		*/
	(Vmdisc_t*)(&_Vmdcsystem),	/* disc		*/
	&_Vmdata,			/* data		*/
	NIL(Vmalloc_t*)			/* next		*/
};

__DEFINE__(Vmalloc_t*, Vmheap, &_Vmheap);
__DEFINE__(Vmalloc_t*, Vmregion, &_Vmheap);
__DEFINE__(Vmethod_t*, Vmbest, &_Vmbest);
__DEFINE__(Vmdisc_t*,  Vmdcsystem, (Vmdisc_t*)(&_Vmdcsystem) );
__DEFINE__(Vmdisc_t*,  Vmdcsbrk, (Vmdisc_t*)(&_Vmdcsystem) );

#ifdef NoF
NoF(vmbest)
#endif

#endif