Blob Blame History Raw
/*
 * Copyright (c) 2020 Red Hat, Inc.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 * 02110-1301, USA. 
 *
 * $Id: //eng/vdo-releases/aluminum/src/c++/vdo/base/lz4.c#2 $
 */

// Get the memcpy fixup from common.h.
#include "common.h"

/*
   LZ4 - Fast LZ compression algorithm
   Copyright (C) 2011-2012, Yann Collet.
   BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)

   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions are
   met:

       * Redistributions of source code must retain the above copyright
   notice, this list of conditions and the following disclaimer.
       * Redistributions in binary form must reproduce the above
   copyright notice, this list of conditions and the following disclaimer
   in the documentation and/or other materials provided with the
   distribution.

   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

   You can contact the author at :
   - LZ4 homepage : http://fastcompression.blogspot.com/p/lz4.html
   - LZ4 source repository : http://code.google.com/p/lz4/
*/
/*
 * With authors permission dual licensed as BSD/GPL for linux kernel
 *
 * Origin: http://lz4.googlecode.com/svn/trunk
 * Revision: 88
 */

//**************************************
// Tuning parameters
//**************************************
// MEMORY_USAGE :
// Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
// Increasing memory usage improves compression ratio
// Reduced memory usage can improve speed, due to cache effect
// Default value is 14, for 16KB, which nicely fits into Intel x86 L1 cache
#define MEMORY_USAGE 14

// NOTCOMPRESSIBLE_DETECTIONLEVEL :
// Decreasing this value will make the algorithm skip faster data segments considered "incompressible"
// This may decrease compression ratio dramatically, but will be faster on incompressible data
// Increasing this value will make the algorithm search more before declaring a segment "incompressible"
// This could improve compression a bit, but will be slower on incompressible data
// The default value (6) is recommended
#define NOTCOMPRESSIBLE_DETECTIONLEVEL 6

// BIG_ENDIAN_NATIVE_BUT_INCOMPATIBLE :
// This will provide a small boost to performance for big endian cpu, but the resulting compressed stream will be incompatible with little-endian CPU.
// You can set this option to 1 in situations where data will remain within closed environment
// This option is useless on Little_Endian CPU (such as x86)
//#define BIG_ENDIAN_NATIVE_BUT_INCOMPATIBLE 1



//**************************************
// CPU Feature Detection
//**************************************
// 32 or 64 bits ?
#if (defined(__x86_64__) || defined(__x86_64) || defined(__amd64__) || defined(__amd64) || defined(__ppc64__) || defined(_WIN64) || defined(__LP64__) || defined(_LP64) )   // Detects 64 bits mode
#  define LZ4_ARCH64 1
#else
#  define LZ4_ARCH64 0
#endif

// Little Endian or Big Endian ?
// GCC normally defines these three macros (and PDP-endian which we ignore).
#if !defined(__ORDER_LITTLE_ENDIAN__) || !defined(__ORDER_BIG_ENDIAN__) \
  || !defined(__BYTE_ORDER__)
#error "GCC byte order macros not defined?"
#endif
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
#  define LZ4_BIG_ENDIAN 1
#elif __BYTE_ORDER__ != __ORDER_LITTLE_ENDIAN__
#  error "fix byte order check"
#endif

// Unaligned memory access is automatically enabled for "common" CPU, such as x86.
// For others CPU, the compiler will be more cautious, and insert extra code to ensure aligned access is respected
// If you know your target CPU supports unaligned memory access, you want to force this option manually to improve performance
#if defined(__ARM_FEATURE_UNALIGNED)
#  define LZ4_FORCE_UNALIGNED_ACCESS 1
#endif

// Define this parameter if your target system or compiler does not support hardware bit count
#if defined(_MSC_VER) && defined(_WIN32_WCE)            // Visual Studio for Windows CE does not support Hardware bit count
#  define LZ4_FORCE_SW_BITCOUNT
#endif


//**************************************
// Compiler Options
//**************************************
#if __STDC_VERSION__ >= 199901L   // C99
/* "restrict" is a known keyword */
#else
#  define restrict // Disable restrict
#endif

#define _GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)

#ifdef _MSC_VER  // Visual Studio
#  include <intrin.h>   // For Visual 2005
#  if LZ4_ARCH64	// 64-bit
#    pragma intrinsic(_BitScanForward64) // For Visual 2005
#    pragma intrinsic(_BitScanReverse64) // For Visual 2005
#  else
#    pragma intrinsic(_BitScanForward)   // For Visual 2005
#    pragma intrinsic(_BitScanReverse)   // For Visual 2005
#  endif
#endif

#ifdef _MSC_VER
#  define lz4_bswap16(x) _byteswap_ushort(x)
#else
#  define lz4_bswap16(x) ((unsigned short int) ((((x) >> 8) & 0xffu) | (((x) & 0xffu) << 8)))
#endif

#if (_GCC_VERSION >= 302) || (__INTEL_COMPILER >= 800) || defined(__clang__)
#  define expect(expr,value)    (__builtin_expect ((expr),(value)) )
#else
#  define expect(expr,value)    (expr)
#endif

//**************************************
// Includes
//**************************************
#ifdef __KERNEL__
#  include <linux/string.h>   // for memset
#else /* __KERNEL__ */
#  include <stdlib.h>   // for malloc
#  include <string.h>   // for memset
#endif /* __KERNEL__ */
#include "lz4.h"


//**************************************
// Basic Types
//**************************************
#if defined(_MSC_VER)    // Visual Studio does not support 'stdint' natively
#  define BYTE	unsigned __int8
#  define U16		unsigned __int16
#  define U32		unsigned __int32
#  define S32		__int32
#  define U64		unsigned __int64
#else
#  ifdef __KERNEL__
#    include <linux/types.h>
#  else /* __KERNEL__ */
#    include <stdint.h>
#  endif /* __KERNEL__ */
#  define BYTE	uint8_t
#  define U16		uint16_t
#  define U32		uint32_t
#  define S32		int32_t
#  define U64		uint64_t
#endif

#ifndef LZ4_FORCE_UNALIGNED_ACCESS
#  pragma pack(push, 1)
#endif

typedef struct _U16_S { U16 v; } U16_S;
typedef struct _U32_S { U32 v; } U32_S;
typedef struct _U64_S { U64 v; } U64_S;

#ifndef LZ4_FORCE_UNALIGNED_ACCESS
#  pragma pack(pop)
#endif

#define A64(x) (((U64_S *)(x))->v)
#define A32(x) (((U32_S *)(x))->v)
#define A16(x) (((U16_S *)(x))->v)


//**************************************
// Constants
//**************************************
#define MINMATCH 4

#define HASH_LOG (MEMORY_USAGE-2)
#define HASHTABLESIZE (1 << HASH_LOG)
#define HASH_MASK (HASHTABLESIZE - 1)

#define SKIPSTRENGTH (NOTCOMPRESSIBLE_DETECTIONLEVEL>2?NOTCOMPRESSIBLE_DETECTIONLEVEL:2)
#define STACKLIMIT 13
#define HEAPMODE (HASH_LOG>STACKLIMIT)  // Defines if memory is allocated into the stack (local variable), or into the heap (malloc()).
#define COPYLENGTH 8
#define LASTLITERALS 5
#define MFLIMIT (COPYLENGTH+MINMATCH)
#define MINLENGTH (MFLIMIT+1)

#define MAXD_LOG 16
#define MAX_DISTANCE ((1 << MAXD_LOG) - 1)

#define ML_BITS  4
#define ML_MASK  ((1U<<ML_BITS)-1)
#define RUN_BITS (8-ML_BITS)
#define RUN_MASK ((1U<<RUN_BITS)-1)

/*
 * Disable on-stack context allocation for linux kernel
 */
#undef STACKLIMIT
#define STACKLIMIT 0


//**************************************
// Architecture-specific macros
//**************************************
#if LZ4_ARCH64	// 64-bit
#  define STEPSIZE 8
#  define UARCH U64
#  define AARCH A64
#  define LZ4_COPYSTEP(s,d)       A64(d) = A64(s); d+=8; s+=8;
#  define LZ4_COPYPACKET(s,d)     LZ4_COPYSTEP(s,d)
#  define LZ4_SECURECOPY(s,d,e)   if (d<e) LZ4_WILDCOPY(s,d,e)
#  define HTYPE                   U32
#  define INITBASE(base)          const BYTE* const base = ip
#else		// 32-bit
#  define STEPSIZE 4
#  define UARCH U32
#  define AARCH A32
#  define LZ4_COPYSTEP(s,d)       A32(d) = A32(s); d+=4; s+=4;
#  define LZ4_COPYPACKET(s,d)     LZ4_COPYSTEP(s,d); LZ4_COPYSTEP(s,d);
#  define LZ4_SECURECOPY          LZ4_WILDCOPY
#  define HTYPE                   const BYTE*
#  define INITBASE(base)          const int base = 0
#endif

#if (defined(LZ4_BIG_ENDIAN) && !defined(BIG_ENDIAN_NATIVE_BUT_INCOMPATIBLE))
#  define LZ4_READ_LITTLEENDIAN_16(d,s,p) { U16 v = A16(p); v = lz4_bswap16(v); d = (s) - v; }
#  define LZ4_WRITE_LITTLEENDIAN_16(p,i)  { U16 v = (U16)(i); v = lz4_bswap16(v); A16(p) = v; p+=2; }
#else		// Little Endian
#  define LZ4_READ_LITTLEENDIAN_16(d,s,p) { d = (s) - A16(p); }
#  define LZ4_WRITE_LITTLEENDIAN_16(p,v)  { A16(p) = v; p+=2; }
#endif


//**************************************
// Local structures
//**************************************
struct refTables
{
    HTYPE hashTable[HASHTABLESIZE];
};


//**************************************
// Macros
//**************************************
#define LZ4_HASH_FUNCTION(i)	(((i) * 2654435761U) >> ((MINMATCH*8)-HASH_LOG))
#define LZ4_HASH_VALUE(p)		LZ4_HASH_FUNCTION(A32(p))
#define LZ4_WILDCOPY(s,d,e)		do { LZ4_COPYPACKET(s,d) } while (d<e);
#define LZ4_BLINDCOPY(s,d,l)	{ BYTE* e=(d)+l; LZ4_WILDCOPY(s,d,e); d=e; }


//****************************
// Private functions
//****************************
#if LZ4_ARCH64

static inline int LZ4_NbCommonBytes (register U64 val)
{
#if defined(LZ4_BIG_ENDIAN)
    #if defined(_MSC_VER) && !defined(LZ4_FORCE_SW_BITCOUNT)
    unsigned long r = 0;
    _BitScanReverse64( &r, val );
    return (int)(r>>3);
    #elif defined(__GNUC__) && (_GCC_VERSION >= 304) && !defined(LZ4_FORCE_SW_BITCOUNT)
    return (__builtin_clzll(val) >> 3);
    #else
    int r;
    if (!(val>>32)) { r=4; } else { r=0; val>>=32; }
    if (!(val>>16)) { r+=2; val>>=8; } else { val>>=24; }
    r += (!val);
    return r;
    #endif
#else
    #if defined(_MSC_VER) && !defined(LZ4_FORCE_SW_BITCOUNT)
    unsigned long r = 0;
    _BitScanForward64( &r, val );
    return (int)(r>>3);
    #elif defined(__GNUC__) && (_GCC_VERSION >= 304) && !defined(LZ4_FORCE_SW_BITCOUNT)
    return (__builtin_ctzll(val) >> 3);
    #else
    static const int DeBruijnBytePos[64] = { 0, 0, 0, 0, 0, 1, 1, 2, 0, 3, 1, 3, 1, 4, 2, 7, 0, 2, 3, 6, 1, 5, 3, 5, 1, 3, 4, 4, 2, 5, 6, 7, 7, 0, 1, 2, 3, 3, 4, 6, 2, 6, 5, 5, 3, 4, 5, 6, 7, 1, 2, 4, 6, 4, 4, 5, 7, 2, 6, 5, 7, 6, 7, 7 };
    return DeBruijnBytePos[((U64)((val & -val) * 0x0218A392CDABBD3F)) >> 58];
    #endif
#endif
}

#else

static inline int LZ4_NbCommonBytes (register U32 val)
{
#if defined(LZ4_BIG_ENDIAN)
    #if defined(_MSC_VER) && !defined(LZ4_FORCE_SW_BITCOUNT)
    unsigned long r = 0;
    _BitScanReverse( &r, val );
    return (int)(r>>3);
    #elif defined(__GNUC__) && (_GCC_VERSION >= 304) && !defined(LZ4_FORCE_SW_BITCOUNT)
    return (__builtin_clz(val) >> 3);
    #else
    int r;
    if (!(val>>16)) { r=2; val>>=8; } else { r=0; val>>=24; }
    r += (!val);
    return r;
    #endif
#else
    #if defined(_MSC_VER) && !defined(LZ4_FORCE_SW_BITCOUNT)
    unsigned long r = 0;
    _BitScanForward( &r, val );
    return (int)(r>>3);
    #elif defined(__GNUC__) && (_GCC_VERSION >= 304) && !defined(LZ4_FORCE_SW_BITCOUNT)
    return (__builtin_ctz(val) >> 3);
    #else
    static const int DeBruijnBytePos[32] = { 0, 0, 3, 0, 3, 1, 3, 0, 3, 2, 2, 1, 3, 2, 0, 1, 3, 3, 1, 2, 2, 2, 2, 0, 3, 1, 2, 0, 1, 0, 1, 1 };
    return DeBruijnBytePos[((U32)((val & -(S32)val) * 0x077CB531U)) >> 27];
    #endif
#endif
}

#endif



//******************************
// Compression functions
//******************************

// LZ4_compressCtx :
// -----------------
// Compress 'isize' bytes from 'source' into an output buffer 'dest' of maximum size 'maxOutputSize'.
// If it cannot achieve it, compression will stop, and result of the function will be zero.
// return : the number of bytes written in buffer 'dest', or 0 if the compression fails

static inline int LZ4_compressCtx(void** ctx,
                 const char* source,
                 char* dest,
                 int isize,
                 int maxOutputSize)
{
#if HEAPMODE
    struct refTables *srt = (struct refTables *) (*ctx);
    HTYPE* HashTable;
#else
    HTYPE HashTable[HASHTABLESIZE] = {0};
#endif

    const BYTE* ip = (BYTE*) source;
    INITBASE(base);
    const BYTE* anchor = ip;
    const BYTE* const iend = ip + isize;
    const BYTE* const mflimit = iend - MFLIMIT;
#define matchlimit (iend - LASTLITERALS)

    BYTE* op = (BYTE*) dest;
    BYTE* const oend = op + maxOutputSize;

    int len, length;
    const int skipStrength = SKIPSTRENGTH;
    U32 forwardH;


    // Init
    if (isize<MINLENGTH) goto _last_literals;
#if HEAPMODE
    HashTable = (HTYPE*)(srt->hashTable);
    memset((void*)HashTable, 0, sizeof(srt->hashTable));
#else
    (void) ctx;
#endif


    // First Byte
    HashTable[LZ4_HASH_VALUE(ip)] = ip - base;
    ip++; forwardH = LZ4_HASH_VALUE(ip);

    // Main Loop
    for ( ; ; )
    {
        int findMatchAttempts = (1U << skipStrength) + 3;
        const BYTE* forwardIp = ip;
        const BYTE* ref;
        BYTE* token;

        // Find a match
        do {
            U32 h = forwardH;
            int step = findMatchAttempts++ >> skipStrength;
            ip = forwardIp;
            forwardIp = ip + step;

            if (unlikely(forwardIp > mflimit)) { goto _last_literals; }

            forwardH = LZ4_HASH_VALUE(forwardIp);
            ref = base + HashTable[h];
            HashTable[h] = ip - base;

        } while ((ref < ip - MAX_DISTANCE) || (A32(ref) != A32(ip)));

        // Catch up
        while ((ip>anchor) && (ref>(BYTE*)source) && unlikely(ip[-1]==ref[-1])) { ip--; ref--; }

        // Encode Literal length
        length = (int)(ip - anchor);
        token = op++;
        if (unlikely(op + length + (2 + 1 + LASTLITERALS) + (length>>8) > oend)) return 0; 		// Check output limit
#ifdef _MSC_VER
        if (length>=(int)RUN_MASK)
        {
            int len = length-RUN_MASK;
            *token=(RUN_MASK<<ML_BITS);
            if (len>254)
            {
                do { *op++ = 255; len -= 255; } while (len>254);
                *op++ = (BYTE)len;
                memcpy(op, anchor, length);
                op += length;
                goto _next_match;
            }
            else
            *op++ = (BYTE)len;
        }
        else *token = (length<<ML_BITS);
#else
        if (length>=(int)RUN_MASK) { *token=(RUN_MASK<<ML_BITS); len = length-RUN_MASK; for(; len > 254 ; len-=255) *op++ = 255; *op++ = (BYTE)len; }
        else *token = (length<<ML_BITS);
#endif

        // Copy Literals
        LZ4_BLINDCOPY(anchor, op, length);

_next_match:
        // Encode Offset
        LZ4_WRITE_LITTLEENDIAN_16(op,(U16)(ip-ref));

        // Start Counting
        ip+=MINMATCH; ref+=MINMATCH;   // MinMatch verified
        anchor = ip;
        while (likely(ip<matchlimit-(STEPSIZE-1)))
        {
            UARCH diff = AARCH(ref) ^ AARCH(ip);
            if (!diff) { ip+=STEPSIZE; ref+=STEPSIZE; continue; }
            ip += LZ4_NbCommonBytes(diff);
            goto _endCount;
        }
        if (LZ4_ARCH64) if ((ip<(matchlimit-3)) && (A32(ref) == A32(ip))) { ip+=4; ref+=4; }
        if ((ip<(matchlimit-1)) && (A16(ref) == A16(ip))) { ip+=2; ref+=2; }
        if ((ip<matchlimit) && (*ref == *ip)) ip++;
_endCount:

        // Encode MatchLength
        len = (int)(ip - anchor);
        if (unlikely(op + (1 + LASTLITERALS) + (len>>8) > oend)) return 0; 		// Check output limit
        if (len>=(int)ML_MASK) { *token+=ML_MASK; len-=ML_MASK; for(; len > 509 ; len-=510) { *op++ = 255; *op++ = 255; } if (len > 254) { len-=255; *op++ = 255; } *op++ = (BYTE)len; }
        else *token += len;

        // Test end of chunk
        if (ip > mflimit) { anchor = ip;  break; }

        // Fill table
        HashTable[LZ4_HASH_VALUE(ip-2)] = ip - 2 - base;

        // Test next position
        ref = base + HashTable[LZ4_HASH_VALUE(ip)];
        HashTable[LZ4_HASH_VALUE(ip)] = ip - base;
        if ((ref > ip - (MAX_DISTANCE + 1)) && (A32(ref) == A32(ip))) { token = op++; *token=0; goto _next_match; }

        // Prepare next loop
        anchor = ip++;
        forwardH = LZ4_HASH_VALUE(ip);
    }

_last_literals:
    // Encode Last Literals
    {
        int lastRun = (int)(iend - anchor);
        if (((char*)op - dest) + lastRun + 1 + ((lastRun+255-RUN_MASK)/255) > (U32)maxOutputSize) return 0;
        if (lastRun>=(int)RUN_MASK) { *op++=(RUN_MASK<<ML_BITS); lastRun-=RUN_MASK; for(; lastRun > 254 ; lastRun-=255) *op++ = 255; *op++ = (BYTE) lastRun; }
        else *op++ = (lastRun<<ML_BITS);
        memcpy(op, anchor, iend - anchor);
        op += iend-anchor;
    }

    // End
    return (int) (((char*)op)-dest);
}



// Note : this function is valid only if isize < LZ4_64KLIMIT
#define LZ4_64KLIMIT ((1<<16) + (MFLIMIT-1))
#define HASHLOG64K (HASH_LOG+1)
#define HASH64KTABLESIZE (1U<<HASHLOG64K)
#define LZ4_HASH64K_FUNCTION(i)	(((i) * 2654435761U) >> ((MINMATCH*8)-HASHLOG64K))
#define LZ4_HASH64K_VALUE(p)	LZ4_HASH64K_FUNCTION(A32(p))
static inline int LZ4_compress64kCtx(void** ctx,
                 const char* source,
                 char* dest,
                 int isize,
                 int maxOutputSize)
{
#if HEAPMODE
    struct refTables *srt = (struct refTables *) (*ctx);
    U16* HashTable;
#else
    U16 HashTable[HASH64KTABLESIZE] = {0};
#endif

    const BYTE* ip = (BYTE*) source;
    const BYTE* anchor = ip;
    const BYTE* const base = ip;
    const BYTE* const iend = ip + isize;
    const BYTE* const mflimit = iend - MFLIMIT;
#define matchlimit (iend - LASTLITERALS)

    BYTE* op = (BYTE*) dest;
    BYTE* const oend = op + maxOutputSize;

    int len, length;
    const int skipStrength = SKIPSTRENGTH;
    U32 forwardH;


    // Init
    if (isize<MINLENGTH) goto _last_literals;
#if HEAPMODE
    HashTable = (U16*)(srt->hashTable);
    memset((void*)HashTable, 0, sizeof(srt->hashTable));
#else
    (void) ctx;
#endif


    // First Byte
    ip++; forwardH = LZ4_HASH64K_VALUE(ip);

    // Main Loop
    for ( ; ; )
    {
        int findMatchAttempts = (1U << skipStrength) + 3;
        const BYTE* forwardIp = ip;
        const BYTE* ref;
        BYTE* token;

        // Find a match
        do {
            U32 h = forwardH;
            int step = findMatchAttempts++ >> skipStrength;
            ip = forwardIp;
            forwardIp = ip + step;

            if (forwardIp > mflimit) { goto _last_literals; }

            forwardH = LZ4_HASH64K_VALUE(forwardIp);
            ref = base + HashTable[h];
            HashTable[h] = (U16)(ip - base);

        } while (A32(ref) != A32(ip));

        // Catch up
        while ((ip>anchor) && (ref>(BYTE*)source) && (ip[-1]==ref[-1])) { ip--; ref--; }

        // Encode Literal length
        length = (int)(ip - anchor);
        token = op++;
        if (unlikely(op + length + (2 + 1 + LASTLITERALS) + (length>>8) > oend)) return 0; 		// Check output limit
#ifdef _MSC_VER
        if (length>=(int)RUN_MASK)
        {
            int len = length-RUN_MASK;
            *token=(RUN_MASK<<ML_BITS);
            if (len>254)
            {
                do { *op++ = 255; len -= 255; } while (len>254);
                *op++ = (BYTE)len;
                memcpy(op, anchor, length);
                op += length;
                goto _next_match;
            }
            else
            *op++ = (BYTE)len;
        }
        else *token = (length<<ML_BITS);
#else
        if (length>=(int)RUN_MASK) { *token=(RUN_MASK<<ML_BITS); len = length-RUN_MASK; for(; len > 254 ; len-=255) *op++ = 255; *op++ = (BYTE)len; }
        else *token = (length<<ML_BITS);
#endif

        // Copy Literals
        LZ4_BLINDCOPY(anchor, op, length);

_next_match:
        // Encode Offset
        LZ4_WRITE_LITTLEENDIAN_16(op,(U16)(ip-ref));

        // Start Counting
        ip+=MINMATCH; ref+=MINMATCH;   // MinMatch verified
        anchor = ip;
        while (ip<matchlimit-(STEPSIZE-1))
        {
            UARCH diff = AARCH(ref) ^ AARCH(ip);
            if (!diff) { ip+=STEPSIZE; ref+=STEPSIZE; continue; }
            ip += LZ4_NbCommonBytes(diff);
            goto _endCount;
        }
        if (LZ4_ARCH64) if ((ip<(matchlimit-3)) && (A32(ref) == A32(ip))) { ip+=4; ref+=4; }
        if ((ip<(matchlimit-1)) && (A16(ref) == A16(ip))) { ip+=2; ref+=2; }
        if ((ip<matchlimit) && (*ref == *ip)) ip++;
_endCount:

        // Encode MatchLength
        len = (int)(ip - anchor);
        if (unlikely(op + (1 + LASTLITERALS) + (len>>8) > oend)) return 0; 		// Check output limit
        if (len>=(int)ML_MASK) { *token+=ML_MASK; len-=ML_MASK; for(; len > 509 ; len-=510) { *op++ = 255; *op++ = 255; } if (len > 254) { len-=255; *op++ = 255; } *op++ = (BYTE)len; }
        else *token += len;

        // Test end of chunk
        if (ip > mflimit) { anchor = ip;  break; }

        // Fill table
        HashTable[LZ4_HASH64K_VALUE(ip-2)] = (U16)(ip - 2 - base);

        // Test next position
        ref = base + HashTable[LZ4_HASH64K_VALUE(ip)];
        HashTable[LZ4_HASH64K_VALUE(ip)] = (U16)(ip - base);
        if (A32(ref) == A32(ip)) { token = op++; *token=0; goto _next_match; }

        // Prepare next loop
        anchor = ip++;
        forwardH = LZ4_HASH64K_VALUE(ip);
    }

_last_literals:
    // Encode Last Literals
    {
        int lastRun = (int)(iend - anchor);
        if (op + lastRun + 1 + (lastRun-RUN_MASK+255)/255 > oend) return 0;
        if (lastRun>=(int)RUN_MASK) { *op++=(RUN_MASK<<ML_BITS); lastRun-=RUN_MASK; for(; lastRun > 254 ; lastRun-=255) *op++ = 255; *op++ = (BYTE) lastRun; }
        else *op++ = (lastRun<<ML_BITS);
        memcpy(op, anchor, iend - anchor);
        op += iend-anchor;
    }

    // End
    return (int) (((char*)op)-dest);
}


int LZ4_compress_ctx_limitedOutput(void       *ctx,
                                   const char *source,
                                   char       *dest,
                                   int         isize,
                                   int         maxOutputSize)
{
  if (isize < LZ4_64KLIMIT) {
    return LZ4_compress64kCtx(&ctx, source, dest, isize, maxOutputSize);
  } else {
    return LZ4_compressCtx(&ctx, source, dest, isize, maxOutputSize);
  }
}



//****************************
// Decompression functions
//****************************

// Note : The decoding functions LZ4_uncompress() and LZ4_uncompress_unknownOutputSize()
//		are safe against "buffer overflow" attack type.
//		They will never write nor read outside of the provided output buffers.
//      LZ4_uncompress_unknownOutputSize() also insures that it will never read outside of the input buffer.
//		A corrupted input will produce an error result, a negative int, indicating the position of the error within input stream.

#ifdef LZ4_EVERYTHING
int LZ4_uncompress(const char* source, char* dest, int osize)
{
    // Local Variables
    const BYTE* restrict ip = (const BYTE*) source;
    const BYTE* ref;

    BYTE* op = (BYTE*) dest;
    BYTE* const oend = op + osize;
    BYTE* cpy;

    unsigned token;

    size_t length;
    size_t dec32table[] = {0, 3, 2, 3, 0, 0, 0, 0};
#if LZ4_ARCH64
    size_t dec64table[] = {0, 0, 0, -1, 0, 1, 2, 3};
#endif


    // Main Loop
    while (1)
    {
        // get runlength
        token = *ip++;
        if ((length=(token>>ML_BITS)) == RUN_MASK)  { size_t len; for (;(len=*ip++)==255;length+=255){} length += len; }

        // copy literals
        cpy = op+length;
        if (unlikely(cpy>oend-COPYLENGTH))
        {
            if (cpy != oend) goto _output_error;         // Error : not enough place for another match (min 4) + 5 literals
            memcpy(op, ip, length);
            ip += length;
            break;                                       // EOF
        }
        LZ4_WILDCOPY(ip, op, cpy); ip -= (op-cpy); op = cpy;

        // get offset
        LZ4_READ_LITTLEENDIAN_16(ref,cpy,ip); ip+=2;
        if (unlikely(ref < (BYTE* const)dest)) goto _output_error;   // Error : offset create reference outside destination buffer

        // get matchlength
        if ((length=(token&ML_MASK)) == ML_MASK) { for (;*ip==255;length+=255) {ip++;} length += *ip++; }

        // copy repeated sequence
        if (unlikely((op-ref)<STEPSIZE))
        {
#if LZ4_ARCH64
            size_t dec64 = dec64table[op-ref];
#else
            const int dec64 = 0;
#endif
            op[0] = ref[0];
            op[1] = ref[1];
            op[2] = ref[2];
            op[3] = ref[3];
            op += 4, ref += 4; ref -= dec32table[op-ref];
            A32(op) = A32(ref);
            op += STEPSIZE-4; ref -= dec64;
        } else { LZ4_COPYSTEP(ref,op); }
        cpy = op + length - (STEPSIZE-4);
        if (cpy>oend-COPYLENGTH)
        {
            if (cpy > oend) goto _output_error;             // Error : request to write beyond destination buffer
            LZ4_SECURECOPY(ref, op, (oend-COPYLENGTH));
            while(op<cpy) *op++=*ref++;
            op=cpy;
            if (op == oend) goto _output_error;    // Check EOF (should never happen, since last 5 bytes are supposed to be literals)
            continue;
        }
        LZ4_SECURECOPY(ref, op, cpy);
        op=cpy;		// correction
    }

    // end of decoding
    return (int) (((char*)ip)-source);

    // write overflow error detected
_output_error:
    return (int) (-(((char*)ip)-source));
}
#endif /* LZ4_EVERYTHING */

int LZ4_uncompress_unknownOutputSize(
                const char* source,
                char* dest,
                int isize,
                int maxOutputSize)
{
    // Local Variables
    const BYTE* restrict ip = (const BYTE*) source;
    const BYTE* const iend = ip + isize;
    const BYTE* ref;

    BYTE* op = (BYTE*) dest;
    BYTE* const oend = op + maxOutputSize;
    BYTE* cpy;

    size_t dec32table[] = {0, 3, 2, 3, 0, 0, 0, 0};
#if LZ4_ARCH64
    size_t dec64table[] = {0, 0, 0, -1, 0, 1, 2, 3};
#endif


    // Main Loop
    while (ip<iend)
    {
        unsigned token;
        size_t length;

        // get runlength
        token = *ip++;
        if ((length=(token>>ML_BITS)) == RUN_MASK) { int s=255; while ((ip<iend) && (s==255)) { s=*ip++; length += s; } }

        // copy literals
        cpy = op+length;
        if ((cpy>oend-COPYLENGTH) || (ip+length>iend-COPYLENGTH))
        {
            if (cpy > oend) goto _output_error;          // Error : writes beyond output buffer
            if (ip+length != iend) goto _output_error;   // Error : LZ4 format requires to consume all input at this stage
            memcpy(op, ip, length);
            op += length;
            break;                                       // Necessarily EOF, due to parsing restrictions
        }
        LZ4_WILDCOPY(ip, op, cpy); ip -= (op-cpy); op = cpy;

        // get offset
        LZ4_READ_LITTLEENDIAN_16(ref,cpy,ip); ip+=2;
        if (ref < (BYTE* const)dest) goto _output_error;   // Error : offset creates reference outside of destination buffer

        // get matchlength
        if ((length=(token&ML_MASK)) == ML_MASK) { while (ip<iend) { int s = *ip++; length +=s; if (s==255) continue; break; } }

        // copy repeated sequence
        if (unlikely(op-ref<STEPSIZE))
        {
#if LZ4_ARCH64
            size_t dec64 = dec64table[op-ref];
#else
            const int dec64 = 0;
#endif
            op[0] = ref[0];
            op[1] = ref[1];
            op[2] = ref[2];
            op[3] = ref[3];
            op += 4, ref += 4; ref -= dec32table[op-ref];
            A32(op) = A32(ref);
            op += STEPSIZE-4; ref -= dec64;
        } else { LZ4_COPYSTEP(ref,op); }
        cpy = op + length - (STEPSIZE-4);
        if (cpy>oend-COPYLENGTH)
        {
            if (cpy > oend) goto _output_error;    // Error : request to write outside of destination buffer
            LZ4_SECURECOPY(ref, op, (oend-COPYLENGTH));
            while(op<cpy) *op++=*ref++;
            op=cpy;
            if (op == oend) goto _output_error;    // Check EOF (should never happen, since last 5 bytes are supposed to be literals)
            continue;
        }
        LZ4_SECURECOPY(ref, op, cpy);
        op=cpy;		// correction
    }

    // end of decoding
    return (int) (((char*)op)-dest);

    // write overflow error detected
_output_error:
    return (int) (-(((char*)ip)-source));
}

int LZ4_context_size(void)
{
	return sizeof(struct refTables);
}