Blob Blame History Raw
/*
 * iplink_can.c	CAN device support
 *
 *		This program is free software; you can redistribute it and/or
 *		modify it under the terms of the GNU General Public License
 *		as published by the Free Software Foundation; either version
 *		2 of the License, or (at your option) any later version.
 *
 * Authors:	Wolfgang Grandegger <wg@grandegger.com>
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <linux/can/netlink.h>

#include "rt_names.h"
#include "utils.h"
#include "ip_common.h"

static void print_usage(FILE *f)
{
	fprintf(f,
		"Usage: ip link set DEVICE type can\n"
		"\t[ bitrate BITRATE [ sample-point SAMPLE-POINT] ] |\n"
		"\t[ tq TQ prop-seg PROP_SEG phase-seg1 PHASE-SEG1\n \t  phase-seg2 PHASE-SEG2 [ sjw SJW ] ]\n"
		"\n"
		"\t[ dbitrate BITRATE [ dsample-point SAMPLE-POINT] ] |\n"
		"\t[ dtq TQ dprop-seg PROP_SEG dphase-seg1 PHASE-SEG1\n \t  dphase-seg2 PHASE-SEG2 [ dsjw SJW ] ]\n"
		"\n"
		"\t[ loopback { on | off } ]\n"
		"\t[ listen-only { on | off } ]\n"
		"\t[ triple-sampling { on | off } ]\n"
		"\t[ one-shot { on | off } ]\n"
		"\t[ berr-reporting { on | off } ]\n"
		"\t[ fd { on | off } ]\n"
		"\t[ fd-non-iso { on | off } ]\n"
		"\t[ presume-ack { on | off } ]\n"
		"\n"
		"\t[ restart-ms TIME-MS ]\n"
		"\t[ restart ]\n"
		"\n"
		"\t[ termination { 0..65535 } ]\n"
		"\n"
		"\tWhere: BITRATE	:= { 1..1000000 }\n"
		"\t	  SAMPLE-POINT	:= { 0.000..0.999 }\n"
		"\t	  TQ		:= { NUMBER }\n"
		"\t	  PROP-SEG	:= { 1..8 }\n"
		"\t	  PHASE-SEG1	:= { 1..8 }\n"
		"\t	  PHASE-SEG2	:= { 1..8 }\n"
		"\t	  SJW		:= { 1..4 }\n"
		"\t	  RESTART-MS	:= { 0 | NUMBER }\n"
		);
}

static void usage(void)
{
	print_usage(stderr);
}

static int get_float(float *val, const char *arg)
{
	float res;
	char *ptr;

	if (!arg || !*arg)
		return -1;
	res = strtof(arg, &ptr);
	if (!ptr || ptr == arg || *ptr)
		return -1;
	*val = res;
	return 0;
}

static void set_ctrlmode(char *name, char *arg,
			 struct can_ctrlmode *cm, __u32 flags)
{
	if (strcmp(arg, "on") == 0) {
		cm->flags |= flags;
	} else if (strcmp(arg, "off") != 0) {
		fprintf(stderr,
			"Error: argument of \"%s\" must be \"on\" or \"off\", not \"%s\"\n",
			name, arg);
		exit(-1);
	}
	cm->mask |= flags;
}

static void print_ctrlmode(FILE *f, __u32 cm)
{
	open_json_array(PRINT_ANY, is_json_context() ? "ctrlmode" : "<");
#define _PF(cmflag, cmname)						\
	if (cm & cmflag) {						\
		cm &= ~cmflag;						\
		print_string(PRINT_ANY, NULL, cm ? "%s," : "%s", cmname); \
	}
	_PF(CAN_CTRLMODE_LOOPBACK, "LOOPBACK");
	_PF(CAN_CTRLMODE_LISTENONLY, "LISTEN-ONLY");
	_PF(CAN_CTRLMODE_3_SAMPLES, "TRIPLE-SAMPLING");
	_PF(CAN_CTRLMODE_ONE_SHOT, "ONE-SHOT");
	_PF(CAN_CTRLMODE_BERR_REPORTING, "BERR-REPORTING");
	_PF(CAN_CTRLMODE_FD, "FD");
	_PF(CAN_CTRLMODE_FD_NON_ISO, "FD-NON-ISO");
	_PF(CAN_CTRLMODE_PRESUME_ACK, "PRESUME-ACK");
#undef _PF
	if (cm)
		print_hex(PRINT_ANY, NULL, "%x", cm);
	close_json_array(PRINT_ANY, "> ");
}

static int can_parse_opt(struct link_util *lu, int argc, char **argv,
			 struct nlmsghdr *n)
{
	struct can_bittiming bt = {}, dbt = {};
	struct can_ctrlmode cm = {0, 0};

	while (argc > 0) {
		if (matches(*argv, "bitrate") == 0) {
			NEXT_ARG();
			if (get_u32(&bt.bitrate, *argv, 0))
				invarg("invalid \"bitrate\" value\n", *argv);
		} else if (matches(*argv, "sample-point") == 0) {
			float sp;

			NEXT_ARG();
			if (get_float(&sp, *argv))
				invarg("invalid \"sample-point\" value\n",
				       *argv);
			bt.sample_point = (__u32)(sp * 1000);
		} else if (matches(*argv, "tq") == 0) {
			NEXT_ARG();
			if (get_u32(&bt.tq, *argv, 0))
				invarg("invalid \"tq\" value\n", *argv);
		} else if (matches(*argv, "prop-seg") == 0) {
			NEXT_ARG();
			if (get_u32(&bt.prop_seg, *argv, 0))
				invarg("invalid \"prop-seg\" value\n", *argv);
		} else if (matches(*argv, "phase-seg1") == 0) {
			NEXT_ARG();
			if (get_u32(&bt.phase_seg1, *argv, 0))
				invarg("invalid \"phase-seg1\" value\n", *argv);
		} else if (matches(*argv, "phase-seg2") == 0) {
			NEXT_ARG();
			if (get_u32(&bt.phase_seg2, *argv, 0))
				invarg("invalid \"phase-seg2\" value\n", *argv);
		} else if (matches(*argv, "sjw") == 0) {
			NEXT_ARG();
			if (get_u32(&bt.sjw, *argv, 0))
				invarg("invalid \"sjw\" value\n", *argv);
		} else if (matches(*argv, "dbitrate") == 0) {
			NEXT_ARG();
			if (get_u32(&dbt.bitrate, *argv, 0))
				invarg("invalid \"dbitrate\" value\n", *argv);
		} else if (matches(*argv, "dsample-point") == 0) {
			float sp;

			NEXT_ARG();
			if (get_float(&sp, *argv))
				invarg("invalid \"dsample-point\" value\n", *argv);
			dbt.sample_point = (__u32)(sp * 1000);
		} else if (matches(*argv, "dtq") == 0) {
			NEXT_ARG();
			if (get_u32(&dbt.tq, *argv, 0))
				invarg("invalid \"dtq\" value\n", *argv);
		} else if (matches(*argv, "dprop-seg") == 0) {
			NEXT_ARG();
			if (get_u32(&dbt.prop_seg, *argv, 0))
				invarg("invalid \"dprop-seg\" value\n", *argv);
		} else if (matches(*argv, "dphase-seg1") == 0) {
			NEXT_ARG();
			if (get_u32(&dbt.phase_seg1, *argv, 0))
				invarg("invalid \"dphase-seg1\" value\n", *argv);
		} else if (matches(*argv, "dphase-seg2") == 0) {
			NEXT_ARG();
			if (get_u32(&dbt.phase_seg2, *argv, 0))
				invarg("invalid \"dphase-seg2\" value\n", *argv);
		} else if (matches(*argv, "dsjw") == 0) {
			NEXT_ARG();
			if (get_u32(&dbt.sjw, *argv, 0))
				invarg("invalid \"dsjw\" value\n", *argv);
		} else if (matches(*argv, "loopback") == 0) {
			NEXT_ARG();
			set_ctrlmode("loopback", *argv, &cm,
				     CAN_CTRLMODE_LOOPBACK);
		} else if (matches(*argv, "listen-only") == 0) {
			NEXT_ARG();
			set_ctrlmode("listen-only", *argv, &cm,
				     CAN_CTRLMODE_LISTENONLY);
		} else if (matches(*argv, "triple-sampling") == 0) {
			NEXT_ARG();
			set_ctrlmode("triple-sampling", *argv, &cm,
				     CAN_CTRLMODE_3_SAMPLES);
		} else if (matches(*argv, "one-shot") == 0) {
			NEXT_ARG();
			set_ctrlmode("one-shot", *argv, &cm,
				     CAN_CTRLMODE_ONE_SHOT);
		} else if (matches(*argv, "berr-reporting") == 0) {
			NEXT_ARG();
			set_ctrlmode("berr-reporting", *argv, &cm,
				     CAN_CTRLMODE_BERR_REPORTING);
		} else if (matches(*argv, "fd") == 0) {
			NEXT_ARG();
			set_ctrlmode("fd", *argv, &cm,
				     CAN_CTRLMODE_FD);
		} else if (matches(*argv, "fd-non-iso") == 0) {
			NEXT_ARG();
			set_ctrlmode("fd-non-iso", *argv, &cm,
				     CAN_CTRLMODE_FD_NON_ISO);
		} else if (matches(*argv, "presume-ack") == 0) {
			NEXT_ARG();
			set_ctrlmode("presume-ack", *argv, &cm,
				     CAN_CTRLMODE_PRESUME_ACK);
		} else if (matches(*argv, "restart") == 0) {
			__u32 val = 1;

			addattr32(n, 1024, IFLA_CAN_RESTART, val);
		} else if (matches(*argv, "restart-ms") == 0) {
			__u32 val;

			NEXT_ARG();
			if (get_u32(&val, *argv, 0))
				invarg("invalid \"restart-ms\" value\n", *argv);
			addattr32(n, 1024, IFLA_CAN_RESTART_MS, val);
		} else if (matches(*argv, "termination") == 0) {
			__u16 val;

			NEXT_ARG();
			if (get_u16(&val, *argv, 0))
				invarg("invalid \"termination\" value\n",
				       *argv);
			addattr16(n, 1024, IFLA_CAN_TERMINATION, val);
		} else if (matches(*argv, "help") == 0) {
			usage();
			return -1;
		} else {
			fprintf(stderr, "can: unknown option \"%s\"\n", *argv);
			usage();
			return -1;
		}
		argc--, argv++;
	}

	if (bt.bitrate || bt.tq)
		addattr_l(n, 1024, IFLA_CAN_BITTIMING, &bt, sizeof(bt));
	if (dbt.bitrate || dbt.tq)
		addattr_l(n, 1024, IFLA_CAN_DATA_BITTIMING, &dbt, sizeof(dbt));
	if (cm.mask)
		addattr_l(n, 1024, IFLA_CAN_CTRLMODE, &cm, sizeof(cm));

	return 0;
}

static const char *can_state_names[CAN_STATE_MAX] = {
	[CAN_STATE_ERROR_ACTIVE] = "ERROR-ACTIVE",
	[CAN_STATE_ERROR_WARNING] = "ERROR-WARNING",
	[CAN_STATE_ERROR_PASSIVE] = "ERROR-PASSIVE",
	[CAN_STATE_BUS_OFF] = "BUS-OFF",
	[CAN_STATE_STOPPED] = "STOPPED",
	[CAN_STATE_SLEEPING] = "SLEEPING"
};

static void can_print_json_timing_min_max(const char *attr, int min, int max)
{
	open_json_object(attr);
	print_int(PRINT_JSON, "min", NULL, min);
	print_int(PRINT_JSON, "max", NULL, max);
	close_json_object();
}

static void can_print_opt(struct link_util *lu, FILE *f, struct rtattr *tb[])
{
	if (!tb)
		return;

	if (tb[IFLA_CAN_CTRLMODE]) {
		struct can_ctrlmode *cm = RTA_DATA(tb[IFLA_CAN_CTRLMODE]);

		if (cm->flags)
			print_ctrlmode(f, cm->flags);
	}

	if (tb[IFLA_CAN_STATE]) {
		uint32_t state = rta_getattr_u32(tb[IFLA_CAN_STATE]);

		print_string(PRINT_ANY, "state", "state %s ", state < CAN_STATE_MAX ?
			can_state_names[state] : "UNKNOWN");
	}

	if (tb[IFLA_CAN_BERR_COUNTER]) {
		struct can_berr_counter *bc =
			RTA_DATA(tb[IFLA_CAN_BERR_COUNTER]);

		if (is_json_context()) {
			open_json_object("berr_counter");
			print_int(PRINT_JSON, "tx", NULL, bc->txerr);
			print_int(PRINT_JSON, "rx", NULL, bc->rxerr);
			close_json_object();
		} else {
			fprintf(f, "(berr-counter tx %d rx %d) ",
				bc->txerr, bc->rxerr);
		}
	}

	if (tb[IFLA_CAN_RESTART_MS]) {
		__u32 *restart_ms = RTA_DATA(tb[IFLA_CAN_RESTART_MS]);

		print_int(PRINT_ANY,
			  "restart_ms",
			  "restart-ms %d ",
			  *restart_ms);
	}

	/* bittiming is irrelevant if fixed bitrate is defined */
	if (tb[IFLA_CAN_BITTIMING] && !tb[IFLA_CAN_BITRATE_CONST]) {
		struct can_bittiming *bt = RTA_DATA(tb[IFLA_CAN_BITTIMING]);

		if (is_json_context()) {
			json_writer_t *jw;

			open_json_object("bittiming");
			print_int(PRINT_ANY, "bitrate", NULL, bt->bitrate);
			jw = get_json_writer();
			jsonw_name(jw, "sample_point");
			jsonw_printf(jw, "%.3f",
				     (float) bt->sample_point / 1000);
			print_int(PRINT_ANY, "tq", NULL, bt->tq);
			print_int(PRINT_ANY, "prop_seg", NULL, bt->prop_seg);
			print_int(PRINT_ANY, "phase_seg1",
				  NULL, bt->phase_seg1);
			print_int(PRINT_ANY, "phase_seg2",
				  NULL, bt->phase_seg2);
			print_int(PRINT_ANY, "sjw", NULL, bt->sjw);
			close_json_object();
		} else {
			fprintf(f, "\n	  bitrate %d sample-point %.3f ",
				bt->bitrate, (float) bt->sample_point / 1000.);
			fprintf(f,
				"\n	  tq %d prop-seg %d phase-seg1 %d phase-seg2 %d sjw %d",
				bt->tq, bt->prop_seg,
				bt->phase_seg1, bt->phase_seg2,
				bt->sjw);
		}
	}

	/* bittiming const is irrelevant if fixed bitrate is defined */
	if (tb[IFLA_CAN_BITTIMING_CONST] && !tb[IFLA_CAN_BITRATE_CONST]) {
		struct can_bittiming_const *btc =
			RTA_DATA(tb[IFLA_CAN_BITTIMING_CONST]);

		if (is_json_context()) {
			open_json_object("bittiming_const");
			print_string(PRINT_JSON, "name", NULL, btc->name);
			can_print_json_timing_min_max("tseg1",
						      btc->tseg1_min,
						      btc->tseg1_max);
			can_print_json_timing_min_max("tseg2",
						      btc->tseg2_min,
						      btc->tseg2_max);
			can_print_json_timing_min_max("sjw", 1, btc->sjw_max);
			can_print_json_timing_min_max("brp",
						      btc->brp_min,
						      btc->brp_max);
			print_int(PRINT_JSON, "brp_inc", NULL, btc->brp_inc);
			close_json_object();
		} else {
			fprintf(f, "\n	  %s: tseg1 %d..%d tseg2 %d..%d "
				"sjw 1..%d brp %d..%d brp-inc %d",
				btc->name, btc->tseg1_min, btc->tseg1_max,
				btc->tseg2_min, btc->tseg2_max, btc->sjw_max,
				btc->brp_min, btc->brp_max, btc->brp_inc);
		}
	}

	if (tb[IFLA_CAN_BITRATE_CONST]) {
		__u32 *bitrate_const = RTA_DATA(tb[IFLA_CAN_BITRATE_CONST]);
		int bitrate_cnt = RTA_PAYLOAD(tb[IFLA_CAN_BITRATE_CONST]) /
			sizeof(*bitrate_const);
		int i;
		__u32 bitrate = 0;

		if (tb[IFLA_CAN_BITTIMING]) {
			struct can_bittiming *bt =
				RTA_DATA(tb[IFLA_CAN_BITTIMING]);
			bitrate = bt->bitrate;
		}

		if (is_json_context()) {
			print_uint(PRINT_JSON,
				   "bittiming_bitrate",
				   NULL, bitrate);
			open_json_array(PRINT_JSON, "bitrate_const");
			for (i = 0; i < bitrate_cnt; ++i)
				print_uint(PRINT_JSON, NULL, NULL,
					   bitrate_const[i]);
			close_json_array(PRINT_JSON, NULL);
		} else {
			fprintf(f, "\n	  bitrate %u", bitrate);
			fprintf(f, "\n	     [");

			for (i = 0; i < bitrate_cnt - 1; ++i) {
				/* This will keep lines below 80 signs */
				if (!(i % 6) && i)
					fprintf(f, "\n	      ");

				fprintf(f, "%8u, ", bitrate_const[i]);
			}

			if (!(i % 6) && i)
				fprintf(f, "\n	      ");
			fprintf(f, "%8u ]", bitrate_const[i]);
		}
	}

	/* data bittiming is irrelevant if fixed bitrate is defined */
	if (tb[IFLA_CAN_DATA_BITTIMING] && !tb[IFLA_CAN_DATA_BITRATE_CONST]) {
		struct can_bittiming *dbt =
			RTA_DATA(tb[IFLA_CAN_DATA_BITTIMING]);

		if (is_json_context()) {
			json_writer_t *jw;

			open_json_object("data_bittiming");
			print_int(PRINT_JSON, "bitrate", NULL, dbt->bitrate);
			jw = get_json_writer();
			jsonw_name(jw, "sample_point");
			jsonw_printf(jw, "%.3f",
				     (float) dbt->sample_point / 1000.);
			print_int(PRINT_JSON, "tq", NULL, dbt->tq);
			print_int(PRINT_JSON, "prop_seg", NULL, dbt->prop_seg);
			print_int(PRINT_JSON, "phase_seg1",
				  NULL, dbt->phase_seg1);
			print_int(PRINT_JSON, "phase_seg2",
				  NULL, dbt->phase_seg2);
			print_int(PRINT_JSON, "sjw", NULL, dbt->sjw);
			close_json_object();
		} else {
			fprintf(f, "\n	  dbitrate %d dsample-point %.3f ",
				dbt->bitrate,
				(float) dbt->sample_point / 1000.);
			fprintf(f, "\n	  dtq %d dprop-seg %d dphase-seg1 %d "
				"dphase-seg2 %d dsjw %d",
				dbt->tq, dbt->prop_seg, dbt->phase_seg1,
				dbt->phase_seg2, dbt->sjw);
		}
	}

	/* data bittiming const is irrelevant if fixed bitrate is defined */
	if (tb[IFLA_CAN_DATA_BITTIMING_CONST] &&
	    !tb[IFLA_CAN_DATA_BITRATE_CONST]) {
		struct can_bittiming_const *dbtc =
			RTA_DATA(tb[IFLA_CAN_DATA_BITTIMING_CONST]);

		if (is_json_context()) {
			open_json_object("data_bittiming_const");
			print_string(PRINT_JSON, "name", NULL, dbtc->name);
			can_print_json_timing_min_max("tseg1",
						      dbtc->tseg1_min,
						      dbtc->tseg1_max);
			can_print_json_timing_min_max("tseg2",
						      dbtc->tseg2_min,
						      dbtc->tseg2_max);
			can_print_json_timing_min_max("sjw", 1, dbtc->sjw_max);
			can_print_json_timing_min_max("brp",
						      dbtc->brp_min,
						      dbtc->brp_max);

			print_int(PRINT_JSON, "brp_inc", NULL, dbtc->brp_inc);
			close_json_object();
		} else {
			fprintf(f, "\n	  %s: dtseg1 %d..%d dtseg2 %d..%d "
				"dsjw 1..%d dbrp %d..%d dbrp-inc %d",
				dbtc->name, dbtc->tseg1_min, dbtc->tseg1_max,
				dbtc->tseg2_min, dbtc->tseg2_max, dbtc->sjw_max,
				dbtc->brp_min, dbtc->brp_max, dbtc->brp_inc);
		}
	}

	if (tb[IFLA_CAN_DATA_BITRATE_CONST]) {
		__u32 *dbitrate_const =
			RTA_DATA(tb[IFLA_CAN_DATA_BITRATE_CONST]);
		int dbitrate_cnt =
			RTA_PAYLOAD(tb[IFLA_CAN_DATA_BITRATE_CONST]) /
			sizeof(*dbitrate_const);
		int i;
		__u32 dbitrate = 0;

		if (tb[IFLA_CAN_DATA_BITTIMING]) {
			struct can_bittiming *dbt =
				RTA_DATA(tb[IFLA_CAN_DATA_BITTIMING]);
			dbitrate = dbt->bitrate;
		}

		if (is_json_context()) {
			print_uint(PRINT_JSON, "data_bittiming_bitrate",
				   NULL, dbitrate);
			open_json_array(PRINT_JSON, "data_bitrate_const");
			for (i = 0; i < dbitrate_cnt; ++i)
				print_uint(PRINT_JSON, NULL, NULL,
					   dbitrate_const[i]);
			close_json_array(PRINT_JSON, NULL);
		} else {
			fprintf(f, "\n	  dbitrate %u", dbitrate);
			fprintf(f, "\n	     [");

			for (i = 0; i < dbitrate_cnt - 1; ++i) {
				/* This will keep lines below 80 signs */
				if (!(i % 6) && i)
					fprintf(f, "\n	      ");

				fprintf(f, "%8u, ", dbitrate_const[i]);
			}

			if (!(i % 6) && i)
				fprintf(f, "\n	      ");
			fprintf(f, "%8u ]", dbitrate_const[i]);
		}
	}

	if (tb[IFLA_CAN_TERMINATION_CONST] && tb[IFLA_CAN_TERMINATION]) {
		__u16 *trm = RTA_DATA(tb[IFLA_CAN_TERMINATION]);
		__u16 *trm_const = RTA_DATA(tb[IFLA_CAN_TERMINATION_CONST]);
		int trm_cnt = RTA_PAYLOAD(tb[IFLA_CAN_TERMINATION_CONST]) /
			sizeof(*trm_const);
		int i;

		if (is_json_context()) {
			print_hu(PRINT_JSON, "termination", NULL, *trm);
			open_json_array(PRINT_JSON, "termination_const");
			for (i = 0; i < trm_cnt; ++i)
				print_hu(PRINT_JSON, NULL, NULL, trm_const[i]);
			close_json_array(PRINT_JSON, NULL);
		} else {
			fprintf(f, "\n	  termination %hu [ ", *trm);

			for (i = 0; i < trm_cnt - 1; ++i)
				fprintf(f, "%hu, ", trm_const[i]);

			fprintf(f, "%hu ]", trm_const[i]);
		}
	}

	if (tb[IFLA_CAN_CLOCK]) {
		struct can_clock *clock = RTA_DATA(tb[IFLA_CAN_CLOCK]);

		print_int(PRINT_ANY,
			  "clock",
			  "\n	  clock %d ",
			  clock->freq);
	}

}

static void can_print_xstats(struct link_util *lu,
			     FILE *f, struct rtattr *xstats)
{
	struct can_device_stats *stats;

	if (xstats && RTA_PAYLOAD(xstats) == sizeof(*stats)) {
		stats = RTA_DATA(xstats);

		if (is_json_context()) {
			print_int(PRINT_JSON, "restarts",
				  NULL, stats->restarts);
			print_int(PRINT_JSON, "bus_error",
				  NULL, stats->bus_error);
			print_int(PRINT_JSON, "arbitration_lost",
				  NULL, stats->arbitration_lost);
			print_int(PRINT_JSON, "error_warning",
				  NULL, stats->error_warning);
			print_int(PRINT_JSON, "error_passive",
				  NULL, stats->error_passive);
			print_int(PRINT_JSON, "bus_off", NULL, stats->bus_off);
		} else {
			fprintf(f, "\n	  re-started bus-errors arbit-lost "
				"error-warn error-pass bus-off");
			fprintf(f, "\n	  %-10d %-10d %-10d %-10d %-10d %-10d",
				stats->restarts, stats->bus_error,
				stats->arbitration_lost, stats->error_warning,
				stats->error_passive, stats->bus_off);
		}
	}
}

static void can_print_help(struct link_util *lu, int argc, char **argv,
			   FILE *f)
{
	print_usage(f);
}

struct link_util can_link_util = {
	.id		= "can",
	.maxattr	= IFLA_CAN_MAX,
	.parse_opt	= can_parse_opt,
	.print_opt	= can_print_opt,
	.print_xstats	= can_print_xstats,
	.print_help	= can_print_help,
};