/*
* Copyright (c) 2012 Hewlett-Packard Development Company, L.P.
*
* Based on code from
* Copyright (c) 2003 Sun Microsystems, Inc. All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistribution of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistribution in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* Neither the name of Sun Microsystems, Inc. or the names of
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* This software is provided "AS IS," without a warranty of any kind.
* ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
* INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED.
* SUN MICROSYSTEMS, INC. ("SUN") AND ITS LICENSORS SHALL NOT BE LIABLE
* FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
* OR DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL
* SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA,
* OR FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR
* PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF
* LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE THIS SOFTWARE,
* EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
*/
#define _BSD_SOURCE
#include <string.h>
#include <math.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <time.h>
#include <ipmitool/ipmi.h>
#include <ipmitool/log.h>
#include <ipmitool/ipmi_mc.h>
#include <ipmitool/ipmi_sdr.h>
#include <ipmitool/ipmi_sdradd.h>
#include <ipmitool/ipmi_sensor.h>
#include <ipmitool/ipmi_intf.h>
#include <ipmitool/ipmi_sel.h>
#include <ipmitool/ipmi_entity.h>
#include <ipmitool/ipmi_constants.h>
#include <ipmitool/ipmi_strings.h>
#if HAVE_CONFIG_H
# include <config.h>
#endif
extern int verbose;
static int use_built_in; /* Uses DeviceSDRs instead of SDRR */
static int sdr_max_read_len = 0;
static int sdr_extended = 0;
static long sdriana = 0;
static struct sdr_record_list *sdr_list_head = NULL;
static struct sdr_record_list *sdr_list_tail = NULL;
static struct ipmi_sdr_iterator *sdr_list_itr = NULL;
void printf_sdr_usage();
/* From src/plugins/ipmi_intf.c: */
uint16_t
ipmi_intf_get_max_response_data_size(struct ipmi_intf * intf);
/* ipmi_sdr_get_unit_string - return units for base/modifier
*
* @pct: units are a percentage
* @type: unit type
* @base: base
* @modifier: modifier
*
* returns pointer to static string
*/
const char *
ipmi_sdr_get_unit_string(uint8_t pct, uint8_t type, uint8_t base, uint8_t modifier)
{
static char unitstr[16];
/*
* By default, if units are supposed to be percent, we will pre-pend
* the percent string to the textual representation of the units.
*/
char *pctstr = pct ? "% " : "";
memset(unitstr, 0, sizeof (unitstr));
switch (type) {
case 2:
snprintf(unitstr, sizeof (unitstr), "%s%s * %s",
pctstr, unit_desc[base], unit_desc[modifier]);
break;
case 1:
snprintf(unitstr, sizeof (unitstr), "%s%s/%s",
pctstr, unit_desc[base], unit_desc[modifier]);
break;
case 0:
default:
/*
* Display the text "percent" only when the Base unit is
* "unspecified" and the caller specified to print percent.
*/
if (base == 0 && pct) {
snprintf(unitstr, sizeof(unitstr), "percent");
} else {
snprintf(unitstr, sizeof (unitstr), "%s%s",
pctstr, unit_desc[base]);
}
break;
}
return unitstr;
}
/* sdr_sensor_has_analog_reading - Determine if sensor has an analog reading
*
*/
static int
sdr_sensor_has_analog_reading(struct ipmi_intf *intf,
struct sensor_reading *sr)
{
/* Compact sensors can't return analog values so we false */
if (!sr->full) {
return 0;
}
/*
* Per the IPMI Specification:
* Only Full Threshold sensors are identified as providing
* analog readings.
*
* But... HP didn't interpret this as meaning that "Only Threshold
* Sensors" can provide analog readings. So, HP packed analog
* readings into some of their non-Threshold Sensor. There is
* nothing that explictly prohibits this in the spec, so if
* an Analog reading is available in a Non-Threshod sensor and
* there are units specified for identifying the reading then
* we do an analog conversion even though the sensor is
* non-Threshold. To be safe, we provide this extension for
* HP.
*
*/
if ( UNITS_ARE_DISCRETE(&sr->full->cmn) ) {
return 0;/* Sensor specified as not having Analog Units */
}
if ( !IS_THRESHOLD_SENSOR(&sr->full->cmn) ) {
/* Non-Threshold Sensors are not defined as having analog */
/* But.. We have one with defined with Analog Units */
if ( (sr->full->cmn.unit.pct | sr->full->cmn.unit.modifier |
sr->full->cmn.unit.type.base |
sr->full->cmn.unit.type.modifier)) {
/* And it does have the necessary units specs */
if ( !(intf->manufacturer_id == IPMI_OEM_HP) ) {
/* But to be safe we only do this for HP */
return 0;
}
} else {
return 0;
}
}
/*
* If sensor has linearization, then we should be able to update the
* reading factors and if we cannot fail the conversion.
*/
if (sr->full->linearization >= SDR_SENSOR_L_NONLINEAR &&
sr->full->linearization <= 0x7F) {
if (ipmi_sensor_get_sensor_reading_factors(intf, sr->full, sr->s_reading) < 0){
sr->s_reading_valid = 0;
return 0;
}
}
return 1;
}
/* sdr_convert_sensor_reading - convert raw sensor reading
*
* @sensor: sensor record
* @val: raw sensor reading
*
* returns floating-point sensor reading
*/
double
sdr_convert_sensor_reading(struct sdr_record_full_sensor *sensor, uint8_t val)
{
int m, b, k1, k2;
double result;
m = __TO_M(sensor->mtol);
b = __TO_B(sensor->bacc);
k1 = __TO_B_EXP(sensor->bacc);
k2 = __TO_R_EXP(sensor->bacc);
switch (sensor->cmn.unit.analog) {
case 0:
result = (double) (((m * val) +
(b * pow(10, k1))) * pow(10, k2));
break;
case 1:
if (val & 0x80)
val++;
/* Deliberately fall through to case 2. */
case 2:
result = (double) (((m * (int8_t) val) +
(b * pow(10, k1))) * pow(10, k2));
break;
default:
/* Oops! This isn't an analog sensor. */
return 0.0;
}
switch (sensor->linearization & 0x7f) {
case SDR_SENSOR_L_LN:
result = log(result);
break;
case SDR_SENSOR_L_LOG10:
result = log10(result);
break;
case SDR_SENSOR_L_LOG2:
result = (double) (log(result) / log(2.0));
break;
case SDR_SENSOR_L_E:
result = exp(result);
break;
case SDR_SENSOR_L_EXP10:
result = pow(10.0, result);
break;
case SDR_SENSOR_L_EXP2:
result = pow(2.0, result);
break;
case SDR_SENSOR_L_1_X:
result = pow(result, -1.0); /*1/x w/o exception */
break;
case SDR_SENSOR_L_SQR:
result = pow(result, 2.0);
break;
case SDR_SENSOR_L_CUBE:
result = pow(result, 3.0);
break;
case SDR_SENSOR_L_SQRT:
result = sqrt(result);
break;
case SDR_SENSOR_L_CUBERT:
result = cbrt(result);
break;
case SDR_SENSOR_L_LINEAR:
default:
break;
}
return result;
}
/* sdr_convert_sensor_hysterisis - convert raw sensor hysterisis
*
* Even though spec says histerisis should be computed using Mx+B
* formula, B is irrelevant when doing raw comparison
*
* threshold rearm point is computed using threshold +/- hysterisis
* with the full formula however B can't be applied in raw comparisons
*
* @sensor: sensor record
* @val: raw sensor reading
*
* returns floating-point sensor reading
*/
double
sdr_convert_sensor_hysterisis(struct sdr_record_full_sensor *sensor, uint8_t val)
{
int m, k2;
double result;
m = __TO_M(sensor->mtol);
k2 = __TO_R_EXP(sensor->bacc);
switch (sensor->cmn.unit.analog) {
case 0:
result = (double) (((m * val)) * pow(10, k2));
break;
case 1:
if (val & 0x80)
val++;
/* Deliberately fall through to case 2. */
case 2:
result = (double) (((m * (int8_t) val) ) * pow(10, k2));
break;
default:
/* Oops! This isn't an analog sensor. */
return 0.0;
}
switch (sensor->linearization & 0x7f) {
case SDR_SENSOR_L_LN:
result = log(result);
break;
case SDR_SENSOR_L_LOG10:
result = log10(result);
break;
case SDR_SENSOR_L_LOG2:
result = (double) (log(result) / log(2.0));
break;
case SDR_SENSOR_L_E:
result = exp(result);
break;
case SDR_SENSOR_L_EXP10:
result = pow(10.0, result);
break;
case SDR_SENSOR_L_EXP2:
result = pow(2.0, result);
break;
case SDR_SENSOR_L_1_X:
result = pow(result, -1.0); /*1/x w/o exception */
break;
case SDR_SENSOR_L_SQR:
result = pow(result, 2.0);
break;
case SDR_SENSOR_L_CUBE:
result = pow(result, 3.0);
break;
case SDR_SENSOR_L_SQRT:
result = sqrt(result);
break;
case SDR_SENSOR_L_CUBERT:
result = cbrt(result);
break;
case SDR_SENSOR_L_LINEAR:
default:
break;
}
return result;
}
/* sdr_convert_sensor_tolerance - convert raw sensor reading
*
* @sensor: sensor record
* @val: raw sensor reading
*
* returns floating-point sensor tolerance(interpreted)
*/
double
sdr_convert_sensor_tolerance(struct sdr_record_full_sensor *sensor, uint8_t val)
{
int m, k2;
double result;
m = __TO_M(sensor->mtol);
k2 = __TO_R_EXP(sensor->bacc);
switch (sensor->cmn.unit.analog) {
case 0:
/* as suggested in section 30.4.1 of IPMI 1.5 spec */
result = (double) ((((m * (double)val/2)) ) * pow(10, k2));
break;
case 1:
if (val & 0x80)
val++;
/* Deliberately fall through to case 2. */
case 2:
result = (double) (((m * ((double)((int8_t) val)/2))) * pow(10, k2));
break;
default:
/* Oops! This isn't an analog sensor. */
return 0.0;
}
switch (sensor->linearization & 0x7f) {
case SDR_SENSOR_L_LN:
result = log(result);
break;
case SDR_SENSOR_L_LOG10:
result = log10(result);
break;
case SDR_SENSOR_L_LOG2:
result = (double) (log(result) / log(2.0));
break;
case SDR_SENSOR_L_E:
result = exp(result);
break;
case SDR_SENSOR_L_EXP10:
result = pow(10.0, result);
break;
case SDR_SENSOR_L_EXP2:
result = pow(2.0, result);
break;
case SDR_SENSOR_L_1_X:
result = pow(result, -1.0); /*1/x w/o exception */
break;
case SDR_SENSOR_L_SQR:
result = pow(result, 2.0);
break;
case SDR_SENSOR_L_CUBE:
result = pow(result, 3.0);
break;
case SDR_SENSOR_L_SQRT:
result = sqrt(result);
break;
case SDR_SENSOR_L_CUBERT:
result = cbrt(result);
break;
case SDR_SENSOR_L_LINEAR:
default:
break;
}
return result;
}
/* sdr_convert_sensor_value_to_raw - convert sensor reading back to raw
*
* @sensor: sensor record
* @val: converted sensor reading
*
* returns raw sensor reading
*/
uint8_t
sdr_convert_sensor_value_to_raw(struct sdr_record_full_sensor * sensor,
double val)
{
int m, b, k1, k2;
double result;
/* only works for analog sensors */
if (UNITS_ARE_DISCRETE((&sensor->cmn)))
return 0;
m = __TO_M(sensor->mtol);
b = __TO_B(sensor->bacc);
k1 = __TO_B_EXP(sensor->bacc);
k2 = __TO_R_EXP(sensor->bacc);
/* don't divide by zero */
if (m == 0)
return 0;
result = (((val / pow(10, k2)) - (b * pow(10, k1))) / m);
if ((result - (int) result) >= .5)
return (uint8_t) ceil(result);
else
return (uint8_t) result;
}
/* ipmi_sdr_get_sensor_thresholds - return thresholds for sensor
*
* @intf: ipmi interface
* @sensor: sensor number
* @target: sensor owner ID
* @lun: sensor lun
* @channel: channel number
*
* returns pointer to ipmi response
*/
struct ipmi_rs *
ipmi_sdr_get_sensor_thresholds(struct ipmi_intf *intf, uint8_t sensor,
uint8_t target, uint8_t lun, uint8_t channel)
{
struct ipmi_rq req;
struct ipmi_rs *rsp;
uint8_t bridged_request = 0;
uint32_t save_addr;
uint32_t save_channel;
if ( BRIDGE_TO_SENSOR(intf, target, channel) ) {
bridged_request = 1;
save_addr = intf->target_addr;
intf->target_addr = target;
save_channel = intf->target_channel;
intf->target_channel = channel;
}
memset(&req, 0, sizeof (req));
req.msg.netfn = IPMI_NETFN_SE;
req.msg.lun = lun;
req.msg.cmd = GET_SENSOR_THRESHOLDS;
req.msg.data = &sensor;
req.msg.data_len = sizeof (sensor);
rsp = intf->sendrecv(intf, &req);
if (bridged_request) {
intf->target_addr = save_addr;
intf->target_channel = save_channel;
}
return rsp;
}
/* ipmi_sdr_get_sensor_hysteresis - return hysteresis for sensor
*
* @intf: ipmi interface
* @sensor: sensor number
* @target: sensor owner ID
* @lun: sensor lun
* @channel: channel number
*
* returns pointer to ipmi response
*/
struct ipmi_rs *
ipmi_sdr_get_sensor_hysteresis(struct ipmi_intf *intf, uint8_t sensor,
uint8_t target, uint8_t lun, uint8_t channel)
{
struct ipmi_rq req;
uint8_t rqdata[2];
struct ipmi_rs *rsp;
uint8_t bridged_request = 0;
uint32_t save_addr;
uint32_t save_channel;
if ( BRIDGE_TO_SENSOR(intf, target, channel) ) {
bridged_request = 1;
save_addr = intf->target_addr;
intf->target_addr = target;
save_channel = intf->target_channel;
intf->target_channel = channel;
}
rqdata[0] = sensor;
rqdata[1] = 0xff; /* reserved */
memset(&req, 0, sizeof (req));
req.msg.netfn = IPMI_NETFN_SE;
req.msg.lun = lun;
req.msg.cmd = GET_SENSOR_HYSTERESIS;
req.msg.data = rqdata;
req.msg.data_len = 2;
rsp = intf->sendrecv(intf, &req);
if (bridged_request) {
intf->target_addr = save_addr;
intf->target_channel = save_channel;
}
return rsp;
}
/* ipmi_sdr_get_sensor_reading - retrieve a raw sensor reading
*
* @intf: ipmi interface
* @sensor: sensor id
*
* returns ipmi response structure
*/
struct ipmi_rs *
ipmi_sdr_get_sensor_reading(struct ipmi_intf *intf, uint8_t sensor)
{
struct ipmi_rq req;
memset(&req, 0, sizeof (req));
req.msg.netfn = IPMI_NETFN_SE;
req.msg.cmd = GET_SENSOR_READING;
req.msg.data = &sensor;
req.msg.data_len = 1;
return intf->sendrecv(intf, &req);
}
/* ipmi_sdr_get_sensor_reading_ipmb - retrieve a raw sensor reading from ipmb
*
* @intf: ipmi interface
* @sensor: sensor id
* @target: IPMB target address
* @lun: sensor lun
* @channel: channel number
*
* returns ipmi response structure
*/
struct ipmi_rs *
ipmi_sdr_get_sensor_reading_ipmb(struct ipmi_intf *intf, uint8_t sensor,
uint8_t target, uint8_t lun, uint8_t channel)
{
struct ipmi_rq req;
struct ipmi_rs *rsp;
uint8_t bridged_request = 0;
uint32_t save_addr;
uint32_t save_channel;
if ( BRIDGE_TO_SENSOR(intf, target, channel) ) {
lprintf(LOG_DEBUG,
"Bridge to Sensor "
"Intf my/%#x tgt/%#x:%#x Sdr tgt/%#x:%#x\n",
intf->my_addr, intf->target_addr, intf->target_channel,
target, channel);
bridged_request = 1;
save_addr = intf->target_addr;
intf->target_addr = target;
save_channel = intf->target_channel;
intf->target_channel = channel;
}
memset(&req, 0, sizeof (req));
req.msg.netfn = IPMI_NETFN_SE;
req.msg.lun = lun;
req.msg.cmd = GET_SENSOR_READING;
req.msg.data = &sensor;
req.msg.data_len = 1;
rsp = intf->sendrecv(intf, &req);
if (bridged_request) {
intf->target_addr = save_addr;
intf->target_channel = save_channel;
}
return rsp;
}
/* ipmi_sdr_get_sensor_event_status - retrieve sensor event status
*
* @intf: ipmi interface
* @sensor: sensor id
* @target: sensor owner ID
* @lun: sensor lun
* @channel: channel number
*
* returns ipmi response structure
*/
struct ipmi_rs *
ipmi_sdr_get_sensor_event_status(struct ipmi_intf *intf, uint8_t sensor,
uint8_t target, uint8_t lun, uint8_t channel)
{
struct ipmi_rq req;
struct ipmi_rs *rsp;
uint8_t bridged_request = 0;
uint32_t save_addr;
uint32_t save_channel;
if ( BRIDGE_TO_SENSOR(intf, target, channel) ) {
bridged_request = 1;
save_addr = intf->target_addr;
intf->target_addr = target;
save_channel = intf->target_channel;
intf->target_channel = channel;
}
memset(&req, 0, sizeof (req));
req.msg.netfn = IPMI_NETFN_SE;
req.msg.lun = lun;
req.msg.cmd = GET_SENSOR_EVENT_STATUS;
req.msg.data = &sensor;
req.msg.data_len = 1;
rsp = intf->sendrecv(intf, &req);
if (bridged_request) {
intf->target_addr = save_addr;
intf->target_channel = save_channel;
}
return rsp;
}
/* ipmi_sdr_get_sensor_event_enable - retrieve sensor event enables
*
* @intf: ipmi interface
* @sensor: sensor id
* @target: sensor owner ID
* @lun: sensor lun
* @channel: channel number
*
* returns ipmi response structure
*/
struct ipmi_rs *
ipmi_sdr_get_sensor_event_enable(struct ipmi_intf *intf, uint8_t sensor,
uint8_t target, uint8_t lun, uint8_t channel)
{
struct ipmi_rq req;
struct ipmi_rs *rsp;
uint8_t bridged_request = 0;
uint32_t save_addr;
uint32_t save_channel;
if ( BRIDGE_TO_SENSOR(intf, target, channel) ) {
bridged_request = 1;
save_addr = intf->target_addr;
intf->target_addr = target;
save_channel = intf->target_channel;
intf->target_channel = channel;
}
memset(&req, 0, sizeof (req));
req.msg.netfn = IPMI_NETFN_SE;
req.msg.lun = lun;
req.msg.cmd = GET_SENSOR_EVENT_ENABLE;
req.msg.data = &sensor;
req.msg.data_len = 1;
rsp = intf->sendrecv(intf, &req);
if (bridged_request) {
intf->target_addr = save_addr;
intf->target_channel = save_channel;
}
return rsp;
}
/* ipmi_sdr_get_thresh_status - threshold status indicator
*
* @rsp: response from Get Sensor Reading comand
* @validread: validity of the status field argument
* @invalidstr: string to return if status field is not valid
*
* returns
* cr = critical
* nc = non-critical
* nr = non-recoverable
* ok = ok
* ns = not specified
*/
const char *
ipmi_sdr_get_thresh_status(struct sensor_reading *sr, const char *invalidstr)
{
uint8_t stat;
if (!sr->s_reading_valid) {
return invalidstr;
}
stat = sr->s_data2;
if (stat & SDR_SENSOR_STAT_LO_NR) {
if (verbose)
return "Lower Non-Recoverable";
else if (sdr_extended)
return "lnr";
else
return "nr";
} else if (stat & SDR_SENSOR_STAT_HI_NR) {
if (verbose)
return "Upper Non-Recoverable";
else if (sdr_extended)
return "unr";
else
return "nr";
} else if (stat & SDR_SENSOR_STAT_LO_CR) {
if (verbose)
return "Lower Critical";
else if (sdr_extended)
return "lcr";
else
return "cr";
} else if (stat & SDR_SENSOR_STAT_HI_CR) {
if (verbose)
return "Upper Critical";
else if (sdr_extended)
return "ucr";
else
return "cr";
} else if (stat & SDR_SENSOR_STAT_LO_NC) {
if (verbose)
return "Lower Non-Critical";
else if (sdr_extended)
return "lnc";
else
return "nc";
} else if (stat & SDR_SENSOR_STAT_HI_NC) {
if (verbose)
return "Upper Non-Critical";
else if (sdr_extended)
return "unc";
else
return "nc";
}
return "ok";
}
/* ipmi_sdr_get_header - retreive SDR record header
*
* @intf: ipmi interface
* @itr: sdr iterator
*
* returns pointer to static sensor retrieval struct
* returns NULL on error
*/
static struct sdr_get_rs *
ipmi_sdr_get_header(struct ipmi_intf *intf, struct ipmi_sdr_iterator *itr)
{
struct ipmi_rq req;
struct ipmi_rs *rsp;
struct sdr_get_rq sdr_rq;
static struct sdr_get_rs sdr_rs;
int try = 0;
memset(&sdr_rq, 0, sizeof (sdr_rq));
sdr_rq.reserve_id = itr->reservation;
sdr_rq.id = itr->next;
sdr_rq.offset = 0;
sdr_rq.length = 5; /* only get the header */
memset(&req, 0, sizeof (req));
if (itr->use_built_in == 0) {
req.msg.netfn = IPMI_NETFN_STORAGE;
req.msg.cmd = GET_SDR;
} else {
req.msg.netfn = IPMI_NETFN_SE;
req.msg.cmd = GET_DEVICE_SDR;
}
req.msg.data = (uint8_t *) & sdr_rq;
req.msg.data_len = sizeof (sdr_rq);
for (try = 0; try < 5; try++) {
sdr_rq.reserve_id = itr->reservation;
rsp = intf->sendrecv(intf, &req);
if (rsp == NULL) {
lprintf(LOG_ERR, "Get SDR %04x command failed",
itr->next);
continue;
} else if (rsp->ccode == 0xc5) {
/* lost reservation */
lprintf(LOG_DEBUG, "SDR reservation %04x cancelled. "
"Sleeping a bit and retrying...",
itr->reservation);
sleep(rand() & 3);
if (ipmi_sdr_get_reservation(intf, itr->use_built_in,
&(itr->reservation)) < 0) {
lprintf(LOG_ERR,
"Unable to renew SDR reservation");
return NULL;
}
} else if (rsp->ccode > 0) {
lprintf(LOG_ERR, "Get SDR %04x command failed: %s",
itr->next, val2str(rsp->ccode,
completion_code_vals));
continue;
} else {
break;
}
}
if (try == 5)
return NULL;
if (!rsp)
return NULL;
lprintf(LOG_DEBUG, "SDR record ID : 0x%04x", itr->next);
memcpy(&sdr_rs, rsp->data, sizeof (sdr_rs));
if (sdr_rs.length == 0) {
lprintf(LOG_ERR, "SDR record id 0x%04x: invalid length %d",
itr->next, sdr_rs.length);
return NULL;
}
/* achu (chu11 at llnl dot gov): - Some boards are stupid and
* return a record id from the Get SDR Record command
* different than the record id passed in. If we find this
* situation, we cheat and put the original record id back in.
* Otherwise, a later Get SDR Record command will fail with
* completion code CBh = "Requested Sensor, data, or record
* not present". Exception is if 'Record ID' is specified as 0000h.
* For further information see IPMI v2.0 Spec, Section 33.12
*/
if ((itr->next != 0x0000) &&
(sdr_rs.id != itr->next)) {
lprintf(LOG_DEBUG, "SDR record id mismatch: 0x%04x", sdr_rs.id);
sdr_rs.id = itr->next;
}
lprintf(LOG_DEBUG, "SDR record type : 0x%02x", sdr_rs.type);
lprintf(LOG_DEBUG, "SDR record next : 0x%04x", sdr_rs.next);
lprintf(LOG_DEBUG, "SDR record bytes: %d", sdr_rs.length);
return &sdr_rs;
}
/* ipmi_sdr_get_next_header - retreive next SDR header
*
* @intf: ipmi interface
* @itr: sdr iterator
*
* returns pointer to sensor retrieval struct
* returns NULL on error
*/
struct sdr_get_rs *
ipmi_sdr_get_next_header(struct ipmi_intf *intf, struct ipmi_sdr_iterator *itr)
{
struct sdr_get_rs *header;
if (itr->next == 0xffff)
return NULL;
header = ipmi_sdr_get_header(intf, itr);
if (header == NULL)
return NULL;
itr->next = header->next;
return header;
}
/*
* This macro is used to print nominal, normal and threshold settings,
* but it is not compatible with PRINT_NORMAL/PRINT_THRESH since it does
* not have the sensor.init.thresholds setting qualifier as is done in
* PRINT_THRESH. This means CSV output can be different than non CSV
* output if sensor.init.thresholds is ever zero
*/
/* helper macro for printing CSV output for Full SDR Threshold reading */
#define SENSOR_PRINT_CSV(FULLSENS, FLAG, READ) \
if ((FLAG)) { \
if (UNITS_ARE_DISCRETE((&FULLSENS->cmn))) \
printf("0x%02X,", READ); \
else \
printf("%.3f,", sdr_convert_sensor_reading( \
(FULLSENS), READ)); \
} else { \
printf(","); \
}
/* helper macro for printing analog values for Full SDR Threshold readings */
#define SENSOR_PRINT_NORMAL(FULLSENS, NAME, READ) \
if ((FULLSENS)->analog_flag.READ != 0) { \
printf(" %-21s : ", NAME); \
if (UNITS_ARE_DISCRETE((&FULLSENS->cmn))) \
printf("0x%02X\n", \
(FULLSENS)->READ); \
else \
printf("%.3f\n", sdr_convert_sensor_reading( \
(FULLSENS), (FULLSENS)->READ));\
}
/* helper macro for printing Full SDR sensor Thresholds */
#define SENSOR_PRINT_THRESH(FULLSENS, NAME, READ, FLAG) \
if ((FULLSENS)->cmn.sensor.init.thresholds && \
(FULLSENS)->cmn.mask.type.threshold.read.FLAG != 0) { \
printf(" %-21s : ", NAME); \
if (UNITS_ARE_DISCRETE((&FULLSENS->cmn))) \
printf("0x%02X\n", \
(FULLSENS)->threshold.READ); \
else \
printf("%.3f\n", sdr_convert_sensor_reading( \
(FULLSENS), (FULLSENS)->threshold.READ)); \
}
int
ipmi_sdr_print_sensor_event_status(struct ipmi_intf *intf,
uint8_t sensor_num,
uint8_t sensor_type,
uint8_t event_type, int numeric_fmt,
uint8_t target, uint8_t lun, uint8_t channel)
{
struct ipmi_rs *rsp;
int i;
const struct valstr assert_cond_1[] = {
{0x80, "unc+"},
{0x40, "unc-"},
{0x20, "lnr+"},
{0x10, "lnr-"},
{0x08, "lcr+"},
{0x04, "lcr-"},
{0x02, "lnc+"},
{0x01, "lnc-"},
{0x00, NULL},
};
const struct valstr assert_cond_2[] = {
{0x08, "unr+"},
{0x04, "unr-"},
{0x02, "ucr+"},
{0x01, "ucr-"},
{0x00, NULL},
};
rsp = ipmi_sdr_get_sensor_event_status(intf, sensor_num,
target, lun, channel);
if (rsp == NULL) {
lprintf(LOG_DEBUG,
"Error reading event status for sensor #%02x",
sensor_num);
return -1;
}
if (rsp->ccode > 0) {
lprintf(LOG_DEBUG,
"Error reading event status for sensor #%02x: %s",
sensor_num, val2str(rsp->ccode, completion_code_vals));
return -1;
}
/* There is an assumption here that data_len >= 1 */
if (IS_READING_UNAVAILABLE(rsp->data[0])) {
printf(" Event Status : Unavailable\n");
return 0;
}
if (IS_SCANNING_DISABLED(rsp->data[0])) {
//printf(" Event Status : Scanning Disabled\n");
//return 0;
}
if (IS_EVENT_MSG_DISABLED(rsp->data[0])) {
printf(" Event Status : Event Messages Disabled\n");
//return 0;
}
switch (numeric_fmt) {
case DISCRETE_SENSOR:
if (rsp->data_len == 2) {
ipmi_sdr_print_discrete_state(intf, "Assertion Events",
sensor_type, event_type,
rsp->data[1], 0);
} else if (rsp->data_len > 2) {
ipmi_sdr_print_discrete_state(intf, "Assertion Events",
sensor_type, event_type,
rsp->data[1],
rsp->data[2]);
}
if (rsp->data_len == 4) {
ipmi_sdr_print_discrete_state(intf, "Deassertion Events",
sensor_type, event_type,
rsp->data[3], 0);
} else if (rsp->data_len > 4) {
ipmi_sdr_print_discrete_state(intf, "Deassertion Events",
sensor_type, event_type,
rsp->data[3],
rsp->data[4]);
}
break;
case ANALOG_SENSOR:
printf(" Assertion Events : ");
for (i = 0; i < 8; i++) {
if (rsp->data[1] & (1 << i))
printf("%s ", val2str(1 << i, assert_cond_1));
}
if (rsp->data_len > 2) {
for (i = 0; i < 4; i++) {
if (rsp->data[2] & (1 << i))
printf("%s ",
val2str(1 << i, assert_cond_2));
}
printf("\n");
if ((rsp->data_len == 4 && rsp->data[3] != 0) ||
(rsp->data_len > 4
&& (rsp->data[3] != 0 && rsp->data[4] != 0))) {
printf(" Deassertion Events : ");
for (i = 0; i < 8; i++) {
if (rsp->data[3] & (1 << i))
printf("%s ",
val2str(1 << i,
assert_cond_1));
}
if (rsp->data_len > 4) {
for (i = 0; i < 4; i++) {
if (rsp->data[4] & (1 << i))
printf("%s ",
val2str(1 << i,
assert_cond_2));
}
}
printf("\n");
}
} else {
printf("\n");
}
break;
default:
break;
}
return 0;
}
static int
ipmi_sdr_print_sensor_mask(struct ipmi_intf *intf,
struct sdr_record_mask *mask,
uint8_t sensor_type,
uint8_t event_type, int numeric_fmt)
{
/* iceblink - don't print some event status fields - CVS rev1.53 */
return 0;
switch (numeric_fmt) {
case DISCRETE_SENSOR:
ipmi_sdr_print_discrete_state(intf, "Assert Event Mask", sensor_type,
event_type,
mask->type.discrete.
assert_event & 0xff,
(mask->type.discrete.
assert_event & 0xff00) >> 8);
ipmi_sdr_print_discrete_state(intf, "Deassert Event Mask",
sensor_type, event_type,
mask->type.discrete.
deassert_event & 0xff,
(mask->type.discrete.
deassert_event & 0xff00) >> 8);
break;
case ANALOG_SENSOR:
printf(" Assert Event Mask : ");
if (mask->type.threshold.assert_lnr_high)
printf("lnr+ ");
if (mask->type.threshold.assert_lnr_low)
printf("lnr- ");
if (mask->type.threshold.assert_lcr_high)
printf("lcr+ ");
if (mask->type.threshold.assert_lcr_low)
printf("lcr- ");
if (mask->type.threshold.assert_lnc_high)
printf("lnc+ ");
if (mask->type.threshold.assert_lnc_low)
printf("lnc- ");
if (mask->type.threshold.assert_unc_high)
printf("unc+ ");
if (mask->type.threshold.assert_unc_low)
printf("unc- ");
if (mask->type.threshold.assert_ucr_high)
printf("ucr+ ");
if (mask->type.threshold.assert_ucr_low)
printf("ucr- ");
if (mask->type.threshold.assert_unr_high)
printf("unr+ ");
if (mask->type.threshold.assert_unr_low)
printf("unr- ");
printf("\n");
printf(" Deassert Event Mask : ");
if (mask->type.threshold.deassert_lnr_high)
printf("lnr+ ");
if (mask->type.threshold.deassert_lnr_low)
printf("lnr- ");
if (mask->type.threshold.deassert_lcr_high)
printf("lcr+ ");
if (mask->type.threshold.deassert_lcr_low)
printf("lcr- ");
if (mask->type.threshold.deassert_lnc_high)
printf("lnc+ ");
if (mask->type.threshold.deassert_lnc_low)
printf("lnc- ");
if (mask->type.threshold.deassert_unc_high)
printf("unc+ ");
if (mask->type.threshold.deassert_unc_low)
printf("unc- ");
if (mask->type.threshold.deassert_ucr_high)
printf("ucr+ ");
if (mask->type.threshold.deassert_ucr_low)
printf("ucr- ");
if (mask->type.threshold.deassert_unr_high)
printf("unr+ ");
if (mask->type.threshold.deassert_unr_low)
printf("unr- ");
printf("\n");
break;
default:
break;
}
return 0;
}
int
ipmi_sdr_print_sensor_event_enable(struct ipmi_intf *intf,
uint8_t sensor_num,
uint8_t sensor_type,
uint8_t event_type, int numeric_fmt,
uint8_t target, uint8_t lun, uint8_t channel)
{
struct ipmi_rs *rsp;
int i;
const struct valstr assert_cond_1[] = {
{0x80, "unc+"},
{0x40, "unc-"},
{0x20, "lnr+"},
{0x10, "lnr-"},
{0x08, "lcr+"},
{0x04, "lcr-"},
{0x02, "lnc+"},
{0x01, "lnc-"},
{0x00, NULL},
};
const struct valstr assert_cond_2[] = {
{0x08, "unr+"},
{0x04, "unr-"},
{0x02, "ucr+"},
{0x01, "ucr-"},
{0x00, NULL},
};
rsp = ipmi_sdr_get_sensor_event_enable(intf, sensor_num,
target, lun, channel);
if (rsp == NULL) {
lprintf(LOG_DEBUG,
"Error reading event enable for sensor #%02x",
sensor_num);
return -1;
}
if (rsp->ccode > 0) {
lprintf(LOG_DEBUG,
"Error reading event enable for sensor #%02x: %s",
sensor_num, val2str(rsp->ccode, completion_code_vals));
return -1;
}
if (IS_SCANNING_DISABLED(rsp->data[0])) {
//printf(" Event Enable : Scanning Disabled\n");
//return 0;
}
if (IS_EVENT_MSG_DISABLED(rsp->data[0])) {
printf(" Event Enable : Event Messages Disabled\n");
//return 0;
}
switch (numeric_fmt) {
case DISCRETE_SENSOR:
/* discrete */
if (rsp->data_len == 2) {
ipmi_sdr_print_discrete_state(intf, "Assertions Enabled",
sensor_type, event_type,
rsp->data[1], 0);
} else if (rsp->data_len > 2) {
ipmi_sdr_print_discrete_state(intf, "Assertions Enabled",
sensor_type, event_type,
rsp->data[1],
rsp->data[2]);
}
if (rsp->data_len == 4) {
ipmi_sdr_print_discrete_state(intf, "Deassertions Enabled",
sensor_type, event_type,
rsp->data[3], 0);
} else if (rsp->data_len > 4) {
ipmi_sdr_print_discrete_state(intf, "Deassertions Enabled",
sensor_type, event_type,
rsp->data[3],
rsp->data[4]);
}
break;
case ANALOG_SENSOR:
/* analog */
printf(" Assertions Enabled : ");
for (i = 0; i < 8; i++) {
if (rsp->data[1] & (1 << i))
printf("%s ", val2str(1 << i, assert_cond_1));
}
if (rsp->data_len > 2) {
for (i = 0; i < 4; i++) {
if (rsp->data[2] & (1 << i))
printf("%s ",
val2str(1 << i, assert_cond_2));
}
printf("\n");
if ((rsp->data_len == 4 && rsp->data[3] != 0) ||
(rsp->data_len > 4
&& (rsp->data[3] != 0 || rsp->data[4] != 0))) {
printf(" Deassertions Enabled : ");
for (i = 0; i < 8; i++) {
if (rsp->data[3] & (1 << i))
printf("%s ",
val2str(1 << i,
assert_cond_1));
}
if (rsp->data_len > 4) {
for (i = 0; i < 4; i++) {
if (rsp->data[4] & (1 << i))
printf("%s ",
val2str(1 << i,
assert_cond_2));
}
}
printf("\n");
}
} else {
printf("\n");
}
break;
default:
break;
}
return 0;
}
/* ipmi_sdr_print_sensor_hysteresis - print hysteresis for Discrete & Analog
*
* @sensor: Common Sensor Record SDR pointer
* @full: Full Sensor Record SDR pointer (if applicable)
* @hysteresis_value: Actual hysteresis value
* @hvstr: hysteresis value Identifier String
*
* returns void
*/
void
ipmi_sdr_print_sensor_hysteresis(struct sdr_record_common_sensor *sensor,
struct sdr_record_full_sensor *full,
uint8_t hysteresis_value,
const char *hvstr)
{
/*
* compact can have pos/neg hysteresis, but they cannot be analog!
* We use not full in addition to our discrete units check just in
* case a compact sensor is incorrectly identified as analog.
*/
if (!full || UNITS_ARE_DISCRETE(sensor)) {
if ( hysteresis_value == 0x00 || hysteresis_value == 0xff ) {
printf(" %s : Unspecified\n", hvstr);
} else {
printf(" %s : 0x%02X\n", hvstr, hysteresis_value);
}
return;
}
/* A Full analog sensor */
double creading = sdr_convert_sensor_hysterisis(full, hysteresis_value);
if ( hysteresis_value == 0x00 || hysteresis_value == 0xff ||
creading == 0.0 ) {
printf(" %s : Unspecified\n", hvstr);
} else {
printf(" %s : %.3f\n", hvstr, creading);
}
}
/* print_sensor_min_max - print Discrete & Analog Minimum/Maximum Sensor Range
*
* @full: Full Sensor Record SDR pointer
*
* returns void
*/
static void
print_sensor_min_max(struct sdr_record_full_sensor *full)
{
if (!full) { /* No min/max for compact SDR record */
return;
}
double creading = 0.0;
uint8_t is_analog = !UNITS_ARE_DISCRETE(&full->cmn);
if (is_analog)
creading = sdr_convert_sensor_reading(full, full->sensor_min);
if ((full->cmn.unit.analog == 0 && full->sensor_min == 0x00) ||
(full->cmn.unit.analog == 1 && full->sensor_min == 0xff) ||
(full->cmn.unit.analog == 2 && full->sensor_min == 0x80) ||
(is_analog && (creading == 0.0)))
printf(" Minimum sensor range : Unspecified\n");
else {
if (is_analog)
printf(" Minimum sensor range : %.3f\n", creading);
else
printf(" Minimum sensor range : 0x%02X\n", full->sensor_min);
}
if (is_analog)
creading = sdr_convert_sensor_reading(full, full->sensor_max);
if ((full->cmn.unit.analog == 0 && full->sensor_max == 0xff) ||
(full->cmn.unit.analog == 1 && full->sensor_max == 0x00) ||
(full->cmn.unit.analog == 2 && full->sensor_max == 0x7f) ||
(is_analog && (creading == 0.0)))
printf(" Maximum sensor range : Unspecified\n");
else {
if (is_analog)
printf(" Maximum sensor range : %.3f\n", creading);
else
printf(" Maximum sensor range : 0x%02X\n", full->sensor_max);
}
}
/* print_csv_discrete - print csv formatted discrete sensor
*
* @sensor: common sensor structure
* @sr: sensor reading
*
* returns void
*/
static void
print_csv_discrete(struct ipmi_intf *intf,
struct sdr_record_common_sensor *sensor,
const struct sensor_reading *sr)
{
if (!sr->s_reading_valid || sr->s_reading_unavailable) {
printf("%02Xh,ns,%d.%d,No Reading",
sensor->keys.sensor_num,
sensor->entity.id,
sensor->entity.instance);
return;
}
if (sr->s_has_analog_value) { /* Sensor has an analog value */
printf("%s,%s,", sr->s_a_str, sr->s_a_units);
} else { /* Sensor has a discrete value */
printf("%02Xh,", sensor->keys.sensor_num);
}
printf("ok,%d.%d,",
sensor->entity.id,
sensor->entity.instance);
ipmi_sdr_print_discrete_state_mini(intf, NULL, ", ",
sensor->sensor.type,
sensor->event_type,
sr->s_data2,
sr->s_data3);
}
/* ipmi_sdr_read_sensor_value - read sensor value
*
* @intf Interface pointer
* @sensor Common sensor component pointer
* @sdr_record_type Type of sdr sensor record
* @precision decimal precision for analog format conversion
*
* returns a pointer to sensor value reading data structure
*/
struct sensor_reading *
ipmi_sdr_read_sensor_value(struct ipmi_intf *intf,
struct sdr_record_common_sensor *sensor,
uint8_t sdr_record_type, int precision)
{
static struct sensor_reading sr;
if (sensor == NULL)
return NULL;
/* Initialize to reading valid value of zero */
memset(&sr, 0, sizeof(sr));
switch (sdr_record_type) {
unsigned int idlen;
case (SDR_RECORD_TYPE_FULL_SENSOR):
sr.full = (struct sdr_record_full_sensor *)sensor;
idlen = sr.full->id_code & 0x1f;
idlen = idlen < sizeof(sr.s_id) ?
idlen : sizeof(sr.s_id) - 1;
memcpy(sr.s_id, sr.full->id_string, idlen);
break;
case SDR_RECORD_TYPE_COMPACT_SENSOR:
sr.compact = (struct sdr_record_compact_sensor *)sensor;
idlen = sr.compact->id_code & 0x1f;
idlen = idlen < sizeof(sr.s_id) ?
idlen : sizeof(sr.s_id) - 1;
memcpy(sr.s_id, sr.compact->id_string, idlen);
break;
default:
return NULL;
}
/*
* Get current reading via IPMI interface
*/
struct ipmi_rs *rsp;
rsp = ipmi_sdr_get_sensor_reading_ipmb(intf,
sensor->keys.sensor_num,
sensor->keys.owner_id,
sensor->keys.lun,
sensor->keys.channel);
sr.s_a_val = 0.0; /* init analog value to a floating point 0 */
sr.s_a_str[0] = '\0'; /* no converted analog value string */
sr.s_a_units = ""; /* no converted analog units units */
if (rsp == NULL) {
lprintf(LOG_DEBUG, "Error reading sensor %s (#%02x)",
sr.s_id, sensor->keys.sensor_num);
return &sr;
}
if (rsp->ccode) {
if ( !((sr.full && rsp->ccode == 0xcb) ||
(sr.compact && rsp->ccode == 0xcd)) ) {
lprintf(LOG_DEBUG,
"Error reading sensor %s (#%02x): %s", sr.s_id,
sensor->keys.sensor_num,
val2str(rsp->ccode, completion_code_vals));
}
return &sr;
}
if (rsp->data_len < 2) {
/*
* We must be returned both a value (data[0]), and the validity
* of the value (data[1]), in order to correctly interpret
* the reading. If we don't have both of these we can't have
* a valid sensor reading.
*/
lprintf(LOG_DEBUG, "Error reading sensor %s invalid len %d",
sr.s_id, rsp->data_len);
return &sr;
}
if (IS_READING_UNAVAILABLE(rsp->data[1]))
sr.s_reading_unavailable = 1;
if (IS_SCANNING_DISABLED(rsp->data[1])) {
sr.s_scanning_disabled = 1;
lprintf(LOG_DEBUG, "Sensor %s (#%02x) scanning disabled",
sr.s_id, sensor->keys.sensor_num);
return &sr;
}
if ( !sr.s_reading_unavailable ) {
sr.s_reading_valid = 1;
sr.s_reading = rsp->data[0];
}
if (rsp->data_len > 2)
sr.s_data2 = rsp->data[2];
if (rsp->data_len > 3)
sr.s_data3 = rsp->data[3];
if (sdr_sensor_has_analog_reading(intf, &sr)) {
sr.s_has_analog_value = 1;
if (sr.s_reading_valid) {
sr.s_a_val = sdr_convert_sensor_reading(sr.full, sr.s_reading);
}
/* determine units string with possible modifiers */
sr.s_a_units = ipmi_sdr_get_unit_string(sr.full->cmn.unit.pct,
sr.full->cmn.unit.modifier,
sr.full->cmn.unit.type.base,
sr.full->cmn.unit.type.modifier);
snprintf(sr.s_a_str, sizeof(sr.s_a_str), "%.*f",
(sr.s_a_val == (int) sr.s_a_val) ? 0 :
precision, sr.s_a_val);
}
return &sr;
}
/* ipmi_sdr_print_sensor_fc - print full & compact SDR records
*
* @intf: ipmi interface
* @sensor: common sensor structure
* @sdr_record_type: type of sdr record, either full or compact
*
* returns 0 on success
* returns -1 on error
*/
int
ipmi_sdr_print_sensor_fc(struct ipmi_intf *intf,
struct sdr_record_common_sensor *sensor,
uint8_t sdr_record_type)
{
char sval[16];
unsigned int i = 0;
uint8_t target, lun, channel;
struct sensor_reading *sr;
sr = ipmi_sdr_read_sensor_value(intf, sensor, sdr_record_type, 2);
if (sr == NULL)
return -1;
target = sensor->keys.owner_id;
lun = sensor->keys.lun;
channel = sensor->keys.channel;
/*
* CSV OUTPUT
*/
if (csv_output) {
/*
* print sensor name, reading, unit, state
*/
printf("%s,", sr->s_id);
if (!IS_THRESHOLD_SENSOR(sensor)) {
/* Discrete/Non-Threshold */
print_csv_discrete(intf, sensor, sr);
printf("\n");
}
else {
/* Threshold Analog & Discrete*/
if (sr->s_reading_valid) {
if (sr->s_has_analog_value) {
/* Analog/Threshold */
printf("%.*f,", (sr->s_a_val ==
(int) sr->s_a_val) ? 0 : 3,
sr->s_a_val);
printf("%s,%s", sr->s_a_units,
ipmi_sdr_get_thresh_status(sr, "ns"));
} else { /* Discrete/Threshold */
print_csv_discrete(intf, sensor, sr);
}
} else {
printf(",,ns");
}
if (verbose) {
printf(",%d.%d,%s,%s,",
sensor->entity.id, sensor->entity.instance,
val2str(sensor->entity.id, entity_id_vals),
ipmi_get_sensor_type(intf, sensor->sensor.type));
if (sr->full) {
SENSOR_PRINT_CSV(sr->full, sr->full->analog_flag.nominal_read,
sr->full->nominal_read);
SENSOR_PRINT_CSV(sr->full, sr->full->analog_flag.normal_min,
sr->full->normal_min);
SENSOR_PRINT_CSV(sr->full, sr->full->analog_flag.normal_max,
sr->full->normal_max);
SENSOR_PRINT_CSV(sr->full, sensor->mask.type.threshold.read.unr,
sr->full->threshold.upper.non_recover);
SENSOR_PRINT_CSV(sr->full, sensor->mask.type.threshold.read.ucr,
sr->full->threshold.upper.critical);
SENSOR_PRINT_CSV(sr->full, sensor->mask.type.threshold.read.unc,
sr->full->threshold.upper.non_critical);
SENSOR_PRINT_CSV(sr->full, sensor->mask.type.threshold.read.lnr,
sr->full->threshold.lower.non_recover);
SENSOR_PRINT_CSV(sr->full, sensor->mask.type.threshold.read.lcr,
sr->full->threshold.lower.critical);
SENSOR_PRINT_CSV(sr->full, sensor->mask.type.threshold.read.lnc,
sr->full->threshold.lower.non_critical);
if (UNITS_ARE_DISCRETE(sensor)) {
printf("0x%02X,0x%02X", sr->full->sensor_min, sr->full->sensor_max);
}
else {
printf("%.3f,%.3f",
sdr_convert_sensor_reading(sr->full,
sr->full->sensor_min),
sdr_convert_sensor_reading(sr->full,
sr->full->sensor_max));
}
} else {
printf(",,,,,,,,,,");
}
}
printf("\n");
}
return 0; /* done */
}
/*
* NORMAL OUTPUT
*/
if (verbose == 0 && sdr_extended == 0) {
/*
* print sensor name, reading, state
*/
printf("%-16s | ", sr->s_id);
memset(sval, 0, sizeof (sval));
if (sr->s_reading_valid) {
if( sr->s_has_analog_value ) {
snprintf(sval, sizeof (sval), "%s %s",
sr->s_a_str,
sr->s_a_units);
} else /* Discrete */
snprintf(sval, sizeof(sval),
"0x%02x", sr->s_reading);
}
else if (sr->s_scanning_disabled)
snprintf(sval, sizeof (sval), sr->full ? "disabled" : "Not Readable");
else
snprintf(sval, sizeof (sval), sr->full ? "no reading" : "Not Readable");
printf("%s", sval);
for (i = strlen(sval); i <= sizeof (sval); i++)
printf(" ");
printf(" | ");
if (IS_THRESHOLD_SENSOR(sensor)) {
printf("%s", ipmi_sdr_get_thresh_status(sr, "ns"));
}
else {
printf("%s", sr->s_reading_valid ? "ok" : "ns");
}
printf("\n");
return 0; /* done */
} else if (verbose == 0 && sdr_extended == 1) {
/*
* print sensor name, number, state, entity, reading
*/
printf("%-16s | %02Xh | ",
sr->s_id, sensor->keys.sensor_num);
if (IS_THRESHOLD_SENSOR(sensor)) {
/* Threshold Analog & Discrete */
printf("%-3s | %2d.%1d | ",
ipmi_sdr_get_thresh_status(sr, "ns"),
sensor->entity.id, sensor->entity.instance);
}
else {
/* Non Threshold Analog & Discrete */
printf("%-3s | %2d.%1d | ",
(sr->s_reading_valid ? "ok" : "ns"),
sensor->entity.id, sensor->entity.instance);
}
memset(sval, 0, sizeof (sval));
if (sr->s_reading_valid) {
if (IS_THRESHOLD_SENSOR(sensor) &&
sr->s_has_analog_value ) {
/* Threshold Analog */
snprintf(sval, sizeof (sval), "%s %s",
sr->s_a_str,
sr->s_a_units);
} else {
/* Analog & Discrete & Threshold/Discrete */
char *header = NULL;
if (sr->s_has_analog_value) { /* Sensor has an analog value */
printf("%s %s", sr->s_a_str, sr->s_a_units);
header = ", ";
}
ipmi_sdr_print_discrete_state_mini(intf, header, ", ",
sensor->sensor.type,
sensor->event_type,
sr->s_data2,
sr->s_data3);
}
}
else if (sr->s_scanning_disabled)
snprintf(sval, sizeof (sval), "Disabled");
else
snprintf(sval, sizeof (sval), "No Reading");
printf("%s\n", sval);
return 0; /* done */
}
/*
* VERBOSE OUTPUT
*/
printf("Sensor ID : %s (0x%x)\n",
sr->s_id, sensor->keys.sensor_num);
printf(" Entity ID : %d.%d (%s)\n",
sensor->entity.id, sensor->entity.instance,
val2str(sensor->entity.id, entity_id_vals));
if (!IS_THRESHOLD_SENSOR(sensor)) {
/* Discrete */
printf(" Sensor Type (Discrete): %s (0x%02x)\n",
ipmi_get_sensor_type(intf, sensor->sensor.type),
sensor->sensor.type);
lprintf(LOG_DEBUG, " Event Type Code : 0x%02x",
sensor->event_type);
printf(" Sensor Reading : ");
if (sr->s_reading_valid) {
if (sr->s_has_analog_value) { /* Sensor has an analog value */
printf("%s %s\n", sr->s_a_str, sr->s_a_units);
} else {
printf("%xh\n", sr->s_reading);
}
}
else if (sr->s_scanning_disabled)
printf("Disabled\n");
else {
/* Used to be 'Not Reading' */
printf("No Reading\n");
}
printf(" Event Message Control : ");
switch (sensor->sensor.capabilities.event_msg) {
case 0:
printf("Per-threshold\n");
break;
case 1:
printf("Entire Sensor Only\n");
break;
case 2:
printf("Global Disable Only\n");
break;
case 3:
printf("No Events From Sensor\n");
break;
}
ipmi_sdr_print_discrete_state(intf, "States Asserted",
sensor->sensor.type,
sensor->event_type,
sr->s_data2,
sr->s_data3);
ipmi_sdr_print_sensor_mask(intf, &sensor->mask, sensor->sensor.type,
sensor->event_type, DISCRETE_SENSOR);
ipmi_sdr_print_sensor_event_status(intf,
sensor->keys.sensor_num,
sensor->sensor.type,
sensor->event_type,
DISCRETE_SENSOR,
target,
lun, channel);
ipmi_sdr_print_sensor_event_enable(intf,
sensor->keys.sensor_num,
sensor->sensor.type,
sensor->event_type,
DISCRETE_SENSOR,
target,
lun, channel);
printf(" OEM : %X\n",
sr->full ? sr->full->oem : sr->compact->oem);
printf("\n");
return 0; /* done */
}
printf(" Sensor Type (Threshold) : %s (0x%02x)\n",
ipmi_get_sensor_type(intf, sensor->sensor.type),
sensor->sensor.type);
printf(" Sensor Reading : ");
if (sr->s_reading_valid) {
if (sr->full) {
uint16_t raw_tol = __TO_TOL(sr->full->mtol);
if (UNITS_ARE_DISCRETE(sensor)) {
printf("0x%02X (+/- 0x%02X) %s\n",
sr->s_reading, raw_tol, sr->s_a_units);
}
else {
double tol = sdr_convert_sensor_tolerance(sr->full, raw_tol);
printf("%.*f (+/- %.*f) %s\n",
(sr->s_a_val == (int) sr->s_a_val) ? 0 : 3,
sr->s_a_val, (tol == (int) tol) ? 0 :
3, tol, sr->s_a_units);
}
} else {
printf("0x%02X %s\n", sr->s_reading, sr->s_a_units);
}
} else if (sr->s_scanning_disabled)
printf("Disabled\n");
else
printf("No Reading\n");
printf(" Status : %s\n",
ipmi_sdr_get_thresh_status(sr, "Not Available"));
if(sr->full) {
SENSOR_PRINT_NORMAL(sr->full, "Nominal Reading", nominal_read);
SENSOR_PRINT_NORMAL(sr->full, "Normal Minimum", normal_min);
SENSOR_PRINT_NORMAL(sr->full, "Normal Maximum", normal_max);
SENSOR_PRINT_THRESH(sr->full, "Upper non-recoverable", upper.non_recover, unr);
SENSOR_PRINT_THRESH(sr->full, "Upper critical", upper.critical, ucr);
SENSOR_PRINT_THRESH(sr->full, "Upper non-critical", upper.non_critical, unc);
SENSOR_PRINT_THRESH(sr->full, "Lower non-recoverable", lower.non_recover, lnr);
SENSOR_PRINT_THRESH(sr->full, "Lower critical", lower.critical, lcr);
SENSOR_PRINT_THRESH(sr->full, "Lower non-critical", lower.non_critical, lnc);
}
ipmi_sdr_print_sensor_hysteresis(sensor, sr->full,
sr->full ? sr->full->threshold.hysteresis.positive :
sr->compact->threshold.hysteresis.positive, "Positive Hysteresis");
ipmi_sdr_print_sensor_hysteresis(sensor, sr->full,
sr->full ? sr->full->threshold.hysteresis.negative :
sr->compact->threshold.hysteresis.negative, "Negative Hysteresis");
print_sensor_min_max(sr->full);
printf(" Event Message Control : ");
switch (sensor->sensor.capabilities.event_msg) {
case 0:
printf("Per-threshold\n");
break;
case 1:
printf("Entire Sensor Only\n");
break;
case 2:
printf("Global Disable Only\n");
break;
case 3:
printf("No Events From Sensor\n");
break;
}
printf(" Readable Thresholds : ");
switch (sensor->sensor.capabilities.threshold) {
case 0:
printf("No Thresholds\n");
break;
case 1: /* readable according to mask */
case 2: /* readable and settable according to mask */
if (sensor->mask.type.threshold.read.lnr)
printf("lnr ");
if (sensor->mask.type.threshold.read.lcr)
printf("lcr ");
if (sensor->mask.type.threshold.read.lnc)
printf("lnc ");
if (sensor->mask.type.threshold.read.unc)
printf("unc ");
if (sensor->mask.type.threshold.read.ucr)
printf("ucr ");
if (sensor->mask.type.threshold.read.unr)
printf("unr ");
printf("\n");
break;
case 3:
printf("Thresholds Fixed\n");
break;
}
printf(" Settable Thresholds : ");
switch (sensor->sensor.capabilities.threshold) {
case 0:
printf("No Thresholds\n");
break;
case 1: /* readable according to mask */
case 2: /* readable and settable according to mask */
if (sensor->mask.type.threshold.set.lnr)
printf("lnr ");
if (sensor->mask.type.threshold.set.lcr)
printf("lcr ");
if (sensor->mask.type.threshold.set.lnc)
printf("lnc ");
if (sensor->mask.type.threshold.set.unc)
printf("unc ");
if (sensor->mask.type.threshold.set.ucr)
printf("ucr ");
if (sensor->mask.type.threshold.set.unr)
printf("unr ");
printf("\n");
break;
case 3:
printf("Thresholds Fixed\n");
break;
}
if (sensor->mask.type.threshold.status_lnr ||
sensor->mask.type.threshold.status_lcr ||
sensor->mask.type.threshold.status_lnc ||
sensor->mask.type.threshold.status_unc ||
sensor->mask.type.threshold.status_ucr ||
sensor->mask.type.threshold.status_unr) {
printf(" Threshold Read Mask : ");
if (sensor->mask.type.threshold.status_lnr)
printf("lnr ");
if (sensor->mask.type.threshold.status_lcr)
printf("lcr ");
if (sensor->mask.type.threshold.status_lnc)
printf("lnc ");
if (sensor->mask.type.threshold.status_unc)
printf("unc ");
if (sensor->mask.type.threshold.status_ucr)
printf("ucr ");
if (sensor->mask.type.threshold.status_unr)
printf("unr ");
printf("\n");
}
ipmi_sdr_print_sensor_mask(intf, &sensor->mask,
sensor->sensor.type,
sensor->event_type, ANALOG_SENSOR);
ipmi_sdr_print_sensor_event_status(intf,
sensor->keys.sensor_num,
sensor->sensor.type,
sensor->event_type, ANALOG_SENSOR,
target,
lun, channel);
ipmi_sdr_print_sensor_event_enable(intf,
sensor->keys.sensor_num,
sensor->sensor.type,
sensor->event_type, ANALOG_SENSOR,
target,
lun, channel);
printf("\n");
return 0;
}
static inline int
get_offset(uint8_t x)
{
int i;
for (i = 0; i < 8; i++)
if (x >> i == 1)
return i;
return 0;
}
/* ipmi_sdr_print_discrete_state_mini - print list of asserted states
* for a discrete sensor
*
* @header : header string if necessary
* @separator : field separator string
* @sensor_type : sensor type code
* @event_type : event type code
* @state : mask of asserted states
*
* no meaningful return value
*/
void
ipmi_sdr_print_discrete_state_mini(struct ipmi_intf *intf,
const char *header, const char *separator,
uint8_t sensor_type, uint8_t event_type,
uint8_t state1, uint8_t state2)
{
const struct ipmi_event_sensor_types *evt;
int pre = 0, c = 0;
if (state1 == 0 && (state2 & 0x7f) == 0)
return;
if (header)
printf("%s", header);
for (evt = ipmi_get_first_event_sensor_type(intf, sensor_type, event_type);
evt != NULL; evt = ipmi_get_next_event_sensor_type(evt)) {
if (evt->data != 0xFF) {
continue;
}
if (evt->offset > 7) {
if ((1 << (evt->offset - 8)) & (state2 & 0x7f)) {
if (pre++ != 0) {
printf("%s", separator);
}
if (evt->desc) {
printf("%s", evt->desc);
}
}
} else {
if ((1 << evt->offset) & state1) {
if (pre++ != 0) {
printf("%s", separator);
}
if (evt->desc) {
printf("%s", evt->desc);
}
}
}
c++;
}
}
/* ipmi_sdr_print_discrete_state - print list of asserted states
* for a discrete sensor
*
* @desc : description for this line
* @sensor_type : sensor type code
* @event_type : event type code
* @state : mask of asserted states
*
* no meaningful return value
*/
void
ipmi_sdr_print_discrete_state(struct ipmi_intf *intf, const char *desc,
uint8_t sensor_type, uint8_t event_type,
uint8_t state1, uint8_t state2)
{
const struct ipmi_event_sensor_types *evt;
int pre = 0, c = 0;
if (state1 == 0 && (state2 & 0x7f) == 0)
return;
for (evt = ipmi_get_first_event_sensor_type(intf, sensor_type, event_type);
evt != NULL; evt = ipmi_get_next_event_sensor_type(evt)) {
if (evt->data != 0xFF) {
continue;
}
if (pre == 0) {
printf(" %-21s : %s\n", desc, ipmi_get_sensor_type(intf, sensor_type));
pre = 1;
}
if (evt->offset > 7) {
if ((1 << (evt->offset - 8)) & (state2 & 0x7f)) {
if (evt->desc) {
printf(" "
"[%s]\n",
evt->desc);
} else {
printf(" "
"[no description]\n");
}
}
} else {
if ((1 << evt->offset) & state1) {
if (evt->desc) {
printf(" "
"[%s]\n",
evt->desc);
} else {
printf(" "
"[no description]\n");
}
}
}
c++;
}
}
/* ipmi_sdr_print_sensor_eventonly - print SDR event only record
*
* @intf: ipmi interface
* @sensor: event only sdr record
*
* returns 0 on success
* returns -1 on error
*/
int
ipmi_sdr_print_sensor_eventonly(struct ipmi_intf *intf,
struct sdr_record_eventonly_sensor *sensor)
{
char desc[17];
if (sensor == NULL)
return -1;
memset(desc, 0, sizeof (desc));
snprintf(desc, (sensor->id_code & 0x1f) + 1, "%s", sensor->id_string);
if (verbose) {
printf("Sensor ID : %s (0x%x)\n",
sensor->id_code ? desc : "", sensor->keys.sensor_num);
printf("Entity ID : %d.%d (%s)\n",
sensor->entity.id, sensor->entity.instance,
val2str(sensor->entity.id, entity_id_vals));
printf("Sensor Type : %s (0x%02x)\n",
ipmi_get_sensor_type(intf, sensor->sensor_type),
sensor->sensor_type);
lprintf(LOG_DEBUG, "Event Type Code : 0x%02x",
sensor->event_type);
printf("\n");
} else {
if (csv_output)
printf("%s,%02Xh,ns,%d.%d,Event-Only\n",
sensor->id_code ? desc : "",
sensor->keys.sensor_num,
sensor->entity.id, sensor->entity.instance);
else if (sdr_extended)
printf("%-16s | %02Xh | ns | %2d.%1d | Event-Only\n",
sensor->id_code ? desc : "",
sensor->keys.sensor_num,
sensor->entity.id, sensor->entity.instance);
else
printf("%-16s | Event-Only | ns\n",
sensor->id_code ? desc : "");
}
return 0;
}
/* ipmi_sdr_print_sensor_mc_locator - print SDR MC locator record
*
* @intf: ipmi interface
* @mc: mc locator sdr record
*
* returns 0 on success
* returns -1 on error
*/
int
ipmi_sdr_print_sensor_mc_locator(struct ipmi_intf *intf,
struct sdr_record_mc_locator *mc)
{
char desc[17];
if (mc == NULL)
return -1;
memset(desc, 0, sizeof (desc));
snprintf(desc, (mc->id_code & 0x1f) + 1, "%s", mc->id_string);
if (verbose == 0) {
if (csv_output)
printf("%s,00h,ok,%d.%d\n",
mc->id_code ? desc : "",
mc->entity.id, mc->entity.instance);
else if (sdr_extended) {
printf("%-16s | 00h | ok | %2d.%1d | ",
mc->id_code ? desc : "",
mc->entity.id, mc->entity.instance);
printf("%s MC @ %02Xh\n",
(mc->
pwr_state_notif & 0x1) ? "Static" : "Dynamic",
mc->dev_slave_addr);
} else {
printf("%-16s | %s MC @ %02Xh %s | ok\n",
mc->id_code ? desc : "",
(mc->
pwr_state_notif & 0x1) ? "Static" : "Dynamic",
mc->dev_slave_addr,
(mc->pwr_state_notif & 0x1) ? " " : "");
}
return 0; /* done */
}
printf("Device ID : %s\n", mc->id_string);
printf("Entity ID : %d.%d (%s)\n",
mc->entity.id, mc->entity.instance,
val2str(mc->entity.id, entity_id_vals));
printf("Device Slave Address : %02Xh\n", mc->dev_slave_addr);
printf("Channel Number : %01Xh\n", mc->channel_num);
printf("ACPI System P/S Notif : %sRequired\n",
(mc->pwr_state_notif & 0x4) ? "" : "Not ");
printf("ACPI Device P/S Notif : %sRequired\n",
(mc->pwr_state_notif & 0x2) ? "" : "Not ");
printf("Controller Presence : %s\n",
(mc->pwr_state_notif & 0x1) ? "Static" : "Dynamic");
printf("Logs Init Agent Errors : %s\n",
(mc->global_init & 0x8) ? "Yes" : "No");
printf("Event Message Gen : ");
if (!(mc->global_init & 0x3))
printf("Enable\n");
else if ((mc->global_init & 0x3) == 0x1)
printf("Disable\n");
else if ((mc->global_init & 0x3) == 0x2)
printf("Do Not Init Controller\n");
else
printf("Reserved\n");
printf("Device Capabilities\n");
printf(" Chassis Device : %s\n",
(mc->dev_support & 0x80) ? "Yes" : "No");
printf(" Bridge : %s\n",
(mc->dev_support & 0x40) ? "Yes" : "No");
printf(" IPMB Event Generator : %s\n",
(mc->dev_support & 0x20) ? "Yes" : "No");
printf(" IPMB Event Receiver : %s\n",
(mc->dev_support & 0x10) ? "Yes" : "No");
printf(" FRU Inventory Device : %s\n",
(mc->dev_support & 0x08) ? "Yes" : "No");
printf(" SEL Device : %s\n",
(mc->dev_support & 0x04) ? "Yes" : "No");
printf(" SDR Repository : %s\n",
(mc->dev_support & 0x02) ? "Yes" : "No");
printf(" Sensor Device : %s\n",
(mc->dev_support & 0x01) ? "Yes" : "No");
printf("\n");
return 0;
}
/* ipmi_sdr_print_sensor_generic_locator - print generic device locator record
*
* @intf: ipmi interface
* @gen: generic device locator sdr record
*
* returns 0 on success
* returns -1 on error
*/
int
ipmi_sdr_print_sensor_generic_locator(struct ipmi_intf *intf,
struct sdr_record_generic_locator *dev)
{
char desc[17];
memset(desc, 0, sizeof (desc));
snprintf(desc, (dev->id_code & 0x1f) + 1, "%s", dev->id_string);
if (!verbose) {
if (csv_output)
printf("%s,00h,ns,%d.%d\n",
dev->id_code ? desc : "",
dev->entity.id, dev->entity.instance);
else if (sdr_extended)
printf
("%-16s | 00h | ns | %2d.%1d | Generic Device @%02Xh:%02Xh.%1d\n",
dev->id_code ? desc : "", dev->entity.id,
dev->entity.instance, dev->dev_access_addr,
dev->dev_slave_addr, dev->oem);
else
printf("%-16s | Generic @%02X:%02X.%-2d | ok\n",
dev->id_code ? desc : "",
dev->dev_access_addr,
dev->dev_slave_addr, dev->oem);
return 0;
}
printf("Device ID : %s\n", dev->id_string);
printf("Entity ID : %d.%d (%s)\n",
dev->entity.id, dev->entity.instance,
val2str(dev->entity.id, entity_id_vals));
printf("Device Access Address : %02Xh\n", dev->dev_access_addr);
printf("Device Slave Address : %02Xh\n", dev->dev_slave_addr);
printf("Address Span : %02Xh\n", dev->addr_span);
printf("Channel Number : %01Xh\n", dev->channel_num);
printf("LUN.Bus : %01Xh.%01Xh\n", dev->lun, dev->bus);
printf("Device Type.Modifier : %01Xh.%01Xh (%s)\n",
dev->dev_type, dev->dev_type_modifier,
val2str(dev->dev_type << 8 | dev->dev_type_modifier,
entity_device_type_vals));
printf("OEM : %02Xh\n", dev->oem);
printf("\n");
return 0;
}
/* ipmi_sdr_print_sensor_fru_locator - print FRU locator record
*
* @intf: ipmi interface
* @fru: fru locator sdr record
*
* returns 0 on success
* returns -1 on error
*/
int
ipmi_sdr_print_sensor_fru_locator(struct ipmi_intf *intf,
struct sdr_record_fru_locator *fru)
{
char desc[17];
memset(desc, 0, sizeof (desc));
snprintf(desc, (fru->id_code & 0x1f) + 1, "%s", fru->id_string);
if (!verbose) {
if (csv_output)
printf("%s,00h,ns,%d.%d\n",
fru->id_code ? desc : "",
fru->entity.id, fru->entity.instance);
else if (sdr_extended)
printf("%-16s | 00h | ns | %2d.%1d | %s FRU @%02Xh\n",
fru->id_code ? desc : "",
fru->entity.id, fru->entity.instance,
(fru->logical) ? "Logical" : "Physical",
fru->device_id);
else
printf("%-16s | %s FRU @%02Xh %02x.%x | ok\n",
fru->id_code ? desc : "",
(fru->logical) ? "Log" : "Phy",
fru->device_id,
fru->entity.id, fru->entity.instance);
return 0;
}
printf("Device ID : %s\n", fru->id_string);
printf("Entity ID : %d.%d (%s)\n",
fru->entity.id, fru->entity.instance,
val2str(fru->entity.id, entity_id_vals));
printf("Device Access Address : %02Xh\n", fru->dev_slave_addr);
printf("%s: %02Xh\n",
fru->logical ? "Logical FRU Device " :
"Slave Address ", fru->device_id);
printf("Channel Number : %01Xh\n", fru->channel_num);
printf("LUN.Bus : %01Xh.%01Xh\n", fru->lun, fru->bus);
printf("Device Type.Modifier : %01Xh.%01Xh (%s)\n",
fru->dev_type, fru->dev_type_modifier,
val2str(fru->dev_type << 8 | fru->dev_type_modifier,
entity_device_type_vals));
printf("OEM : %02Xh\n", fru->oem);
printf("\n");
return 0;
}
/* ipmi_sdr_print_sensor_entity_assoc - print SDR entity association record
*
* @intf: ipmi interface
* @mc: entity association sdr record
*
* returns 0 on success
* returns -1 on error
*/
int
ipmi_sdr_print_sensor_entity_assoc(struct ipmi_intf *intf,
struct sdr_record_entity_assoc *assoc)
{
return 0;
}
/* ipmi_sdr_print_sensor_oem_intel - print Intel OEM sensors
*
* @intf: ipmi interface
* @oem: oem sdr record
*
* returns 0 on success
* returns -1 on error
*/
static int
ipmi_sdr_print_sensor_oem_intel(struct ipmi_intf *intf,
struct sdr_record_oem *oem)
{
switch (oem->data[3]) { /* record sub-type */
case 0x02: /* Power Unit Map */
if (verbose) {
printf
("Sensor ID : Power Unit Redundancy (0x%x)\n",
oem->data[4]);
printf
("Sensor Type : Intel OEM - Power Unit Map\n");
printf("Redundant Supplies : %d", oem->data[6]);
if (oem->data[5])
printf(" (flags %xh)", oem->data[5]);
printf("\n");
}
switch (oem->data_len) {
case 7: /* SR1300, non-redundant */
if (verbose)
printf("Power Redundancy : No\n");
else if (csv_output)
printf("Power Redundancy,Not Available,nr\n");
else
printf
("Power Redundancy | Not Available | nr\n");
break;
case 8: /* SR2300, redundant, PS1 & PS2 present */
if (verbose) {
printf("Power Redundancy : No\n");
printf("Power Supply 2 Sensor : %x\n",
oem->data[8]);
} else if (csv_output) {
printf("Power Redundancy,PS@%02xh,nr\n",
oem->data[8]);
} else {
printf
("Power Redundancy | PS@%02xh | nr\n",
oem->data[8]);
}
break;
case 9: /* SR2300, non-redundant, PSx present */
if (verbose) {
printf("Power Redundancy : Yes\n");
printf("Power Supply Sensor : %x\n",
oem->data[7]);
printf("Power Supply Sensor : %x\n",
oem->data[8]);
} else if (csv_output) {
printf
("Power Redundancy,PS@%02xh + PS@%02xh,ok\n",
oem->data[7], oem->data[8]);
} else {
printf
("Power Redundancy | PS@%02xh + PS@%02xh | ok\n",
oem->data[7], oem->data[8]);
}
break;
}
if (verbose)
printf("\n");
break;
case 0x03: /* Fan Speed Control */
break;
case 0x06: /* System Information */
break;
case 0x07: /* Ambient Temperature Fan Speed Control */
break;
default:
lprintf(LOG_DEBUG, "Unknown Intel OEM SDR Record type %02x",
oem->data[3]);
}
return 0;
}
/* ipmi_sdr_print_sensor_oem - print OEM sensors
*
* This function is generally only filled out by decoding what
* a particular BMC might stuff into its OEM records. The
* records are keyed off manufacturer ID and record subtypes.
*
* @intf: ipmi interface
* @oem: oem sdr record
*
* returns 0 on success
* returns -1 on error
*/
static int
ipmi_sdr_print_sensor_oem(struct ipmi_intf *intf, struct sdr_record_oem *oem)
{
int rc = 0;
if (oem == NULL)
return -1;
if (oem->data_len == 0 || oem->data == NULL)
return -1;
if (verbose > 2)
printbuf(oem->data, oem->data_len, "OEM Record");
/* intel manufacturer id */
if (oem->data[0] == 0x57 &&
oem->data[1] == 0x01 && oem->data[2] == 0x00) {
rc = ipmi_sdr_print_sensor_oem_intel(intf, oem);
}
return rc;
}
/* ipmi_sdr_print_name_from_rawentry - Print SDR name from raw data
*
* @intf: ipmi interface
* @type: sensor type
* @raw: raw sensor data
*
* returns 0 on success
* returns -1 on error
*/
int
ipmi_sdr_print_name_from_rawentry(struct ipmi_intf *intf, uint16_t id,
uint8_t type, uint8_t *raw)
{
union {
struct sdr_record_full_sensor *full;
struct sdr_record_compact_sensor *compact;
struct sdr_record_eventonly_sensor *eventonly;
struct sdr_record_generic_locator *genloc;
struct sdr_record_fru_locator *fruloc;
struct sdr_record_mc_locator *mcloc;
struct sdr_record_entity_assoc *entassoc;
struct sdr_record_oem *oem;
} record;
int rc =0;
char desc[17];
memset(desc, ' ', sizeof (desc));
switch ( type) {
case SDR_RECORD_TYPE_FULL_SENSOR:
record.full = (struct sdr_record_full_sensor *) raw;
snprintf(desc, (record.full->id_code & 0x1f) +1, "%s",
(const char *)record.full->id_string);
break;
case SDR_RECORD_TYPE_COMPACT_SENSOR:
record.compact = (struct sdr_record_compact_sensor *) raw ;
snprintf(desc, (record.compact->id_code & 0x1f) +1, "%s",
(const char *)record.compact->id_string);
break;
case SDR_RECORD_TYPE_EVENTONLY_SENSOR:
record.eventonly = (struct sdr_record_eventonly_sensor *) raw ;
snprintf(desc, (record.eventonly->id_code & 0x1f) +1, "%s",
(const char *)record.eventonly->id_string);
break;
case SDR_RECORD_TYPE_MC_DEVICE_LOCATOR:
record.mcloc = (struct sdr_record_mc_locator *) raw ;
snprintf(desc, (record.mcloc->id_code & 0x1f) +1, "%s",
(const char *)record.mcloc->id_string);
break;
default:
rc = -1;
break;
}
lprintf(LOG_INFO, "ID: 0x%04x , NAME: %-16s", id, desc);
return rc;
}
/* ipmi_sdr_print_rawentry - Print SDR entry from raw data
*
* @intf: ipmi interface
* @type: sensor type
* @raw: raw sensor data
* @len: length of raw sensor data
*
* returns 0 on success
* returns -1 on error
*/
int
ipmi_sdr_print_rawentry(struct ipmi_intf *intf, uint8_t type,
uint8_t * raw, int len)
{
int rc = 0;
switch (type) {
case SDR_RECORD_TYPE_FULL_SENSOR:
case SDR_RECORD_TYPE_COMPACT_SENSOR:
rc = ipmi_sdr_print_sensor_fc(intf,
(struct sdr_record_common_sensor *) raw,
type);
break;
case SDR_RECORD_TYPE_EVENTONLY_SENSOR:
rc = ipmi_sdr_print_sensor_eventonly(intf,
(struct
sdr_record_eventonly_sensor
*) raw);
break;
case SDR_RECORD_TYPE_GENERIC_DEVICE_LOCATOR:
rc = ipmi_sdr_print_sensor_generic_locator(intf,
(struct
sdr_record_generic_locator
*) raw);
break;
case SDR_RECORD_TYPE_FRU_DEVICE_LOCATOR:
rc = ipmi_sdr_print_sensor_fru_locator(intf,
(struct
sdr_record_fru_locator
*) raw);
break;
case SDR_RECORD_TYPE_MC_DEVICE_LOCATOR:
rc = ipmi_sdr_print_sensor_mc_locator(intf,
(struct
sdr_record_mc_locator *)
raw);
break;
case SDR_RECORD_TYPE_ENTITY_ASSOC:
rc = ipmi_sdr_print_sensor_entity_assoc(intf,
(struct
sdr_record_entity_assoc
*) raw);
break;
case SDR_RECORD_TYPE_OEM:{
struct sdr_record_oem oem;
oem.data = raw;
oem.data_len = len;
rc = ipmi_sdr_print_sensor_oem(intf,
(struct sdr_record_oem *)
&oem);
break;
}
case SDR_RECORD_TYPE_DEVICE_ENTITY_ASSOC:
case SDR_RECORD_TYPE_MC_CONFIRMATION:
case SDR_RECORD_TYPE_BMC_MSG_CHANNEL_INFO:
/* not implemented */
break;
}
return rc;
}
/* ipmi_sdr_print_listentry - Print SDR entry from list
*
* @intf: ipmi interface
* @entry: sdr record list entry
*
* returns 0 on success
* returns -1 on error
*/
int
ipmi_sdr_print_listentry(struct ipmi_intf *intf, struct sdr_record_list *entry)
{
int rc = 0;
switch (entry->type) {
case SDR_RECORD_TYPE_FULL_SENSOR:
case SDR_RECORD_TYPE_COMPACT_SENSOR:
rc = ipmi_sdr_print_sensor_fc(intf, entry->record.common, entry->type);
break;
case SDR_RECORD_TYPE_EVENTONLY_SENSOR:
rc = ipmi_sdr_print_sensor_eventonly(intf,
entry->record.eventonly);
break;
case SDR_RECORD_TYPE_GENERIC_DEVICE_LOCATOR:
rc = ipmi_sdr_print_sensor_generic_locator(intf,
entry->record.
genloc);
break;
case SDR_RECORD_TYPE_FRU_DEVICE_LOCATOR:
rc = ipmi_sdr_print_sensor_fru_locator(intf,
entry->record.fruloc);
break;
case SDR_RECORD_TYPE_MC_DEVICE_LOCATOR:
rc = ipmi_sdr_print_sensor_mc_locator(intf,
entry->record.mcloc);
break;
case SDR_RECORD_TYPE_ENTITY_ASSOC:
rc = ipmi_sdr_print_sensor_entity_assoc(intf,
entry->record.entassoc);
break;
case SDR_RECORD_TYPE_OEM:
rc = ipmi_sdr_print_sensor_oem(intf, entry->record.oem);
break;
case SDR_RECORD_TYPE_DEVICE_ENTITY_ASSOC:
case SDR_RECORD_TYPE_MC_CONFIRMATION:
case SDR_RECORD_TYPE_BMC_MSG_CHANNEL_INFO:
/* not implemented yet */
break;
}
return rc;
}
/* ipmi_sdr_print_sdr - iterate through SDR printing records
*
* intf: ipmi interface
* type: record type to print
*
* returns 0 on success
* returns -1 on error
*/
int
ipmi_sdr_print_sdr(struct ipmi_intf *intf, uint8_t type)
{
struct sdr_get_rs *header;
struct sdr_record_list *e;
int rc = 0;
lprintf(LOG_DEBUG, "Querying SDR for sensor list");
if (sdr_list_itr == NULL) {
sdr_list_itr = ipmi_sdr_start(intf, 0);
if (sdr_list_itr == NULL) {
lprintf(LOG_ERR, "Unable to open SDR for reading");
return -1;
}
}
for (e = sdr_list_head; e != NULL; e = e->next) {
if (type != e->type && type != 0xff && type != 0xfe)
continue;
if (type == 0xfe &&
e->type != SDR_RECORD_TYPE_FULL_SENSOR &&
e->type != SDR_RECORD_TYPE_COMPACT_SENSOR)
continue;
if (ipmi_sdr_print_listentry(intf, e) < 0)
rc = -1;
}
while ((header = ipmi_sdr_get_next_header(intf, sdr_list_itr)) != NULL) {
uint8_t *rec;
struct sdr_record_list *sdrr;
rec = ipmi_sdr_get_record(intf, header, sdr_list_itr);
if (rec == NULL) {
lprintf(LOG_ERR, "ipmitool: ipmi_sdr_get_record() failed");
rc = -1;
continue;
}
sdrr = malloc(sizeof (struct sdr_record_list));
if (sdrr == NULL) {
lprintf(LOG_ERR, "ipmitool: malloc failure");
if (rec != NULL) {
free(rec);
rec = NULL;
}
break;
}
memset(sdrr, 0, sizeof (struct sdr_record_list));
sdrr->id = header->id;
sdrr->type = header->type;
switch (header->type) {
case SDR_RECORD_TYPE_FULL_SENSOR:
case SDR_RECORD_TYPE_COMPACT_SENSOR:
sdrr->record.common =
(struct sdr_record_common_sensor *) rec;
break;
case SDR_RECORD_TYPE_EVENTONLY_SENSOR:
sdrr->record.eventonly =
(struct sdr_record_eventonly_sensor *) rec;
break;
case SDR_RECORD_TYPE_GENERIC_DEVICE_LOCATOR:
sdrr->record.genloc =
(struct sdr_record_generic_locator *) rec;
break;
case SDR_RECORD_TYPE_FRU_DEVICE_LOCATOR:
sdrr->record.fruloc =
(struct sdr_record_fru_locator *) rec;
break;
case SDR_RECORD_TYPE_MC_DEVICE_LOCATOR:
sdrr->record.mcloc =
(struct sdr_record_mc_locator *) rec;
break;
case SDR_RECORD_TYPE_ENTITY_ASSOC:
sdrr->record.entassoc =
(struct sdr_record_entity_assoc *) rec;
break;
default:
free(rec);
rec = NULL;
if (sdrr != NULL) {
free(sdrr);
sdrr = NULL;
}
continue;
}
lprintf(LOG_DEBUG, "SDR record ID : 0x%04x", sdrr->id);
if (type == header->type || type == 0xff ||
(type == 0xfe &&
(header->type == SDR_RECORD_TYPE_FULL_SENSOR ||
header->type == SDR_RECORD_TYPE_COMPACT_SENSOR))) {
if (ipmi_sdr_print_rawentry(intf, header->type,
rec, header->length) < 0)
rc = -1;
}
/* add to global record liset */
if (sdr_list_head == NULL)
sdr_list_head = sdrr;
else
sdr_list_tail->next = sdrr;
sdr_list_tail = sdrr;
}
return rc;
}
/* ipmi_sdr_get_reservation - Obtain SDR reservation ID
*
* @intf: ipmi interface
* @reserve_id: pointer to short int for storing the id
*
* returns 0 on success
* returns -1 on error
*/
int
ipmi_sdr_get_reservation(struct ipmi_intf *intf, int use_builtin,
uint16_t * reserve_id)
{
struct ipmi_rs *rsp;
struct ipmi_rq req;
/* obtain reservation ID */
memset(&req, 0, sizeof (req));
if (use_builtin == 0) {
req.msg.netfn = IPMI_NETFN_STORAGE;
} else {
req.msg.netfn = IPMI_NETFN_SE;
}
req.msg.cmd = GET_SDR_RESERVE_REPO;
rsp = intf->sendrecv(intf, &req);
/* be slient for errors, they are handled by calling function */
if (rsp == NULL)
return -1;
if (rsp->ccode > 0)
return -1;
*reserve_id = ((struct sdr_reserve_repo_rs *) &(rsp->data))->reserve_id;
lprintf(LOG_DEBUG, "SDR reservation ID %04x", *reserve_id);
return 0;
}
/* ipmi_sdr_start - setup sdr iterator
*
* @intf: ipmi interface
*
* returns sdr iterator structure pointer
* returns NULL on error
*/
struct ipmi_sdr_iterator *
ipmi_sdr_start(struct ipmi_intf *intf, int use_builtin)
{
struct ipmi_sdr_iterator *itr;
struct ipmi_rs *rsp;
struct ipmi_rq req;
struct ipm_devid_rsp *devid;
itr = malloc(sizeof (struct ipmi_sdr_iterator));
if (itr == NULL) {
lprintf(LOG_ERR, "ipmitool: malloc failure");
return NULL;
}
/* check SDRR capability */
memset(&req, 0, sizeof (req));
req.msg.netfn = IPMI_NETFN_APP;
req.msg.cmd = BMC_GET_DEVICE_ID;
req.msg.data_len = 0;
rsp = intf->sendrecv(intf, &req);
if (rsp == NULL) {
lprintf(LOG_ERR, "Get Device ID command failed");
free(itr);
itr = NULL;
return NULL;
}
if (rsp->ccode > 0) {
lprintf(LOG_ERR, "Get Device ID command failed: %#x %s",
rsp->ccode, val2str(rsp->ccode, completion_code_vals));
free(itr);
itr = NULL;
return NULL;
}
devid = (struct ipm_devid_rsp *) rsp->data;
sdriana = (long)IPM_DEV_MANUFACTURER_ID(devid->manufacturer_id);
if (!use_builtin && (devid->device_revision & IPM_DEV_DEVICE_ID_SDR_MASK)) {
if ((devid->adtl_device_support & 0x02) == 0) {
if ((devid->adtl_device_support & 0x01)) {
lprintf(LOG_DEBUG, "Using Device SDRs\n");
use_built_in = 1;
} else {
lprintf(LOG_ERR, "Error obtaining SDR info");
free(itr);
itr = NULL;
return NULL;
}
} else {
lprintf(LOG_DEBUG, "Using SDR from Repository \n");
}
}
itr->use_built_in = use_builtin ? 1 : use_built_in;
/***********************/
if (itr->use_built_in == 0) {
struct sdr_repo_info_rs sdr_info;
/* get sdr repository info */
memset(&req, 0, sizeof (req));
req.msg.netfn = IPMI_NETFN_STORAGE;
req.msg.cmd = GET_SDR_REPO_INFO;
rsp = intf->sendrecv(intf, &req);
if (rsp == NULL) {
lprintf(LOG_ERR, "Error obtaining SDR info");
free(itr);
itr = NULL;
return NULL;
}
if (rsp->ccode > 0) {
lprintf(LOG_ERR, "Error obtaining SDR info: %s",
val2str(rsp->ccode, completion_code_vals));
free(itr);
itr = NULL;
return NULL;
}
memcpy(&sdr_info, rsp->data, sizeof (sdr_info));
/* IPMIv1.0 == 0x01
* IPMIv1.5 == 0x51
* IPMIv2.0 == 0x02
*/
if ((sdr_info.version != 0x51) &&
(sdr_info.version != 0x01) &&
(sdr_info.version != 0x02)) {
lprintf(LOG_WARN, "WARNING: Unknown SDR repository "
"version 0x%02x", sdr_info.version);
}
itr->total = sdr_info.count;
itr->next = 0;
lprintf(LOG_DEBUG, "SDR free space: %d", sdr_info.free);
lprintf(LOG_DEBUG, "SDR records : %d", sdr_info.count);
/* Build SDRR if there is no record in repository */
if( sdr_info.count == 0 ) {
lprintf(LOG_DEBUG, "Rebuilding SDRR...");
if( ipmi_sdr_add_from_sensors( intf, 0 ) != 0 ) {
lprintf(LOG_ERR, "Could not build SDRR!");
free(itr);
itr = NULL;
return NULL;
}
}
} else {
struct sdr_device_info_rs sdr_info;
/* get device sdr info */
memset(&req, 0, sizeof (req));
req.msg.netfn = IPMI_NETFN_SE;
req.msg.cmd = GET_DEVICE_SDR_INFO;
rsp = intf->sendrecv(intf, &req);
if (!rsp || !rsp->data_len || rsp->ccode) {
printf("Err in cmd get sensor sdr info\n");
free(itr);
itr = NULL;
return NULL;
}
memcpy(&sdr_info, rsp->data, sizeof (sdr_info));
itr->total = sdr_info.count;
itr->next = 0;
lprintf(LOG_DEBUG, "SDR records : %d", sdr_info.count);
}
if (ipmi_sdr_get_reservation(intf, itr->use_built_in,
&(itr->reservation)) < 0) {
lprintf(LOG_ERR, "Unable to obtain SDR reservation");
free(itr);
itr = NULL;
return NULL;
}
return itr;
}
/* ipmi_sdr_get_record - return RAW SDR record
*
* @intf: ipmi interface
* @header: SDR header
* @itr: SDR iterator
*
* returns raw SDR data
* returns NULL on error
*/
uint8_t *
ipmi_sdr_get_record(struct ipmi_intf * intf, struct sdr_get_rs * header,
struct ipmi_sdr_iterator * itr)
{
struct ipmi_rq req;
struct ipmi_rs *rsp;
struct sdr_get_rq sdr_rq;
uint8_t *data;
int i = 0, len = header->length;
if (len < 1)
return NULL;
data = malloc(len + 1);
if (data == NULL) {
lprintf(LOG_ERR, "ipmitool: malloc failure");
return NULL;
}
memset(data, 0, len + 1);
memset(&sdr_rq, 0, sizeof (sdr_rq));
sdr_rq.reserve_id = itr->reservation;
sdr_rq.id = header->id;
sdr_rq.offset = 0;
memset(&req, 0, sizeof (req));
if (itr->use_built_in == 0) {
req.msg.netfn = IPMI_NETFN_STORAGE;
req.msg.cmd = GET_SDR;
} else {
req.msg.netfn = IPMI_NETFN_SE;
req.msg.cmd = GET_DEVICE_SDR;
}
req.msg.data = (uint8_t *) & sdr_rq;
req.msg.data_len = sizeof (sdr_rq);
/* check if max length is null */
if ( sdr_max_read_len == 0 ) {
/* get maximum response size */
sdr_max_read_len = ipmi_intf_get_max_response_data_size(intf) - 2;
/* cap the number of bytes to read */
if (sdr_max_read_len > 0xFE) {
sdr_max_read_len = 0xFE;
}
}
/* read SDR record with partial reads
* because a full read usually exceeds the maximum
* transport buffer size. (completion code 0xca)
*/
while (i < len) {
sdr_rq.length = (len - i < sdr_max_read_len) ?
len - i : sdr_max_read_len;
sdr_rq.offset = i + 5; /* 5 header bytes */
lprintf(LOG_DEBUG, "Getting %d bytes from SDR at offset %d",
sdr_rq.length, sdr_rq.offset);
rsp = intf->sendrecv(intf, &req);
if (rsp == NULL) {
sdr_max_read_len = sdr_rq.length - 1;
if (sdr_max_read_len > 0) {
/* no response may happen if requests are bridged
and too many bytes are requested */
continue;
} else {
free(data);
data = NULL;
return NULL;
}
}
switch (rsp->ccode) {
case 0xca:
/* read too many bytes at once */
sdr_max_read_len = sdr_rq.length - 1;
continue;
case 0xc5:
/* lost reservation */
lprintf(LOG_DEBUG, "SDR reservation cancelled. "
"Sleeping a bit and retrying...");
sleep(rand() & 3);
if (ipmi_sdr_get_reservation(intf, itr->use_built_in,
&(itr->reservation)) < 0) {
free(data);
data = NULL;
return NULL;
}
sdr_rq.reserve_id = itr->reservation;
continue;
}
/* special completion codes handled above */
if (rsp->ccode > 0 || rsp->data_len == 0) {
free(data);
data = NULL;
return NULL;
}
memcpy(data + i, rsp->data + 2, sdr_rq.length);
i += sdr_max_read_len;
}
return data;
}
/* ipmi_sdr_end - cleanup SDR iterator
*
* @intf: ipmi interface
* @itr: SDR iterator
*
* no meaningful return code
*/
void
ipmi_sdr_end(struct ipmi_intf *intf, struct ipmi_sdr_iterator *itr)
{
if (itr) {
free(itr);
itr = NULL;
}
}
/* __sdr_list_add - helper function to add SDR record to list
*
* @head: list head
* @entry: new entry to add to end of list
*
* returns 0 on success
* returns -1 on error
*/
static int
__sdr_list_add(struct sdr_record_list *head, struct sdr_record_list *entry)
{
struct sdr_record_list *e;
struct sdr_record_list *new;
if (head == NULL)
return -1;
new = malloc(sizeof (struct sdr_record_list));
if (new == NULL) {
lprintf(LOG_ERR, "ipmitool: malloc failure");
return -1;
}
memcpy(new, entry, sizeof (struct sdr_record_list));
e = head;
while (e->next)
e = e->next;
e->next = new;
new->next = NULL;
return 0;
}
/* __sdr_list_empty - low-level handler to clean up record list
*
* @head: list head to clean
*
* no meaningful return code
*/
static void
__sdr_list_empty(struct sdr_record_list *head)
{
struct sdr_record_list *e, *f;
for (e = head; e != NULL; e = f) {
f = e->next;
free(e);
e = NULL;
}
head = NULL;
}
/* ipmi_sdr_list_empty - clean global SDR list
*
* @intf: ipmi interface
*
* no meaningful return code
*/
void
ipmi_sdr_list_empty(struct ipmi_intf *intf)
{
struct sdr_record_list *list, *next;
ipmi_sdr_end(intf, sdr_list_itr);
for (list = sdr_list_head; list != NULL; list = next) {
switch (list->type) {
case SDR_RECORD_TYPE_FULL_SENSOR:
case SDR_RECORD_TYPE_COMPACT_SENSOR:
if (list->record.common) {
free(list->record.common);
list->record.common = NULL;
}
break;
case SDR_RECORD_TYPE_EVENTONLY_SENSOR:
if (list->record.eventonly) {
free(list->record.eventonly);
list->record.eventonly = NULL;
}
break;
case SDR_RECORD_TYPE_GENERIC_DEVICE_LOCATOR:
if (list->record.genloc) {
free(list->record.genloc);
list->record.genloc = NULL;
}
break;
case SDR_RECORD_TYPE_FRU_DEVICE_LOCATOR:
if (list->record.fruloc) {
free(list->record.fruloc);
list->record.fruloc = NULL;
}
break;
case SDR_RECORD_TYPE_MC_DEVICE_LOCATOR:
if (list->record.mcloc) {
free(list->record.mcloc);
list->record.mcloc = NULL;
}
break;
case SDR_RECORD_TYPE_ENTITY_ASSOC:
if (list->record.entassoc) {
free(list->record.entassoc);
list->record.entassoc = NULL;
}
break;
}
next = list->next;
free(list);
list = NULL;
}
sdr_list_head = NULL;
sdr_list_tail = NULL;
sdr_list_itr = NULL;
}
/* ipmi_sdr_find_sdr_bynumtype - lookup SDR entry by number/type
*
* @intf: ipmi interface
* @gen_id: sensor owner ID/LUN - SEL generator ID
* @num: sensor number to search for
* @type: sensor type to search for
*
* returns pointer to SDR list
* returns NULL on error
*/
struct sdr_record_list *
ipmi_sdr_find_sdr_bynumtype(struct ipmi_intf *intf, uint16_t gen_id, uint8_t num, uint8_t type)
{
struct sdr_get_rs *header;
struct sdr_record_list *e;
int found = 0;
if (sdr_list_itr == NULL) {
sdr_list_itr = ipmi_sdr_start(intf, 0);
if (sdr_list_itr == NULL) {
lprintf(LOG_ERR, "Unable to open SDR for reading");
return NULL;
}
}
/* check what we've already read */
for (e = sdr_list_head; e != NULL; e = e->next) {
switch (e->type) {
case SDR_RECORD_TYPE_FULL_SENSOR:
case SDR_RECORD_TYPE_COMPACT_SENSOR:
if (e->record.common->keys.sensor_num == num &&
e->record.common->keys.owner_id == (gen_id & 0x00ff) &&
e->record.common->sensor.type == type)
return e;
break;
case SDR_RECORD_TYPE_EVENTONLY_SENSOR:
if (e->record.eventonly->keys.sensor_num == num &&
e->record.eventonly->keys.owner_id == (gen_id & 0x00ff) &&
e->record.eventonly->sensor_type == type)
return e;
break;
}
}
/* now keep looking */
while ((header = ipmi_sdr_get_next_header(intf, sdr_list_itr)) != NULL) {
uint8_t *rec;
struct sdr_record_list *sdrr;
sdrr = malloc(sizeof (struct sdr_record_list));
if (sdrr == NULL) {
lprintf(LOG_ERR, "ipmitool: malloc failure");
break;
}
memset(sdrr, 0, sizeof (struct sdr_record_list));
sdrr->id = header->id;
sdrr->type = header->type;
rec = ipmi_sdr_get_record(intf, header, sdr_list_itr);
if (rec == NULL) {
if (sdrr != NULL) {
free(sdrr);
sdrr = NULL;
}
continue;
}
switch (header->type) {
case SDR_RECORD_TYPE_FULL_SENSOR:
case SDR_RECORD_TYPE_COMPACT_SENSOR:
sdrr->record.common =
(struct sdr_record_common_sensor *) rec;
if (sdrr->record.common->keys.sensor_num == num
&& sdrr->record.common->keys.owner_id == (gen_id & 0x00ff)
&& sdrr->record.common->sensor.type == type)
found = 1;
break;
case SDR_RECORD_TYPE_EVENTONLY_SENSOR:
sdrr->record.eventonly =
(struct sdr_record_eventonly_sensor *) rec;
if (sdrr->record.eventonly->keys.sensor_num == num
&& sdrr->record.eventonly->keys.owner_id == (gen_id & 0x00ff)
&& sdrr->record.eventonly->sensor_type == type)
found = 1;
break;
case SDR_RECORD_TYPE_GENERIC_DEVICE_LOCATOR:
sdrr->record.genloc =
(struct sdr_record_generic_locator *) rec;
break;
case SDR_RECORD_TYPE_FRU_DEVICE_LOCATOR:
sdrr->record.fruloc =
(struct sdr_record_fru_locator *) rec;
break;
case SDR_RECORD_TYPE_MC_DEVICE_LOCATOR:
sdrr->record.mcloc =
(struct sdr_record_mc_locator *) rec;
break;
case SDR_RECORD_TYPE_ENTITY_ASSOC:
sdrr->record.entassoc =
(struct sdr_record_entity_assoc *) rec;
break;
default:
free(rec);
rec = NULL;
if (sdrr != NULL) {
free(sdrr);
sdrr = NULL;
}
continue;
}
/* put in the global record list */
if (sdr_list_head == NULL)
sdr_list_head = sdrr;
else
sdr_list_tail->next = sdrr;
sdr_list_tail = sdrr;
if (found)
return sdrr;
}
return NULL;
}
/* ipmi_sdr_find_sdr_bysensortype - lookup SDR entry by sensor type
*
* @intf: ipmi interface
* @type: sensor type to search for
*
* returns pointer to SDR list
* returns NULL on error
*/
struct sdr_record_list *
ipmi_sdr_find_sdr_bysensortype(struct ipmi_intf *intf, uint8_t type)
{
struct sdr_record_list *head;
struct sdr_get_rs *header;
struct sdr_record_list *e;
if (sdr_list_itr == NULL) {
sdr_list_itr = ipmi_sdr_start(intf, 0);
if (sdr_list_itr == NULL) {
lprintf(LOG_ERR, "Unable to open SDR for reading");
return NULL;
}
}
/* check what we've already read */
head = malloc(sizeof (struct sdr_record_list));
if (head == NULL) {
lprintf(LOG_ERR, "ipmitool: malloc failure");
return NULL;
}
memset(head, 0, sizeof (struct sdr_record_list));
for (e = sdr_list_head; e != NULL; e = e->next) {
switch (e->type) {
case SDR_RECORD_TYPE_FULL_SENSOR:
case SDR_RECORD_TYPE_COMPACT_SENSOR:
if (e->record.common->sensor.type == type)
__sdr_list_add(head, e);
break;
case SDR_RECORD_TYPE_EVENTONLY_SENSOR:
if (e->record.eventonly->sensor_type == type)
__sdr_list_add(head, e);
break;
}
}
/* now keep looking */
while ((header = ipmi_sdr_get_next_header(intf, sdr_list_itr)) != NULL) {
uint8_t *rec;
struct sdr_record_list *sdrr;
sdrr = malloc(sizeof (struct sdr_record_list));
if (sdrr == NULL) {
lprintf(LOG_ERR, "ipmitool: malloc failure");
break;
}
memset(sdrr, 0, sizeof (struct sdr_record_list));
sdrr->id = header->id;
sdrr->type = header->type;
rec = ipmi_sdr_get_record(intf, header, sdr_list_itr);
if (rec == NULL) {
if (sdrr != NULL) {
free(sdrr);
sdrr = NULL;
}
continue;
}
switch (header->type) {
case SDR_RECORD_TYPE_FULL_SENSOR:
case SDR_RECORD_TYPE_COMPACT_SENSOR:
sdrr->record.common =
(struct sdr_record_common_sensor *) rec;
if (sdrr->record.common->sensor.type == type)
__sdr_list_add(head, sdrr);
break;
case SDR_RECORD_TYPE_EVENTONLY_SENSOR:
sdrr->record.eventonly =
(struct sdr_record_eventonly_sensor *) rec;
if (sdrr->record.eventonly->sensor_type == type)
__sdr_list_add(head, sdrr);
break;
case SDR_RECORD_TYPE_GENERIC_DEVICE_LOCATOR:
sdrr->record.genloc =
(struct sdr_record_generic_locator *) rec;
break;
case SDR_RECORD_TYPE_FRU_DEVICE_LOCATOR:
sdrr->record.fruloc =
(struct sdr_record_fru_locator *) rec;
break;
case SDR_RECORD_TYPE_MC_DEVICE_LOCATOR:
sdrr->record.mcloc =
(struct sdr_record_mc_locator *) rec;
break;
case SDR_RECORD_TYPE_ENTITY_ASSOC:
sdrr->record.entassoc =
(struct sdr_record_entity_assoc *) rec;
break;
default:
free(rec);
rec = NULL;
if (sdrr != NULL) {
free(sdrr);
sdrr = NULL;
}
continue;
}
/* put in the global record list */
if (sdr_list_head == NULL)
sdr_list_head = sdrr;
else
sdr_list_tail->next = sdrr;
sdr_list_tail = sdrr;
}
return head;
}
/* ipmi_sdr_find_sdr_byentity - lookup SDR entry by entity association
*
* @intf: ipmi interface
* @entity: entity id/instance to search for
*
* returns pointer to SDR list
* returns NULL on error
*/
struct sdr_record_list *
ipmi_sdr_find_sdr_byentity(struct ipmi_intf *intf, struct entity_id *entity)
{
struct sdr_get_rs *header;
struct sdr_record_list *e;
struct sdr_record_list *head;
if (sdr_list_itr == NULL) {
sdr_list_itr = ipmi_sdr_start(intf, 0);
if (sdr_list_itr == NULL) {
lprintf(LOG_ERR, "Unable to open SDR for reading");
return NULL;
}
}
head = malloc(sizeof (struct sdr_record_list));
if (head == NULL) {
lprintf(LOG_ERR, "ipmitool: malloc failure");
return NULL;
}
memset(head, 0, sizeof (struct sdr_record_list));
/* check what we've already read */
for (e = sdr_list_head; e != NULL; e = e->next) {
switch (e->type) {
case SDR_RECORD_TYPE_FULL_SENSOR:
case SDR_RECORD_TYPE_COMPACT_SENSOR:
if (e->record.common->entity.id == entity->id &&
(entity->instance == 0x7f ||
e->record.common->entity.instance ==
entity->instance))
__sdr_list_add(head, e);
break;
case SDR_RECORD_TYPE_EVENTONLY_SENSOR:
if (e->record.eventonly->entity.id == entity->id &&
(entity->instance == 0x7f ||
e->record.eventonly->entity.instance ==
entity->instance))
__sdr_list_add(head, e);
break;
case SDR_RECORD_TYPE_GENERIC_DEVICE_LOCATOR:
if (e->record.genloc->entity.id == entity->id &&
(entity->instance == 0x7f ||
e->record.genloc->entity.instance ==
entity->instance))
__sdr_list_add(head, e);
break;
case SDR_RECORD_TYPE_FRU_DEVICE_LOCATOR:
if (e->record.fruloc->entity.id == entity->id &&
(entity->instance == 0x7f ||
e->record.fruloc->entity.instance ==
entity->instance))
__sdr_list_add(head, e);
break;
case SDR_RECORD_TYPE_MC_DEVICE_LOCATOR:
if (e->record.mcloc->entity.id == entity->id &&
(entity->instance == 0x7f ||
e->record.mcloc->entity.instance ==
entity->instance))
__sdr_list_add(head, e);
break;
case SDR_RECORD_TYPE_ENTITY_ASSOC:
if (e->record.entassoc->entity.id == entity->id &&
(entity->instance == 0x7f ||
e->record.entassoc->entity.instance ==
entity->instance))
__sdr_list_add(head, e);
break;
}
}
/* now keep looking */
while ((header = ipmi_sdr_get_next_header(intf, sdr_list_itr)) != NULL) {
uint8_t *rec;
struct sdr_record_list *sdrr;
sdrr = malloc(sizeof (struct sdr_record_list));
if (sdrr == NULL) {
lprintf(LOG_ERR, "ipmitool: malloc failure");
break;
}
memset(sdrr, 0, sizeof (struct sdr_record_list));
sdrr->id = header->id;
sdrr->type = header->type;
rec = ipmi_sdr_get_record(intf, header, sdr_list_itr);
if (rec == NULL) {
if (sdrr != NULL) {
free(sdrr);
sdrr = NULL;
}
continue;
}
switch (header->type) {
case SDR_RECORD_TYPE_FULL_SENSOR:
case SDR_RECORD_TYPE_COMPACT_SENSOR:
sdrr->record.common =
(struct sdr_record_common_sensor *) rec;
if (sdrr->record.common->entity.id == entity->id
&& (entity->instance == 0x7f
|| sdrr->record.common->entity.instance ==
entity->instance))
__sdr_list_add(head, sdrr);
break;
case SDR_RECORD_TYPE_EVENTONLY_SENSOR:
sdrr->record.eventonly =
(struct sdr_record_eventonly_sensor *) rec;
if (sdrr->record.eventonly->entity.id == entity->id
&& (entity->instance == 0x7f
|| sdrr->record.eventonly->entity.instance ==
entity->instance))
__sdr_list_add(head, sdrr);
break;
case SDR_RECORD_TYPE_GENERIC_DEVICE_LOCATOR:
sdrr->record.genloc =
(struct sdr_record_generic_locator *) rec;
if (sdrr->record.genloc->entity.id == entity->id
&& (entity->instance == 0x7f
|| sdrr->record.genloc->entity.instance ==
entity->instance))
__sdr_list_add(head, sdrr);
break;
case SDR_RECORD_TYPE_FRU_DEVICE_LOCATOR:
sdrr->record.fruloc =
(struct sdr_record_fru_locator *) rec;
if (sdrr->record.fruloc->entity.id == entity->id
&& (entity->instance == 0x7f
|| sdrr->record.fruloc->entity.instance ==
entity->instance))
__sdr_list_add(head, sdrr);
break;
case SDR_RECORD_TYPE_MC_DEVICE_LOCATOR:
sdrr->record.mcloc =
(struct sdr_record_mc_locator *) rec;
if (sdrr->record.mcloc->entity.id == entity->id
&& (entity->instance == 0x7f
|| sdrr->record.mcloc->entity.instance ==
entity->instance))
__sdr_list_add(head, sdrr);
break;
case SDR_RECORD_TYPE_ENTITY_ASSOC:
sdrr->record.entassoc =
(struct sdr_record_entity_assoc *) rec;
if (sdrr->record.entassoc->entity.id == entity->id
&& (entity->instance == 0x7f
|| sdrr->record.entassoc->entity.instance ==
entity->instance))
__sdr_list_add(head, sdrr);
break;
default:
free(rec);
rec = NULL;
if (sdrr != NULL) {
free(sdrr);
sdrr = NULL;
}
continue;
}
/* add to global record list */
if (sdr_list_head == NULL)
sdr_list_head = sdrr;
else
sdr_list_tail->next = sdrr;
sdr_list_tail = sdrr;
}
return head;
}
/* ipmi_sdr_find_sdr_bytype - lookup SDR entries by type
*
* @intf: ipmi interface
* @type: type of sensor record to search for
*
* returns pointer to SDR list with all matching entities
* returns NULL on error
*/
struct sdr_record_list *
ipmi_sdr_find_sdr_bytype(struct ipmi_intf *intf, uint8_t type)
{
struct sdr_get_rs *header;
struct sdr_record_list *e;
struct sdr_record_list *head;
if (sdr_list_itr == NULL) {
sdr_list_itr = ipmi_sdr_start(intf, 0);
if (sdr_list_itr == NULL) {
lprintf(LOG_ERR, "Unable to open SDR for reading");
return NULL;
}
}
head = malloc(sizeof (struct sdr_record_list));
if (head == NULL) {
lprintf(LOG_ERR, "ipmitool: malloc failure");
return NULL;
}
memset(head, 0, sizeof (struct sdr_record_list));
/* check what we've already read */
for (e = sdr_list_head; e != NULL; e = e->next)
if (e->type == type)
__sdr_list_add(head, e);
/* now keep looking */
while ((header = ipmi_sdr_get_next_header(intf, sdr_list_itr)) != NULL) {
uint8_t *rec;
struct sdr_record_list *sdrr;
sdrr = malloc(sizeof (struct sdr_record_list));
if (sdrr == NULL) {
lprintf(LOG_ERR, "ipmitool: malloc failure");
break;
}
memset(sdrr, 0, sizeof (struct sdr_record_list));
sdrr->id = header->id;
sdrr->type = header->type;
rec = ipmi_sdr_get_record(intf, header, sdr_list_itr);
if (rec == NULL) {
if (sdrr != NULL) {
free(sdrr);
sdrr = NULL;
}
continue;
}
switch (header->type) {
case SDR_RECORD_TYPE_FULL_SENSOR:
case SDR_RECORD_TYPE_COMPACT_SENSOR:
sdrr->record.common =
(struct sdr_record_common_sensor *) rec;
break;
case SDR_RECORD_TYPE_EVENTONLY_SENSOR:
sdrr->record.eventonly =
(struct sdr_record_eventonly_sensor *) rec;
break;
case SDR_RECORD_TYPE_GENERIC_DEVICE_LOCATOR:
sdrr->record.genloc =
(struct sdr_record_generic_locator *) rec;
break;
case SDR_RECORD_TYPE_FRU_DEVICE_LOCATOR:
sdrr->record.fruloc =
(struct sdr_record_fru_locator *) rec;
break;
case SDR_RECORD_TYPE_MC_DEVICE_LOCATOR:
sdrr->record.mcloc =
(struct sdr_record_mc_locator *) rec;
break;
case SDR_RECORD_TYPE_ENTITY_ASSOC:
sdrr->record.entassoc =
(struct sdr_record_entity_assoc *) rec;
break;
default:
free(rec);
rec = NULL;
if (sdrr != NULL) {
free(sdrr);
sdrr = NULL;
}
continue;
}
if (header->type == type)
__sdr_list_add(head, sdrr);
/* add to global record list */
if (sdr_list_head == NULL)
sdr_list_head = sdrr;
else
sdr_list_tail->next = sdrr;
sdr_list_tail = sdrr;
}
return head;
}
/* ipmi_sdr_find_sdr_byid - lookup SDR entry by ID string
*
* @intf: ipmi interface
* @id: string to match for sensor name
*
* returns pointer to SDR list
* returns NULL on error
*/
struct sdr_record_list *
ipmi_sdr_find_sdr_byid(struct ipmi_intf *intf, char *id)
{
struct sdr_get_rs *header;
struct sdr_record_list *e;
int found = 0;
int idlen;
if (id == NULL)
return NULL;
idlen = strlen(id);
if (sdr_list_itr == NULL) {
sdr_list_itr = ipmi_sdr_start(intf, 0);
if (sdr_list_itr == NULL) {
lprintf(LOG_ERR, "Unable to open SDR for reading");
return NULL;
}
}
/* check what we've already read */
for (e = sdr_list_head; e != NULL; e = e->next) {
switch (e->type) {
case SDR_RECORD_TYPE_FULL_SENSOR:
if (!strncmp((const char *)e->record.full->id_string,
(const char *)id,
__max(e->record.full->id_code & 0x1f, idlen)))
return e;
break;
case SDR_RECORD_TYPE_COMPACT_SENSOR:
if (!strncmp((const char *)e->record.compact->id_string,
(const char *)id,
__max(e->record.compact->id_code & 0x1f, idlen)))
return e;
break;
case SDR_RECORD_TYPE_EVENTONLY_SENSOR:
if (!strncmp((const char *)e->record.eventonly->id_string,
(const char *)id,
__max(e->record.eventonly->id_code & 0x1f, idlen)))
return e;
break;
case SDR_RECORD_TYPE_GENERIC_DEVICE_LOCATOR:
if (!strncmp((const char *)e->record.genloc->id_string,
(const char *)id,
__max(e->record.genloc->id_code & 0x1f, idlen)))
return e;
break;
case SDR_RECORD_TYPE_FRU_DEVICE_LOCATOR:
if (!strncmp((const char *)e->record.fruloc->id_string,
(const char *)id,
__max(e->record.fruloc->id_code & 0x1f, idlen)))
return e;
break;
case SDR_RECORD_TYPE_MC_DEVICE_LOCATOR:
if (!strncmp((const char *)e->record.mcloc->id_string,
(const char *)id,
__max(e->record.mcloc->id_code & 0x1f, idlen)))
return e;
break;
}
}
/* now keep looking */
while ((header = ipmi_sdr_get_next_header(intf, sdr_list_itr)) != NULL) {
uint8_t *rec;
struct sdr_record_list *sdrr;
sdrr = malloc(sizeof (struct sdr_record_list));
if (sdrr == NULL) {
lprintf(LOG_ERR, "ipmitool: malloc failure");
break;
}
memset(sdrr, 0, sizeof (struct sdr_record_list));
sdrr->id = header->id;
sdrr->type = header->type;
rec = ipmi_sdr_get_record(intf, header, sdr_list_itr);
if (rec == NULL) {
if (sdrr != NULL) {
free(sdrr);
sdrr = NULL;
}
continue;
}
switch (header->type) {
case SDR_RECORD_TYPE_FULL_SENSOR:
sdrr->record.full =
(struct sdr_record_full_sensor *) rec;
if (!strncmp(
(const char *)sdrr->record.full->id_string,
(const char *)id,
__max(sdrr->record.full->id_code & 0x1f, idlen)))
found = 1;
break;
case SDR_RECORD_TYPE_COMPACT_SENSOR:
sdrr->record.compact =
(struct sdr_record_compact_sensor *) rec;
if (!strncmp(
(const char *)sdrr->record.compact->id_string,
(const char *)id,
__max(sdrr->record.compact->id_code & 0x1f,
idlen)))
found = 1;
break;
case SDR_RECORD_TYPE_EVENTONLY_SENSOR:
sdrr->record.eventonly =
(struct sdr_record_eventonly_sensor *) rec;
if (!strncmp(
(const char *)sdrr->record.eventonly->id_string,
(const char *)id,
__max(sdrr->record.eventonly->id_code & 0x1f,
idlen)))
found = 1;
break;
case SDR_RECORD_TYPE_GENERIC_DEVICE_LOCATOR:
sdrr->record.genloc =
(struct sdr_record_generic_locator *) rec;
if (!strncmp(
(const char *)sdrr->record.genloc->id_string,
(const char *)id,
__max(sdrr->record.genloc->id_code & 0x1f, idlen)))
found = 1;
break;
case SDR_RECORD_TYPE_FRU_DEVICE_LOCATOR:
sdrr->record.fruloc =
(struct sdr_record_fru_locator *) rec;
if (!strncmp(
(const char *)sdrr->record.fruloc->id_string,
(const char *)id,
__max(sdrr->record.fruloc->id_code & 0x1f, idlen)))
found = 1;
break;
case SDR_RECORD_TYPE_MC_DEVICE_LOCATOR:
sdrr->record.mcloc =
(struct sdr_record_mc_locator *) rec;
if (!strncmp(
(const char *)sdrr->record.mcloc->id_string,
(const char *)id,
__max(sdrr->record.mcloc->id_code & 0x1f, idlen)))
found = 1;
break;
case SDR_RECORD_TYPE_ENTITY_ASSOC:
sdrr->record.entassoc =
(struct sdr_record_entity_assoc *) rec;
break;
default:
free(rec);
rec = NULL;
if (sdrr != NULL) {
free(sdrr);
sdrr = NULL;
}
continue;
}
/* add to global record liset */
if (sdr_list_head == NULL)
sdr_list_head = sdrr;
else
sdr_list_tail->next = sdrr;
sdr_list_tail = sdrr;
if (found)
return sdrr;
}
return NULL;
}
/* ipmi_sdr_list_cache_fromfile - generate SDR cache for fast lookup from local file
*
* @intf: ipmi interface
* @ifile: input filename
*
* returns pointer to SDR list
* returns NULL on error
*/
int
ipmi_sdr_list_cache_fromfile(struct ipmi_intf *intf, const char *ifile)
{
FILE *fp;
struct __sdr_header {
uint16_t id;
uint8_t version;
uint8_t type;
uint8_t length;
} header;
struct sdr_record_list *sdrr;
uint8_t *rec;
int ret = 0, count = 0, bc = 0;
if (ifile == NULL) {
lprintf(LOG_ERR, "No SDR cache filename given");
return -1;
}
fp = ipmi_open_file_read(ifile);
if (fp == NULL) {
lprintf(LOG_ERR, "Unable to open SDR cache %s for reading",
ifile);
return -1;
}
while (feof(fp) == 0) {
memset(&header, 0, sizeof(header));
bc = fread(&header, 1, 5, fp);
if (bc <= 0)
break;
if (bc != 5) {
lprintf(LOG_ERR, "header read %d bytes, expected 5",
bc);
ret = -1;
break;
}
if (header.length == 0)
continue;
if (header.version != 0x51 &&
header.version != 0x01 &&
header.version != 0x02) {
lprintf(LOG_WARN, "invalid sdr header version %02x",
header.version);
ret = -1;
break;
}
sdrr = malloc(sizeof (struct sdr_record_list));
if (sdrr == NULL) {
lprintf(LOG_ERR, "ipmitool: malloc failure");
ret = -1;
break;
}
memset(sdrr, 0, sizeof (struct sdr_record_list));
sdrr->id = header.id;
sdrr->type = header.type;
rec = malloc(header.length + 1);
if (rec == NULL) {
lprintf(LOG_ERR, "ipmitool: malloc failure");
ret = -1;
if (sdrr != NULL) {
free(sdrr);
sdrr = NULL;
}
break;
}
memset(rec, 0, header.length + 1);
bc = fread(rec, 1, header.length, fp);
if (bc != header.length) {
lprintf(LOG_ERR,
"record %04x read %d bytes, expected %d",
header.id, bc, header.length);
ret = -1;
if (sdrr != NULL) {
free(sdrr);
sdrr = NULL;
}
if (rec != NULL) {
free(rec);
rec = NULL;
}
break;
}
switch (header.type) {
case SDR_RECORD_TYPE_FULL_SENSOR:
case SDR_RECORD_TYPE_COMPACT_SENSOR:
sdrr->record.common =
(struct sdr_record_common_sensor *) rec;
break;
case SDR_RECORD_TYPE_EVENTONLY_SENSOR:
sdrr->record.eventonly =
(struct sdr_record_eventonly_sensor *) rec;
break;
case SDR_RECORD_TYPE_GENERIC_DEVICE_LOCATOR:
sdrr->record.genloc =
(struct sdr_record_generic_locator *) rec;
break;
case SDR_RECORD_TYPE_FRU_DEVICE_LOCATOR:
sdrr->record.fruloc =
(struct sdr_record_fru_locator *) rec;
break;
case SDR_RECORD_TYPE_MC_DEVICE_LOCATOR:
sdrr->record.mcloc =
(struct sdr_record_mc_locator *) rec;
break;
case SDR_RECORD_TYPE_ENTITY_ASSOC:
sdrr->record.entassoc =
(struct sdr_record_entity_assoc *) rec;
break;
default:
free(rec);
rec = NULL;
if (sdrr != NULL) {
free(sdrr);
sdrr = NULL;
}
continue;
}
/* add to global record liset */
if (sdr_list_head == NULL)
sdr_list_head = sdrr;
else
sdr_list_tail->next = sdrr;
sdr_list_tail = sdrr;
count++;
lprintf(LOG_DEBUG, "Read record %04x from file into cache",
sdrr->id);
}
if (sdr_list_itr == NULL) {
sdr_list_itr = malloc(sizeof (struct ipmi_sdr_iterator));
if (sdr_list_itr != NULL) {
sdr_list_itr->reservation = 0;
sdr_list_itr->total = count;
sdr_list_itr->next = 0xffff;
}
}
fclose(fp);
return ret;
}
/* ipmi_sdr_list_cache - generate SDR cache for fast lookup
*
* @intf: ipmi interface
*
* returns pointer to SDR list
* returns NULL on error
*/
int
ipmi_sdr_list_cache(struct ipmi_intf *intf)
{
struct sdr_get_rs *header;
if (sdr_list_itr == NULL) {
sdr_list_itr = ipmi_sdr_start(intf, 0);
if (sdr_list_itr == NULL) {
lprintf(LOG_ERR, "Unable to open SDR for reading");
return -1;
}
}
while ((header = ipmi_sdr_get_next_header(intf, sdr_list_itr)) != NULL) {
uint8_t *rec;
struct sdr_record_list *sdrr;
sdrr = malloc(sizeof (struct sdr_record_list));
if (sdrr == NULL) {
lprintf(LOG_ERR, "ipmitool: malloc failure");
break;
}
memset(sdrr, 0, sizeof (struct sdr_record_list));
sdrr->id = header->id;
sdrr->type = header->type;
rec = ipmi_sdr_get_record(intf, header, sdr_list_itr);
if (rec == NULL) {
if (sdrr != NULL) {
free(sdrr);
sdrr = NULL;
}
continue;
}
switch (header->type) {
case SDR_RECORD_TYPE_FULL_SENSOR:
case SDR_RECORD_TYPE_COMPACT_SENSOR:
sdrr->record.common =
(struct sdr_record_common_sensor *) rec;
break;
case SDR_RECORD_TYPE_EVENTONLY_SENSOR:
sdrr->record.eventonly =
(struct sdr_record_eventonly_sensor *) rec;
break;
case SDR_RECORD_TYPE_GENERIC_DEVICE_LOCATOR:
sdrr->record.genloc =
(struct sdr_record_generic_locator *) rec;
break;
case SDR_RECORD_TYPE_FRU_DEVICE_LOCATOR:
sdrr->record.fruloc =
(struct sdr_record_fru_locator *) rec;
break;
case SDR_RECORD_TYPE_MC_DEVICE_LOCATOR:
sdrr->record.mcloc =
(struct sdr_record_mc_locator *) rec;
break;
case SDR_RECORD_TYPE_ENTITY_ASSOC:
sdrr->record.entassoc =
(struct sdr_record_entity_assoc *) rec;
break;
default:
free(rec);
rec = NULL;
if (sdrr != NULL) {
free(sdrr);
sdrr = NULL;
}
continue;
}
/* add to global record liset */
if (sdr_list_head == NULL)
sdr_list_head = sdrr;
else
sdr_list_tail->next = sdrr;
sdr_list_tail = sdrr;
}
return 0;
}
/*
* ipmi_sdr_get_info
*
* Execute the GET SDR REPOSITORY INFO command, and populate the sdr_info
* structure.
* See section 33.9 of the IPMI v2 specification for details
*
* returns 0 on success
* -1 on transport error
* > 0 for other errors
*/
int
ipmi_sdr_get_info(struct ipmi_intf *intf,
struct get_sdr_repository_info_rsp *sdr_repository_info)
{
struct ipmi_rs *rsp;
struct ipmi_rq req;
memset(&req, 0, sizeof (req));
req.msg.netfn = IPMI_NETFN_STORAGE; // 0x0A
req.msg.cmd = IPMI_GET_SDR_REPOSITORY_INFO; // 0x20
req.msg.data = 0;
req.msg.data_len = 0;
rsp = intf->sendrecv(intf, &req);
if (rsp == NULL) {
lprintf(LOG_ERR, "Get SDR Repository Info command failed");
return -1;
}
if (rsp->ccode > 0) {
lprintf(LOG_ERR, "Get SDR Repository Info command failed: %s",
val2str(rsp->ccode, completion_code_vals));
return -1;
}
memcpy(sdr_repository_info,
rsp->data,
__min(sizeof (struct get_sdr_repository_info_rsp),
rsp->data_len));
return 0;
}
/* ipmi_sdr_timestamp - return string from timestamp value
*
* @stamp: 32bit timestamp
*
* returns pointer to static buffer
*/
static char *
ipmi_sdr_timestamp(uint32_t stamp)
{
static char tbuf[40];
time_t s = (time_t) stamp;
memset(tbuf, 0, 40);
if (stamp)
strftime(tbuf, sizeof (tbuf), "%m/%d/%Y %H:%M:%S",
gmtime(&s));
return tbuf;
}
/*
* ipmi_sdr_print_info
*
* Display the return data of the GET SDR REPOSITORY INFO command
* See section 33.9 of the IPMI v2 specification for details
*
* returns 0 on success
* -1 on error
*/
int
ipmi_sdr_print_info(struct ipmi_intf *intf)
{
uint32_t timestamp;
uint16_t free_space;
struct get_sdr_repository_info_rsp sdr_repository_info;
if (ipmi_sdr_get_info(intf, &sdr_repository_info) != 0)
return -1;
printf("SDR Version : 0x%x\n",
sdr_repository_info.sdr_version);
printf("Record Count : %d\n",
(sdr_repository_info.record_count_msb << 8) |
sdr_repository_info.record_count_lsb);
free_space =
(sdr_repository_info.free_space[1] << 8) |
sdr_repository_info.free_space[0];
printf("Free Space : ");
switch (free_space) {
case 0x0000:
printf("none (full)\n");
break;
case 0xFFFF:
printf("unspecified\n");
break;
case 0xFFFE:
printf("> 64Kb - 2 bytes\n");
break;
default:
printf("%d bytes\n", free_space);
break;
}
timestamp =
(sdr_repository_info.most_recent_addition_timestamp[3] << 24) |
(sdr_repository_info.most_recent_addition_timestamp[2] << 16) |
(sdr_repository_info.most_recent_addition_timestamp[1] << 8) |
sdr_repository_info.most_recent_addition_timestamp[0];
printf("Most recent Addition : %s\n",
ipmi_sdr_timestamp(timestamp));
timestamp =
(sdr_repository_info.most_recent_erase_timestamp[3] << 24) |
(sdr_repository_info.most_recent_erase_timestamp[2] << 16) |
(sdr_repository_info.most_recent_erase_timestamp[1] << 8) |
sdr_repository_info.most_recent_erase_timestamp[0];
printf("Most recent Erase : %s\n",
ipmi_sdr_timestamp(timestamp));
printf("SDR overflow : %s\n",
(sdr_repository_info.overflow_flag ? "yes" : "no"));
printf("SDR Repository Update Support : ");
switch (sdr_repository_info.modal_update_support) {
case 0:
printf("unspecified\n");
break;
case 1:
printf("non-modal\n");
break;
case 2:
printf("modal\n");
break;
case 3:
printf("modal and non-modal\n");
break;
default:
printf("error in response\n");
break;
}
printf("Delete SDR supported : %s\n",
sdr_repository_info.delete_sdr_supported ? "yes" : "no");
printf("Partial Add SDR supported : %s\n",
sdr_repository_info.partial_add_sdr_supported ? "yes" : "no");
printf("Reserve SDR repository supported : %s\n",
sdr_repository_info.
reserve_sdr_repository_supported ? "yes" : "no");
printf("SDR Repository Alloc info supported : %s\n",
sdr_repository_info.
get_sdr_repository_allo_info_supported ? "yes" : "no");
return 0;
}
/* ipmi_sdr_dump_bin - Write raw SDR to binary file
*
* used for post-processing by other utilities
*
* @intf: ipmi interface
* @ofile: output filename
*
* returns 0 on success
* returns -1 on error
*/
static int
ipmi_sdr_dump_bin(struct ipmi_intf *intf, const char *ofile)
{
struct sdr_get_rs *header;
struct ipmi_sdr_iterator *itr;
struct sdr_record_list *sdrr;
FILE *fp;
int rc = 0;
/* open connection to SDR */
itr = ipmi_sdr_start(intf, 0);
if (itr == NULL) {
lprintf(LOG_ERR, "Unable to open SDR for reading");
return -1;
}
printf("Dumping Sensor Data Repository to '%s'\n", ofile);
/* generate list of records */
while ((header = ipmi_sdr_get_next_header(intf, itr)) != NULL) {
sdrr = malloc(sizeof(struct sdr_record_list));
if (sdrr == NULL) {
lprintf(LOG_ERR, "ipmitool: malloc failure");
return -1;
}
memset(sdrr, 0, sizeof(struct sdr_record_list));
lprintf(LOG_INFO, "Record ID %04x (%d bytes)",
header->id, header->length);
sdrr->id = header->id;
sdrr->version = header->version;
sdrr->type = header->type;
sdrr->length = header->length;
sdrr->raw = ipmi_sdr_get_record(intf, header, itr);
if (sdrr->raw == NULL) {
lprintf(LOG_ERR, "ipmitool: cannot obtain SDR record %04x", header->id);
if (sdrr != NULL) {
free(sdrr);
sdrr = NULL;
}
return -1;
}
if (sdr_list_head == NULL)
sdr_list_head = sdrr;
else
sdr_list_tail->next = sdrr;
sdr_list_tail = sdrr;
}
ipmi_sdr_end(intf, itr);
/* now write to file */
fp = ipmi_open_file_write(ofile);
if (fp == NULL)
return -1;
for (sdrr = sdr_list_head; sdrr != NULL; sdrr = sdrr->next) {
int r;
uint8_t h[5];
/* build and write sdr header */
h[0] = sdrr->id & 0xff; // LS Byte first
h[1] = (sdrr->id >> 8) & 0xff;
h[2] = sdrr->version;
h[3] = sdrr->type;
h[4] = sdrr->length;
r = fwrite(h, 1, 5, fp);
if (r != 5) {
lprintf(LOG_ERR, "Error writing header "
"to output file %s", ofile);
rc = -1;
break;
}
/* write sdr entry */
if (!sdrr->raw) {
lprintf(LOG_ERR, "Error: raw data is null (length=%d)",
sdrr->length);
rc = -1;
break;
}
r = fwrite(sdrr->raw, 1, sdrr->length, fp);
if (r != sdrr->length) {
lprintf(LOG_ERR, "Error writing %d record bytes "
"to output file %s", sdrr->length, ofile);
rc = -1;
break;
}
}
fclose(fp);
return rc;
}
/* ipmi_sdr_print_type - print all sensors of specified type
*
* @intf: ipmi interface
* @type: sensor type
*
* returns 0 on success
* returns -1 on error
*/
int
ipmi_sdr_print_type(struct ipmi_intf *intf, char *type)
{
struct sdr_record_list *list, *entry;
int rc = 0;
int x;
uint8_t sensor_type = 0;
if (type == NULL ||
strncasecmp(type, "help", 4) == 0 ||
strncasecmp(type, "list", 4) == 0) {
printf("Sensor Types:\n");
for (x = 1; x < SENSOR_TYPE_MAX; x += 2) {
printf("\t%-25s (0x%02x) %-25s (0x%02x)\n",
sensor_type_desc[x], x,
sensor_type_desc[x + 1], x + 1);
}
return 0;
}
if (strncmp(type, "0x", 2) == 0) {
/* begins with 0x so let it be entered as raw hex value */
if (str2uchar(type, &sensor_type) != 0) {
lprintf(LOG_ERR,
"Given type of sensor \"%s\" is either invalid or out of range.",
type);
return (-1);
}
} else {
for (x = 1; x < SENSOR_TYPE_MAX; x++) {
if (strncasecmp(sensor_type_desc[x], type,
__maxlen(type,
sensor_type_desc[x])) == 0) {
sensor_type = x;
break;
}
}
if (sensor_type != x) {
lprintf(LOG_ERR, "Sensor Type \"%s\" not found.",
type);
printf("Sensor Types:\n");
for (x = 1; x < SENSOR_TYPE_MAX; x += 2) {
printf("\t%-25s (0x%02x) %-25s (0x%02x)\n",
sensor_type_desc[x], x,
sensor_type_desc[x + 1], x + 1);
}
return 0;
}
}
list = ipmi_sdr_find_sdr_bysensortype(intf, sensor_type);
for (entry = list; entry != NULL; entry = entry->next) {
rc = ipmi_sdr_print_listentry(intf, entry);
}
__sdr_list_empty(list);
return rc;
}
/* ipmi_sdr_print_entity - print entity's for an id/instance
*
* @intf: ipmi interface
* @entitystr: entity id/instance string, i.e. "1.1"
*
* returns 0 on success
* returns -1 on error
*/
int
ipmi_sdr_print_entity(struct ipmi_intf *intf, char *entitystr)
{
struct sdr_record_list *list, *entry;
struct entity_id entity;
unsigned id = 0;
unsigned instance = 0;
int rc = 0;
if (entitystr == NULL ||
strncasecmp(entitystr, "help", 4) == 0 ||
strncasecmp(entitystr, "list", 4) == 0) {
print_valstr_2col(entity_id_vals, "Entity IDs", -1);
return 0;
}
if (sscanf(entitystr, "%u.%u", &id, &instance) != 2) {
/* perhaps no instance was passed
* in which case we want all instances for this entity
* so set entity.instance = 0x7f to indicate this
*/
if (sscanf(entitystr, "%u", &id) != 1) {
int i, j=0;
/* now try string input */
for (i = 0; entity_id_vals[i].str != NULL; i++) {
if (strncasecmp(entitystr, entity_id_vals[i].str,
__maxlen(entitystr, entity_id_vals[i].str)) == 0) {
entity.id = entity_id_vals[i].val;
entity.instance = 0x7f;
j=1;
}
}
if (j == 0) {
lprintf(LOG_ERR, "Invalid entity: %s", entitystr);
return -1;
}
} else {
entity.id = id;
entity.instance = 0x7f;
}
} else {
entity.id = id;
entity.instance = instance;
}
list = ipmi_sdr_find_sdr_byentity(intf, &entity);
for (entry = list; entry != NULL; entry = entry->next) {
rc = ipmi_sdr_print_listentry(intf, entry);
}
__sdr_list_empty(list);
return rc;
}
/* ipmi_sdr_print_entry_byid - print sdr entries identified by sensor id
*
* @intf: ipmi interface
* @argc: number of entries to print
* @argv: list of sensor ids
*
* returns 0 on success
* returns -1 on error
*/
static int
ipmi_sdr_print_entry_byid(struct ipmi_intf *intf, int argc, char **argv)
{
struct sdr_record_list *sdr;
int rc = 0;
int v, i;
if (argc < 1) {
lprintf(LOG_ERR, "No Sensor ID supplied");
return -1;
}
v = verbose;
verbose = 1;
for (i = 0; i < argc; i++) {
sdr = ipmi_sdr_find_sdr_byid(intf, argv[i]);
if (sdr == NULL) {
lprintf(LOG_ERR, "Unable to find sensor id '%s'",
argv[i]);
} else {
if (ipmi_sdr_print_listentry(intf, sdr) < 0)
rc = -1;
}
}
verbose = v;
return rc;
}
/* ipmi_sdr_main - top-level handler for SDR subsystem
*
* @intf: ipmi interface
* @argc: number of arguments
* @argv: argument list
*
* returns 0 on success
* returns -1 on error
*/
int
ipmi_sdr_main(struct ipmi_intf *intf, int argc, char **argv)
{
int rc = 0;
/* initialize random numbers used later */
srand(time(NULL));
if (argc == 0)
return ipmi_sdr_print_sdr(intf, 0xfe);
else if (strncmp(argv[0], "help", 4) == 0) {
printf_sdr_usage();
} else if (strncmp(argv[0], "list", 4) == 0
|| strncmp(argv[0], "elist", 5) == 0) {
if (strncmp(argv[0], "elist", 5) == 0)
sdr_extended = 1;
else
sdr_extended = 0;
if (argc <= 1)
rc = ipmi_sdr_print_sdr(intf, 0xfe);
else if (strncmp(argv[1], "all", 3) == 0)
rc = ipmi_sdr_print_sdr(intf, 0xff);
else if (strncmp(argv[1], "full", 4) == 0)
rc = ipmi_sdr_print_sdr(intf,
SDR_RECORD_TYPE_FULL_SENSOR);
else if (strncmp(argv[1], "compact", 7) == 0)
rc = ipmi_sdr_print_sdr(intf,
SDR_RECORD_TYPE_COMPACT_SENSOR);
else if (strncmp(argv[1], "event", 5) == 0)
rc = ipmi_sdr_print_sdr(intf,
SDR_RECORD_TYPE_EVENTONLY_SENSOR);
else if (strncmp(argv[1], "mcloc", 5) == 0)
rc = ipmi_sdr_print_sdr(intf,
SDR_RECORD_TYPE_MC_DEVICE_LOCATOR);
else if (strncmp(argv[1], "fru", 3) == 0)
rc = ipmi_sdr_print_sdr(intf,
SDR_RECORD_TYPE_FRU_DEVICE_LOCATOR);
else if (strncmp(argv[1], "generic", 7) == 0)
rc = ipmi_sdr_print_sdr(intf,
SDR_RECORD_TYPE_GENERIC_DEVICE_LOCATOR);
else if (strcmp(argv[1], "help") == 0) {
lprintf(LOG_NOTICE,
"usage: sdr %s [all|full|compact|event|mcloc|fru|generic]",
argv[0]);
return 0;
}
else {
lprintf(LOG_ERR,
"Invalid SDR %s command: %s",
argv[0], argv[1]);
lprintf(LOG_NOTICE,
"usage: sdr %s [all|full|compact|event|mcloc|fru|generic]",
argv[0]);
return (-1);
}
} else if (strncmp(argv[0], "type", 4) == 0) {
sdr_extended = 1;
rc = ipmi_sdr_print_type(intf, argv[1]);
} else if (strncmp(argv[0], "entity", 6) == 0) {
sdr_extended = 1;
rc = ipmi_sdr_print_entity(intf, argv[1]);
} else if (strncmp(argv[0], "info", 4) == 0) {
rc = ipmi_sdr_print_info(intf);
} else if (strncmp(argv[0], "get", 3) == 0) {
rc = ipmi_sdr_print_entry_byid(intf, argc - 1, &argv[1]);
} else if (strncmp(argv[0], "dump", 4) == 0) {
if (argc < 2) {
lprintf(LOG_ERR, "Not enough parameters given.");
lprintf(LOG_NOTICE, "usage: sdr dump <file>");
return (-1);
}
rc = ipmi_sdr_dump_bin(intf, argv[1]);
} else if (strncmp(argv[0], "fill", 4) == 0) {
if (argc <= 1) {
lprintf(LOG_ERR, "Not enough parameters given.");
lprintf(LOG_NOTICE, "usage: sdr fill sensors");
lprintf(LOG_NOTICE, "usage: sdr fill file <file>");
lprintf(LOG_NOTICE, "usage: sdr fill range <range>");
return (-1);
} else if (strncmp(argv[1], "sensors", 7) == 0) {
rc = ipmi_sdr_add_from_sensors(intf, 21);
} else if (strncmp(argv[1], "nosat", 5) == 0) {
rc = ipmi_sdr_add_from_sensors(intf, 0);
} else if (strncmp(argv[1], "file", 4) == 0) {
if (argc < 3) {
lprintf(LOG_ERR,
"Not enough parameters given.");
lprintf(LOG_NOTICE,
"usage: sdr fill file <file>");
return (-1);
}
rc = ipmi_sdr_add_from_file(intf, argv[2]);
} else if (strncmp(argv[1], "range", 4) == 0) {
if (argc < 3) {
lprintf(LOG_ERR,
"Not enough parameters given.");
lprintf(LOG_NOTICE,
"usage: sdr fill range <range>");
return (-1);
}
rc = ipmi_sdr_add_from_list(intf, argv[2]);
} else {
lprintf(LOG_ERR,
"Invalid SDR %s command: %s",
argv[0], argv[1]);
lprintf(LOG_NOTICE,
"usage: sdr %s <sensors|nosat|file|range> [options]",
argv[0]);
return (-1);
}
} else {
lprintf(LOG_ERR, "Invalid SDR command: %s", argv[0]);
rc = -1;
}
return rc;
}
void
printf_sdr_usage()
{
lprintf(LOG_NOTICE,
"usage: sdr <command> [options]");
lprintf(LOG_NOTICE,
" list | elist [option]");
lprintf(LOG_NOTICE,
" all All SDR Records");
lprintf(LOG_NOTICE,
" full Full Sensor Record");
lprintf(LOG_NOTICE,
" compact Compact Sensor Record");
lprintf(LOG_NOTICE,
" event Event-Only Sensor Record");
lprintf(LOG_NOTICE,
" mcloc Management Controller Locator Record");
lprintf(LOG_NOTICE,
" fru FRU Locator Record");
lprintf(LOG_NOTICE,
" generic Generic Device Locator Record\n");
lprintf(LOG_NOTICE,
" type [option]");
lprintf(LOG_NOTICE,
" <Sensor_Type> Retrieve the state of specified sensor.");
lprintf(LOG_NOTICE,
" Sensor_Type can be specified either as");
lprintf(LOG_NOTICE,
" a string or a hex value.");
lprintf(LOG_NOTICE,
" list Get a list of available sensor types\n");
lprintf(LOG_NOTICE,
" get <Sensor_ID>");
lprintf(LOG_NOTICE,
" Retrieve state of the first sensor matched by Sensor_ID\n");
lprintf(LOG_NOTICE,
" info");
lprintf(LOG_NOTICE,
" Display information about the repository itself\n");
lprintf(LOG_NOTICE,
" entity <Entity_ID>[.<Instance_ID>]");
lprintf(LOG_NOTICE,
" Display all sensors associated with an entity\n");
lprintf(LOG_NOTICE,
" dump <file>");
lprintf(LOG_NOTICE,
" Dump raw SDR data to a file\n");
lprintf(LOG_NOTICE,
" fill <option>");
lprintf(LOG_NOTICE,
" sensors Creates the SDR repository for the current");
lprintf(LOG_NOTICE,
" configuration");
lprintf(LOG_NOTICE,
" nosat Creates the SDR repository for the current");
lprintf(LOG_NOTICE,
" configuration, without satellite scan");
lprintf(LOG_NOTICE,
" file <file> Load SDR repository from a file");
lprintf(LOG_NOTICE,
" range <range> Load SDR repository from a provided list");
lprintf(LOG_NOTICE,
" or range. Use ',' for list or '-' for");
lprintf(LOG_NOTICE,
" range, eg. 0x28,0x32,0x40-0x44");
}