/* multifit_nlinear/common.c
*
* Copyright (C) 2014, 2015, 2016 Patrick Alken
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
static double scaled_enorm (const gsl_vector * d, const gsl_vector * f);
static void scaled_addition (const double alpha, const gsl_vector * x,
const double beta, const gsl_vector * y,
gsl_vector * z);
static double quadratic_preduction(const gsl_vector *f, const gsl_matrix * J,
const gsl_vector * dx, gsl_vector * work);
/* compute || diag(d) f || */
static double
scaled_enorm (const gsl_vector * d, const gsl_vector * f)
{
double e2 = 0;
size_t i, n = f->size;
for (i = 0; i < n; i++)
{
double fi = gsl_vector_get (f, i);
double di = gsl_vector_get (d, i);
double u = di * fi;
e2 += u * u;
}
return sqrt (e2);
}
/* compute z = alpha*x + beta*y */
static void
scaled_addition (const double alpha, const gsl_vector * x,
const double beta, const gsl_vector * y, gsl_vector * z)
{
const size_t N = z->size;
size_t i;
for (i = 0; i < N; i++)
{
double xi = gsl_vector_get (x, i);
double yi = gsl_vector_get (y, i);
gsl_vector_set (z, i, alpha * xi + beta * yi);
}
}
/*
quadratic_preduction()
Calculate predicted reduction based on standard
quadratic model:
m_k(dx) = Phi(x_k) + dx' g + 1/2 dx' B_k dx
predicted_reduction = m_k(0) - m_k(dx)
= -2 g^T dx / ||f||^2 - ( ||J*dx|| / ||f|| )^2
= -2 fhat . beta - ||beta||^2
where: beta = J*dx / ||f||
Inputs: f - f(x), size n
J - Jacobian J(x), n-by-p
dx - proposed step, size p
work - workspace, size n
Return: predicted reduction
*/
static double
quadratic_preduction(const gsl_vector * f, const gsl_matrix * J,
const gsl_vector * dx, gsl_vector * work)
{
const size_t n = f->size;
const double normf = gsl_blas_dnrm2(f);
double pred_reduction;
double norm_beta; /* ||J*dx|| / ||f|| */
size_t i;
/* compute beta = J*dx / ||f|| */
gsl_blas_dgemv(CblasNoTrans, 1.0 / normf, J, dx, 0.0, work);
norm_beta = gsl_blas_dnrm2(work);
/* initialize to ( ||J*dx|| / ||f|| )^2 */
pred_reduction = -norm_beta * norm_beta;
/* subtract 2*fhat.beta */
for (i = 0; i < n; ++i)
{
double fi = gsl_vector_get(f, i);
double betai = gsl_vector_get(work, i);
pred_reduction -= 2.0 * (fi / normf) * betai;
}
return pred_reduction;
}