Blob Blame History Raw
/* multifit_nlinear/common.c
 * 
 * Copyright (C) 2014, 2015, 2016 Patrick Alken
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or (at
 * your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

static double scaled_enorm (const gsl_vector * d, const gsl_vector * f);
static void scaled_addition (const double alpha, const gsl_vector * x,
                             const double beta, const gsl_vector * y,
                             gsl_vector * z);
static double quadratic_preduction(const gsl_vector *f, const gsl_matrix * J,
                                   const gsl_vector * dx, gsl_vector * work);

/* compute || diag(d) f || */
static double
scaled_enorm (const gsl_vector * d, const gsl_vector * f)
{
  double e2 = 0;
  size_t i, n = f->size;
  for (i = 0; i < n; i++)
    {
      double fi = gsl_vector_get (f, i);
      double di = gsl_vector_get (d, i);
      double u = di * fi;
      e2 += u * u;
    }
  return sqrt (e2);
}

/* compute z = alpha*x + beta*y */
static void
scaled_addition (const double alpha, const gsl_vector * x,
                 const double beta, const gsl_vector * y, gsl_vector * z)
{
  const size_t N = z->size;
  size_t i;

  for (i = 0; i < N; i++)
    {
      double xi = gsl_vector_get (x, i);
      double yi = gsl_vector_get (y, i);
      gsl_vector_set (z, i, alpha * xi + beta * yi);
    }
}

/*
quadratic_preduction()
  Calculate predicted reduction based on standard
quadratic model:

m_k(dx) = Phi(x_k) + dx' g + 1/2 dx' B_k dx

predicted_reduction = m_k(0) - m_k(dx)
                    = -2 g^T dx / ||f||^2 - ( ||J*dx|| / ||f|| )^2
                    = -2 fhat . beta - ||beta||^2

where: beta = J*dx / ||f||

Inputs: f     - f(x), size n
        J     - Jacobian J(x), n-by-p
        dx    - proposed step, size p
        work  - workspace, size n

Return: predicted reduction
*/

static double
quadratic_preduction(const gsl_vector * f, const gsl_matrix * J,
                     const gsl_vector * dx, gsl_vector * work)
{
  const size_t n = f->size;
  const double normf = gsl_blas_dnrm2(f);
  double pred_reduction;
  double norm_beta; /* ||J*dx|| / ||f|| */
  size_t i;

  /* compute beta = J*dx / ||f|| */
  gsl_blas_dgemv(CblasNoTrans, 1.0 / normf, J, dx, 0.0, work);
  norm_beta = gsl_blas_dnrm2(work);

  /* initialize to ( ||J*dx|| / ||f|| )^2 */
  pred_reduction = -norm_beta * norm_beta;

  /* subtract 2*fhat.beta */
  for (i = 0; i < n; ++i)
    {
      double fi = gsl_vector_get(f, i);
      double betai = gsl_vector_get(work, i);

      pred_reduction -= 2.0 * (fi / normf) * betai;
    }

  return pred_reduction;
}