/* integration/qawo.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <config.h>
#include <math.h>
#include <float.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_integration.h>
#include "initialise.c"
#include "set_initial.c"
#include "reset.c"
#include "qpsrt.c"
#include "util.c"
#include "qpsrt2.c"
#include "qelg.c"
#include "positivity.c"
#include "qc25f.c"
int
gsl_integration_qawo (gsl_function * f,
const double a,
const double epsabs, const double epsrel,
const size_t limit,
gsl_integration_workspace * workspace,
gsl_integration_qawo_table * wf,
double *result, double *abserr)
{
double area, errsum;
double res_ext, err_ext;
double result0, abserr0, resabs0, resasc0;
double tolerance;
double ertest = 0;
double error_over_large_intervals = 0;
double reseps = 0, abseps = 0, correc = 0;
size_t ktmin = 0;
int roundoff_type1 = 0, roundoff_type2 = 0, roundoff_type3 = 0;
int error_type = 0, error_type2 = 0;
size_t iteration = 0;
int positive_integrand = 0;
int extrapolate = 0;
int extall = 0;
int disallow_extrapolation = 0;
struct extrapolation_table table;
double b = a + wf->L ;
double abs_omega = fabs (wf->omega) ;
/* Initialize results */
initialise (workspace, a, b);
*result = 0;
*abserr = 0;
if (limit > workspace->limit)
{
GSL_ERROR ("iteration limit exceeds available workspace", GSL_EINVAL) ;
}
/* Test on accuracy */
if (epsabs <= 0 && (epsrel < 50 * GSL_DBL_EPSILON || epsrel < 0.5e-28))
{
GSL_ERROR ("tolerance cannot be achieved with given epsabs and epsrel",
GSL_EBADTOL);
}
/* Perform the first integration */
qc25f (f, a, b, wf, 0, &result0, &abserr0, &resabs0, &resasc0);
set_initial_result (workspace, result0, abserr0);
tolerance = GSL_MAX_DBL (epsabs, epsrel * fabs (result0));
if (abserr0 <= 100 * GSL_DBL_EPSILON * resabs0 && abserr0 > tolerance)
{
*result = result0;
*abserr = abserr0;
GSL_ERROR ("cannot reach tolerance because of roundoff error "
"on first attempt", GSL_EROUND);
}
else if ((abserr0 <= tolerance && abserr0 != resasc0) || abserr0 == 0.0)
{
*result = result0;
*abserr = abserr0;
return GSL_SUCCESS;
}
else if (limit == 1)
{
*result = result0;
*abserr = abserr0;
GSL_ERROR ("a maximum of one iteration was insufficient", GSL_EMAXITER);
}
/* Initialization */
initialise_table (&table);
if (0.5 * abs_omega * fabs(b - a) <= 2)
{
append_table (&table, result0);
extall = 1;
}
area = result0;
errsum = abserr0;
res_ext = result0;
err_ext = GSL_DBL_MAX;
positive_integrand = test_positivity (result0, resabs0);
iteration = 1;
do
{
size_t current_level;
double a1, b1, a2, b2;
double a_i, b_i, r_i, e_i;
double area1 = 0, area2 = 0, area12 = 0;
double error1 = 0, error2 = 0, error12 = 0;
double resasc1, resasc2;
double resabs1, resabs2;
double last_e_i;
/* Bisect the subinterval with the largest error estimate */
retrieve (workspace, &a_i, &b_i, &r_i, &e_i);
current_level = workspace->level[workspace->i] + 1;
if (current_level >= wf->n)
{
error_type = -1 ; /* exceeded limit of table */
break ;
}
a1 = a_i;
b1 = 0.5 * (a_i + b_i);
a2 = b1;
b2 = b_i;
iteration++;
qc25f (f, a1, b1, wf, current_level, &area1, &error1, &resabs1, &resasc1);
qc25f (f, a2, b2, wf, current_level, &area2, &error2, &resabs2, &resasc2);
area12 = area1 + area2;
error12 = error1 + error2;
last_e_i = e_i;
/* Improve previous approximations to the integral and test for
accuracy.
We write these expressions in the same way as the original
QUADPACK code so that the rounding errors are the same, which
makes testing easier. */
errsum = errsum + error12 - e_i;
area = area + area12 - r_i;
tolerance = GSL_MAX_DBL (epsabs, epsrel * fabs (area));
if (resasc1 != error1 && resasc2 != error2)
{
double delta = r_i - area12;
if (fabs (delta) <= 1.0e-5 * fabs (area12) && error12 >= 0.99 * e_i)
{
if (!extrapolate)
{
roundoff_type1++;
}
else
{
roundoff_type2++;
}
}
if (iteration > 10 && error12 > e_i)
{
roundoff_type3++;
}
}
/* Test for roundoff and eventually set error flag */
if (roundoff_type1 + roundoff_type2 >= 10 || roundoff_type3 >= 20)
{
error_type = 2; /* round off error */
}
if (roundoff_type2 >= 5)
{
error_type2 = 1;
}
/* set error flag in the case of bad integrand behaviour at
a point of the integration range */
if (subinterval_too_small (a1, a2, b2))
{
error_type = 4;
}
/* append the newly-created intervals to the list */
update (workspace, a1, b1, area1, error1, a2, b2, area2, error2);
if (errsum <= tolerance)
{
goto compute_result;
}
if (error_type)
{
break;
}
if (iteration >= limit - 1)
{
error_type = 1;
break;
}
/* set up variables on first iteration */
if (iteration == 2 && extall)
{
error_over_large_intervals = errsum;
ertest = tolerance;
append_table (&table, area);
continue;
}
if (disallow_extrapolation)
{
continue;
}
if (extall)
{
error_over_large_intervals += -last_e_i;
if (current_level < workspace->maximum_level)
{
error_over_large_intervals += error12;
}
if (extrapolate)
goto label70;
}
if (large_interval(workspace))
{
continue;
}
if (extall)
{
extrapolate = 1;
workspace->nrmax = 1;
}
else
{
/* test whether the interval to be bisected next is the
smallest interval. */
size_t i = workspace->i;
double width = workspace->blist[i] - workspace->alist[i];
if (0.25 * fabs(width) * abs_omega > 2)
continue;
extall = 1;
error_over_large_intervals = errsum;
ertest = tolerance;
continue;
}
label70:
if (!error_type2 && error_over_large_intervals > ertest)
{
if (increase_nrmax (workspace))
continue;
}
/* Perform extrapolation */
append_table (&table, area);
if (table.n < 3)
{
reset_nrmax(workspace);
extrapolate = 0;
error_over_large_intervals = errsum;
continue;
}
qelg (&table, &reseps, &abseps);
ktmin++;
if (ktmin > 5 && err_ext < 0.001 * errsum)
{
error_type = 5;
}
if (abseps < err_ext)
{
ktmin = 0;
err_ext = abseps;
res_ext = reseps;
correc = error_over_large_intervals;
ertest = GSL_MAX_DBL (epsabs, epsrel * fabs (reseps));
if (err_ext <= ertest)
break;
}
/* Prepare bisection of the smallest interval. */
if (table.n == 1)
{
disallow_extrapolation = 1;
}
if (error_type == 5)
{
break;
}
/* work on interval with largest error */
reset_nrmax (workspace);
extrapolate = 0;
error_over_large_intervals = errsum;
}
while (iteration < limit);
*result = res_ext;
*abserr = err_ext;
if (err_ext == GSL_DBL_MAX)
goto compute_result;
if (error_type || error_type2)
{
if (error_type2)
{
err_ext += correc;
}
if (error_type == 0)
error_type = 3;
if (result != 0 && area != 0)
{
if (err_ext / fabs (res_ext) > errsum / fabs (area))
goto compute_result;
}
else if (err_ext > errsum)
{
goto compute_result;
}
else if (area == 0.0)
{
goto return_error;
}
}
/* Test on divergence. */
{
double max_area = GSL_MAX_DBL (fabs (res_ext), fabs (area));
if (!positive_integrand && max_area < 0.01 * resabs0)
goto return_error;
}
{
double ratio = res_ext / area;
if (ratio < 0.01 || ratio > 100 || errsum > fabs (area))
error_type = 6;
}
goto return_error;
compute_result:
*result = sum_results (workspace);
*abserr = errsum;
return_error:
if (error_type > 2)
error_type--;
if (error_type == 0)
{
return GSL_SUCCESS;
}
else if (error_type == 1)
{
GSL_ERROR ("number of iterations was insufficient", GSL_EMAXITER);
}
else if (error_type == 2)
{
GSL_ERROR ("cannot reach tolerance because of roundoff error",
GSL_EROUND);
}
else if (error_type == 3)
{
GSL_ERROR ("bad integrand behavior found in the integration interval",
GSL_ESING);
}
else if (error_type == 4)
{
GSL_ERROR ("roundoff error detected in extrapolation table", GSL_EROUND);
}
else if (error_type == 5)
{
GSL_ERROR ("integral is divergent, or slowly convergent", GSL_EDIVERGE);
}
else if (error_type == -1)
{
GSL_ERROR ("exceeded limit of trigonometric table", GSL_ETABLE);
}
else
{
GSL_ERROR ("could not integrate function", GSL_EFAILED);
}
}