/* specfunc/bessel_Kn.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* Author: G. Jungman */
#include <config.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_sf_gamma.h>
#include <gsl/gsl_sf_psi.h>
#include <gsl/gsl_sf_bessel.h>
#include "error.h"
#include "bessel.h"
/*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*/
/* [Abramowitz+Stegun, 9.6.11]
* assumes n >= 1
*/
static
int
bessel_Kn_scaled_small_x(const int n, const double x, gsl_sf_result * result)
{
int k;
double y = 0.25 * x * x;
double ln_x_2 = log(0.5*x);
double ex = exp(x);
gsl_sf_result ln_nm1_fact;
double k_term;
double term1, sum1, ln_pre1;
double term2, sum2, pre2;
gsl_sf_lnfact_e((unsigned int)(n-1), &ln_nm1_fact);
ln_pre1 = -n*ln_x_2 + ln_nm1_fact.val;
if(ln_pre1 > GSL_LOG_DBL_MAX - 3.0) GSL_ERROR ("error", GSL_EOVRFLW);
sum1 = 1.0;
k_term = 1.0;
for(k=1; k<=n-1; k++) {
k_term *= -y/(k * (n-k));
sum1 += k_term;
}
term1 = 0.5 * exp(ln_pre1) * sum1;
pre2 = 0.5 * exp(n*ln_x_2);
if(pre2 > 0.0) {
const int KMAX = 20;
gsl_sf_result psi_n;
gsl_sf_result npk_fact;
double yk = 1.0;
double k_fact = 1.0;
double psi_kp1 = -M_EULER;
double psi_npkp1;
gsl_sf_psi_int_e(n, &psi_n);
gsl_sf_fact_e((unsigned int)n, &npk_fact);
psi_npkp1 = psi_n.val + 1.0/n;
sum2 = (psi_kp1 + psi_npkp1 - 2.0*ln_x_2)/npk_fact.val;
for(k=1; k<KMAX; k++) {
psi_kp1 += 1.0/k;
psi_npkp1 += 1.0/(n+k);
k_fact *= k;
npk_fact.val *= n+k;
yk *= y;
k_term = yk*(psi_kp1 + psi_npkp1 - 2.0*ln_x_2)/(k_fact*npk_fact.val);
sum2 += k_term;
}
term2 = ( GSL_IS_ODD(n) ? -1.0 : 1.0 ) * pre2 * sum2;
}
else {
term2 = 0.0;
}
result->val = ex * (term1 + term2);
result->err = ex * GSL_DBL_EPSILON * (fabs(ln_pre1)*fabs(term1) + fabs(term2));
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return GSL_SUCCESS;
}
/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/
int gsl_sf_bessel_Kn_scaled_e(int n, const double x, gsl_sf_result * result)
{
n = abs(n); /* K(-n, z) = K(n, z) */
/* CHECK_POINTER(result) */
if(x <= 0.0) {
DOMAIN_ERROR(result);
}
else if(n == 0) {
return gsl_sf_bessel_K0_scaled_e(x, result);
}
else if(n == 1) {
return gsl_sf_bessel_K1_scaled_e(x, result);
}
else if(x <= 5.0) {
return bessel_Kn_scaled_small_x(n, x, result);
}
else if(GSL_ROOT3_DBL_EPSILON * x > 0.25 * (n*n + 1)) {
return gsl_sf_bessel_Knu_scaled_asympx_e((double)n, x, result);
}
else if(GSL_MIN(0.29/(n*n), 0.5/(n*n + x*x)) < GSL_ROOT3_DBL_EPSILON) {
return gsl_sf_bessel_Knu_scaled_asymp_unif_e((double)n, x, result);
}
else {
/* Upward recurrence. [Gradshteyn + Ryzhik, 8.471.1] */
double two_over_x = 2.0/x;
gsl_sf_result r_b_jm1;
gsl_sf_result r_b_j;
int stat_0 = gsl_sf_bessel_K0_scaled_e(x, &r_b_jm1);
int stat_1 = gsl_sf_bessel_K1_scaled_e(x, &r_b_j);
double b_jm1 = r_b_jm1.val;
double b_j = r_b_j.val;
double b_jp1;
int j;
for(j=1; j<n; j++) {
b_jp1 = b_jm1 + j * two_over_x * b_j;
b_jm1 = b_j;
b_j = b_jp1;
}
result->val = b_j;
result->err = n * (fabs(b_j) * (fabs(r_b_jm1.err/r_b_jm1.val) + fabs(r_b_j.err/r_b_j.val)));
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return GSL_ERROR_SELECT_2(stat_0, stat_1);
}
}
int gsl_sf_bessel_Kn_e(const int n, const double x, gsl_sf_result * result)
{
const int status = gsl_sf_bessel_Kn_scaled_e(n, x, result);
const double ex = exp(-x);
result->val *= ex;
result->err *= ex;
result->err += x * GSL_DBL_EPSILON * fabs(result->val);
return status;
}
int gsl_sf_bessel_Kn_scaled_array(const int nmin, const int nmax, const double x, double * result_array)
{
/* CHECK_POINTER(result_array) */
if(nmin < 0 || nmax < nmin || x <= 0.0) {
int j;
for(j=0; j<=nmax-nmin; j++) result_array[j] = 0.0;
GSL_ERROR ("domain error", GSL_EDOM);
}
else if(nmax == 0) {
gsl_sf_result b;
int stat = gsl_sf_bessel_K0_scaled_e(x, &b);
result_array[0] = b.val;
return stat;
}
else {
double two_over_x = 2.0/x;
gsl_sf_result r_Knm1;
gsl_sf_result r_Kn;
int stat_0 = gsl_sf_bessel_Kn_scaled_e(nmin, x, &r_Knm1);
int stat_1 = gsl_sf_bessel_Kn_scaled_e(nmin+1, x, &r_Kn);
int stat = GSL_ERROR_SELECT_2(stat_0, stat_1);
double Knp1;
double Kn = r_Kn.val;
double Knm1 = r_Knm1.val;
int n;
for(n=nmin+1; n<=nmax+1; n++) {
if(Knm1 < GSL_DBL_MAX) {
result_array[n-1-nmin] = Knm1;
Knp1 = Knm1 + n * two_over_x * Kn;
Knm1 = Kn;
Kn = Knp1;
}
else {
/* Overflow. Set the rest of the elements to
* zero and bug out.
* FIXME: Note: this relies on the convention
* that the test x < DBL_MIN fails for x not
* a number. This may be only an IEEE convention,
* so the portability is unclear.
*/
int j;
for(j=n; j<=nmax+1; j++) result_array[j-1-nmin] = 0.0;
GSL_ERROR ("overflow", GSL_EOVRFLW);
}
}
return stat;
}
}
int
gsl_sf_bessel_Kn_array(const int nmin, const int nmax, const double x, double * result_array)
{
int status = gsl_sf_bessel_Kn_scaled_array(nmin, nmax, x, result_array);
double ex = exp(-x);
int i;
for(i=0; i<=nmax-nmin; i++) result_array[i] *= ex;
return status;
}
/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/
#include "eval.h"
double gsl_sf_bessel_Kn_scaled(const int n, const double x)
{
EVAL_RESULT(gsl_sf_bessel_Kn_scaled_e(n, x, &result));
}
double gsl_sf_bessel_Kn(const int n, const double x)
{
EVAL_RESULT(gsl_sf_bessel_Kn_e(n, x, &result));
}