/* siman/siman_tsp.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000 Mark Galassi
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <config.h>
#include <math.h>
#include <string.h>
#include <stdio.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_siman.h>
#include <gsl/gsl_ieee_utils.h>
/* set up parameters for this simulated annealing run */
#define N_TRIES 200 /* how many points do we try before stepping */
#define ITERS_FIXED_T 2000 /* how many iterations for each T? */
#define STEP_SIZE 1.0 /* max step size in random walk */
#define K 1.0 /* Boltzmann constant */
#define T_INITIAL 5000.0 /* initial temperature */
#define MU_T 1.002 /* damping factor for temperature */
#define T_MIN 5.0e-1
gsl_siman_params_t params = {N_TRIES, ITERS_FIXED_T, STEP_SIZE,
K, T_INITIAL, MU_T, T_MIN};
struct s_tsp_city {
const char * name;
double lat, longitude; /* coordinates */
};
typedef struct s_tsp_city Stsp_city;
void prepare_distance_matrix(void);
void exhaustive_search(void);
void print_distance_matrix(void);
double city_distance(Stsp_city c1, Stsp_city c2);
double Etsp(void *xp);
double Mtsp(void *xp, void *yp);
void Stsp(const gsl_rng * r, void *xp, double step_size);
void Ptsp(void *xp);
/* in this table, latitude and longitude are obtained from the US
Census Bureau, at http://www.census.gov/cgi-bin/gazetteer */
Stsp_city cities[] = {{"Santa Fe", 35.68, 105.95},
{"Phoenix", 33.54, 112.07},
{"Albuquerque", 35.12, 106.62},
{"Clovis", 34.41, 103.20},
{"Durango", 37.29, 107.87},
{"Dallas", 32.79, 96.77},
{"Tesuque", 35.77, 105.92},
{"Grants", 35.15, 107.84},
{"Los Alamos", 35.89, 106.28},
{"Las Cruces", 32.34, 106.76},
{"Cortez", 37.35, 108.58},
{"Gallup", 35.52, 108.74}};
#define N_CITIES (sizeof(cities)/sizeof(Stsp_city))
double distance_matrix[N_CITIES][N_CITIES];
/* distance between two cities */
double city_distance(Stsp_city c1, Stsp_city c2)
{
const double earth_radius = 6375.000; /* 6000KM approximately */
/* sin and cos of lat and long; must convert to radians */
double sla1 = sin(c1.lat*M_PI/180), cla1 = cos(c1.lat*M_PI/180),
slo1 = sin(c1.longitude*M_PI/180), clo1 = cos(c1.longitude*M_PI/180);
double sla2 = sin(c2.lat*M_PI/180), cla2 = cos(c2.lat*M_PI/180),
slo2 = sin(c2.longitude*M_PI/180), clo2 = cos(c2.longitude*M_PI/180);
double x1 = cla1*clo1;
double x2 = cla2*clo2;
double y1 = cla1*slo1;
double y2 = cla2*slo2;
double z1 = sla1;
double z2 = sla2;
double dot_product = x1*x2 + y1*y2 + z1*z2;
double angle = acos(dot_product);
/* distance is the angle (in radians) times the earth radius */
return angle*earth_radius;
}
/* energy for the travelling salesman problem */
double Etsp(void *xp)
{
/* an array of N_CITIES integers describing the order */
int *route = (int *) xp;
double E = 0;
unsigned int i;
for (i = 0; i < N_CITIES; ++i) {
/* use the distance_matrix to optimize this calculation; it had
better be allocated!! */
E += distance_matrix[route[i]][route[(i + 1) % N_CITIES]];
}
return E;
}
double Mtsp(void *xp, void *yp)
{
int *route1 = (int *) xp, *route2 = (int *) yp;
double distance = 0;
unsigned int i;
for (i = 0; i < N_CITIES; ++i) {
distance += ((route1[i] == route2[i]) ? 0 : 1);
}
return distance;
}
/* take a step through the TSP space */
void Stsp(const gsl_rng * r, void *xp, double step_size)
{
int x1, x2, dummy;
int *route = (int *) xp;
step_size = 0 ; /* prevent warnings about unused parameter */
/* pick the two cities to swap in the matrix; we leave the first
city fixed */
x1 = (gsl_rng_get (r) % (N_CITIES-1)) + 1;
do {
x2 = (gsl_rng_get (r) % (N_CITIES-1)) + 1;
} while (x2 == x1);
dummy = route[x1];
route[x1] = route[x2];
route[x2] = dummy;
}
void Ptsp(void *xp)
{
unsigned int i;
int *route = (int *) xp;
printf(" [");
for (i = 0; i < N_CITIES; ++i) {
printf(" %d ", route[i]);
}
printf("] ");
}
int main(void)
{
int x_initial[N_CITIES];
unsigned int i;
const gsl_rng * r = gsl_rng_alloc (gsl_rng_env_setup()) ;
gsl_ieee_env_setup ();
prepare_distance_matrix();
/* set up a trivial initial route */
printf("# initial order of cities:\n");
for (i = 0; i < N_CITIES; ++i) {
printf("# \"%s\"\n", cities[i].name);
x_initial[i] = i;
}
printf("# distance matrix is:\n");
print_distance_matrix();
printf("# initial coordinates of cities (longitude and latitude)\n");
/* this can be plotted with */
/* ./siman_tsp > hhh ; grep city_coord hhh | awk '{print $2 " " $3}' | xyplot -ps -d "xy" > c.eps */
for (i = 0; i < N_CITIES+1; ++i) {
printf("###initial_city_coord: %g %g \"%s\"\n",
-cities[x_initial[i % N_CITIES]].longitude,
cities[x_initial[i % N_CITIES]].lat,
cities[x_initial[i % N_CITIES]].name);
}
/* exhaustive_search(); */
gsl_siman_solve(r, x_initial, Etsp, Stsp, Mtsp, Ptsp, NULL, NULL, NULL,
N_CITIES*sizeof(int), params);
printf("# final order of cities:\n");
for (i = 0; i < N_CITIES; ++i) {
printf("# \"%s\"\n", cities[x_initial[i]].name);
}
printf("# final coordinates of cities (longitude and latitude)\n");
/* this can be plotted with */
/* ./siman_tsp > hhh ; grep city_coord hhh | awk '{print $2 " " $3}' | xyplot -ps -d "xy" > c.eps */
for (i = 0; i < N_CITIES+1; ++i) {
printf("###final_city_coord: %g %g %s\n",
-cities[x_initial[i % N_CITIES]].longitude,
cities[x_initial[i % N_CITIES]].lat,
cities[x_initial[i % N_CITIES]].name);
}
printf("# ");
fflush(stdout);
#if 0
system("date");
#endif /* 0 */
fflush(stdout);
return 0;
}
void prepare_distance_matrix()
{
unsigned int i, j;
double dist;
for (i = 0; i < N_CITIES; ++i) {
for (j = 0; j < N_CITIES; ++j) {
if (i == j) {
dist = 0;
} else {
dist = city_distance(cities[i], cities[j]);
}
distance_matrix[i][j] = dist;
}
}
}
void print_distance_matrix()
{
unsigned int i, j;
for (i = 0; i < N_CITIES; ++i) {
printf("# ");
for (j = 0; j < N_CITIES; ++j) {
printf("%15.8f ", distance_matrix[i][j]);
}
printf("\n");
}
}
/* [only works for 12] search the entire space for solutions */
static double best_E = 1.0e100, second_E = 1.0e100, third_E = 1.0e100;
static int best_route[N_CITIES];
static int second_route[N_CITIES];
static int third_route[N_CITIES];
static void do_all_perms(int *route, int n);
void exhaustive_search()
{
static int initial_route[N_CITIES] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
printf("\n# ");
fflush(stdout);
#if 0
system("date");
#endif
fflush(stdout);
do_all_perms(initial_route, 1);
printf("\n# ");
fflush(stdout);
#if 0
system("date");
#endif /* 0 */
fflush(stdout);
printf("# exhaustive best route: ");
Ptsp(best_route);
printf("\n# its energy is: %g\n", best_E);
printf("# exhaustive second_best route: ");
Ptsp(second_route);
printf("\n# its energy is: %g\n", second_E);
printf("# exhaustive third_best route: ");
Ptsp(third_route);
printf("\n# its energy is: %g\n", third_E);
}
/* James Theiler's recursive algorithm for generating all routes */
static void do_all_perms(int *route, int n)
{
if (n == (N_CITIES-1)) {
/* do it! calculate the energy/cost for that route */
double E;
E = Etsp(route); /* TSP energy function */
/* now save the best 3 energies and routes */
if (E < best_E) {
third_E = second_E;
memcpy(third_route, second_route, N_CITIES*sizeof(*route));
second_E = best_E;
memcpy(second_route, best_route, N_CITIES*sizeof(*route));
best_E = E;
memcpy(best_route, route, N_CITIES*sizeof(*route));
} else if (E < second_E) {
third_E = second_E;
memcpy(third_route, second_route, N_CITIES*sizeof(*route));
second_E = E;
memcpy(second_route, route, N_CITIES*sizeof(*route));
} else if (E < third_E) {
third_E = E;
memcpy(route, third_route, N_CITIES*sizeof(*route));
}
} else {
int new_route[N_CITIES];
unsigned int j;
int swap_tmp;
memcpy(new_route, route, N_CITIES*sizeof(*route));
for (j = n; j < N_CITIES; ++j) {
swap_tmp = new_route[j];
new_route[j] = new_route[n];
new_route[n] = swap_tmp;
do_all_perms(new_route, n+1);
}
}
}