Blob Blame History Raw
/* frv simulator fr400 dependent profiling code.

   Copyright (C) 2001-2018 Free Software Foundation, Inc.
   Contributed by Red Hat

This file is part of the GNU simulators.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.

*/
#define WANT_CPU
#define WANT_CPU_FRVBF

#include "sim-main.h"
#include "bfd.h"

#if WITH_PROFILE_MODEL_P

#include "profile.h"
#include "profile-fr400.h"

/* These functions get and set flags representing the use of
   registers/resources.  */
static void set_use_not_fp_load (SIM_CPU *, INT);
static void set_use_not_media_p4 (SIM_CPU *, INT);
static void set_use_not_media_p6 (SIM_CPU *, INT);

static void set_acc_use_not_media_p2 (SIM_CPU *, INT);
static void set_acc_use_not_media_p4 (SIM_CPU *, INT);

void
fr400_reset_gr_flags (SIM_CPU *cpu, INT fr)
{
  set_use_not_gr_complex (cpu, fr);
}

void
fr400_reset_fr_flags (SIM_CPU *cpu, INT fr)
{
  set_use_not_fp_load  (cpu, fr);
  set_use_not_media_p4 (cpu, fr);
  set_use_not_media_p6 (cpu, fr);
}

void
fr400_reset_acc_flags (SIM_CPU *cpu, INT acc)
{
  set_acc_use_not_media_p2 (cpu, acc);
  set_acc_use_not_media_p4 (cpu, acc);
}

static void
set_use_is_fp_load (SIM_CPU *cpu, INT fr, INT fr_double)
{
  MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
  if (fr != -1)
    {
      fr400_reset_fr_flags (cpu, fr);
      d->cur_fp_load |= (((DI)1) << fr);
    }
  if (fr_double != -1)
    {
      fr400_reset_fr_flags (cpu, fr_double);
      d->cur_fp_load |= (((DI)1) << fr_double);
      if (fr_double < 63)
	{
	  fr400_reset_fr_flags (cpu, fr_double + 1);
	  d->cur_fp_load |= (((DI)1) << (fr_double + 1));
	}
    }

}

static void
set_use_not_fp_load (SIM_CPU *cpu, INT fr)
{
  MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
  if (fr != -1)
    d->cur_fp_load &= ~(((DI)1) << fr);
}

static int
use_is_fp_load (SIM_CPU *cpu, INT fr)
{
  MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
  if (fr != -1)
    return (d->prev_fp_load >> fr) & 1;
  return 0;
}

static void
set_acc_use_is_media_p2 (SIM_CPU *cpu, INT acc)
{
  MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
  if (acc != -1)
    {
      fr400_reset_acc_flags (cpu, acc);
      d->cur_acc_p2 |= (((DI)1) << acc);
    }
}

static void
set_acc_use_not_media_p2 (SIM_CPU *cpu, INT acc)
{
  MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
  if (acc != -1)
    d->cur_acc_p2 &= ~(((DI)1) << acc);
}

static int
acc_use_is_media_p2 (SIM_CPU *cpu, INT acc)
{
  MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
  if (acc != -1)
    return d->cur_acc_p2 & (((DI)1) << acc);
  return 0;
}

static void
set_use_is_media_p4 (SIM_CPU *cpu, INT fr)
{
  MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
  if (fr != -1)
    {
      fr400_reset_fr_flags (cpu, fr);
      d->cur_fr_p4 |= (((DI)1) << fr);
    }
}

static void
set_use_not_media_p4 (SIM_CPU *cpu, INT fr)
{
  MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
  if (fr != -1)
    d->cur_fr_p4 &= ~(((DI)1) << fr);
}

static int
use_is_media_p4 (SIM_CPU *cpu, INT fr)
{
  MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
  if (fr != -1)
    return d->cur_fr_p4 & (((DI)1) << fr);
  return 0;
}

static void
set_acc_use_is_media_p4 (SIM_CPU *cpu, INT acc)
{
  MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
  if (acc != -1)
    {
      fr400_reset_acc_flags (cpu, acc);
      d->cur_acc_p4 |= (((DI)1) << acc);
    }
}

static void
set_acc_use_not_media_p4 (SIM_CPU *cpu, INT acc)
{
  MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
  if (acc != -1)
    d->cur_acc_p4 &= ~(((DI)1) << acc);
}

static int
acc_use_is_media_p4 (SIM_CPU *cpu, INT acc)
{
  MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
  if (acc != -1)
    return d->cur_acc_p4 & (((DI)1) << acc);
  return 0;
}

static void
set_use_is_media_p6 (SIM_CPU *cpu, INT fr)
{
  MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
  if (fr != -1)
    {
      fr400_reset_fr_flags (cpu, fr);
      d->cur_fr_p6 |= (((DI)1) << fr);
    }
}

static void
set_use_not_media_p6 (SIM_CPU *cpu, INT fr)
{
  MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
  if (fr != -1)
    d->cur_fr_p6 &= ~(((DI)1) << fr);
}

static int
use_is_media_p6 (SIM_CPU *cpu, INT fr)
{
  MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
  if (fr != -1)
    return d->cur_fr_p6 & (((DI)1) << fr);
  return 0;
}

/* Initialize cycle counting for an insn.
   FIRST_P is non-zero if this is the first insn in a set of parallel
   insns.  */
void
fr400_model_insn_before (SIM_CPU *cpu, int first_p)
{
  if (first_p)
    {
      MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
      FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
      ps->cur_gr_complex = ps->prev_gr_complex;
      d->cur_fp_load = d->prev_fp_load;
      d->cur_fr_p4 = d->prev_fr_p4;
      d->cur_fr_p6 = d->prev_fr_p6;
      d->cur_acc_p2 = d->prev_acc_p2;
      d->cur_acc_p4 = d->prev_acc_p4;
    }
}

/* Record the cycles computed for an insn.
   LAST_P is non-zero if this is the last insn in a set of parallel insns,
   and we update the total cycle count.
   CYCLES is the cycle count of the insn.  */
void
fr400_model_insn_after (SIM_CPU *cpu, int last_p, int cycles)
{
  if (last_p)
    {
      MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
      FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
      ps->prev_gr_complex = ps->cur_gr_complex;
      d->prev_fp_load = d->cur_fp_load;
      d->prev_fr_p4 = d->cur_fr_p4;
      d->prev_fr_p6 = d->cur_fr_p6;
      d->prev_acc_p2 = d->cur_acc_p2;
      d->prev_acc_p4 = d->cur_acc_p4;
    }
}

int
frvbf_model_fr400_u_exec (SIM_CPU *cpu, const IDESC *idesc,
			    int unit_num, int referenced)
{
  return idesc->timing->units[unit_num].done;
}

int
frvbf_model_fr400_u_integer (SIM_CPU *cpu, const IDESC *idesc,
			     int unit_num, int referenced,
			     INT in_GRi, INT in_GRj, INT out_GRk,
			     INT out_ICCi_1)
{
  /* Modelling for this unit is the same as for fr500.  */
  return frvbf_model_fr500_u_integer (cpu, idesc, unit_num, referenced,
				      in_GRi, in_GRj, out_GRk, out_ICCi_1);
}

int
frvbf_model_fr400_u_imul (SIM_CPU *cpu, const IDESC *idesc,
			  int unit_num, int referenced,
			  INT in_GRi, INT in_GRj, INT out_GRk, INT out_ICCi_1)
{
  /* Modelling for this unit is the same as for fr500.  */
  return frvbf_model_fr500_u_imul (cpu, idesc, unit_num, referenced,
				   in_GRi, in_GRj, out_GRk, out_ICCi_1);
}

int
frvbf_model_fr400_u_idiv (SIM_CPU *cpu, const IDESC *idesc,
			  int unit_num, int referenced,
			  INT in_GRi, INT in_GRj, INT out_GRk, INT out_ICCi_1)
{
  int cycles;
  FRV_VLIW *vliw;
  int slot;

  /* icc0-icc4 are the upper 4 fields of the CCR.  */
  if (out_ICCi_1 >= 0)
    out_ICCi_1 += 4;

  vliw = CPU_VLIW (cpu);
  slot = vliw->next_slot - 1;
  slot = (*vliw->current_vliw)[slot] - UNIT_I0;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    {
      /* The entire VLIW insn must wait if there is a dependency on a register
	 which is not ready yet.
	 The latency of the registers may be less than previously recorded,
	 depending on how they were used previously.
	 See Table 13-8 in the LSI.  */
      if (in_GRi != out_GRk && in_GRi >= 0)
	{
	  if (use_is_gr_complex (cpu, in_GRi))
	    decrease_GR_busy (cpu, in_GRi, 1);
	}
      if (in_GRj != out_GRk && in_GRj != in_GRi && in_GRj >= 0)
	{
	  if (use_is_gr_complex (cpu, in_GRj))
	    decrease_GR_busy (cpu, in_GRj, 1);
	}
      vliw_wait_for_GR (cpu, in_GRi);
      vliw_wait_for_GR (cpu, in_GRj);
      vliw_wait_for_GR (cpu, out_GRk);
      vliw_wait_for_CCR (cpu, out_ICCi_1);
      vliw_wait_for_idiv_resource (cpu, slot);
      handle_resource_wait (cpu);
      load_wait_for_GR (cpu, in_GRi);
      load_wait_for_GR (cpu, in_GRj);
      load_wait_for_GR (cpu, out_GRk);
      trace_vliw_wait_cycles (cpu);
      return 0;
    }

  /* GRk has a latency of 19 cycles!  */
  cycles = idesc->timing->units[unit_num].done;
  update_GR_latency (cpu, out_GRk, cycles + 19);
  set_use_is_gr_complex (cpu, out_GRk);

  /* ICCi_1 has a latency of 18 cycles.  */
  update_CCR_latency (cpu, out_ICCi_1, cycles + 18);

  /* the idiv resource has a latency of 18 cycles!  */
  update_idiv_resource_latency (cpu, slot, cycles + 18);

  return cycles;
}

int
frvbf_model_fr400_u_branch (SIM_CPU *cpu, const IDESC *idesc,
			    int unit_num, int referenced,
			    INT in_GRi, INT in_GRj,
			    INT in_ICCi_2, INT in_ICCi_3)
{
#define BRANCH_PREDICTED(ps) ((ps)->branch_hint & 2)
  FRV_PROFILE_STATE *ps;
  int cycles;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    {
      /* Modelling for this unit is the same as for fr500 in pass 1.  */
      return frvbf_model_fr500_u_branch (cpu, idesc, unit_num, referenced,
					 in_GRi, in_GRj, in_ICCi_2, in_ICCi_3);
    }

  cycles = idesc->timing->units[unit_num].done;

  /* Compute the branch penalty, based on the the prediction and the out
     come.  When counting branches taken or not taken, don't consider branches
     after the first taken branch in a vliw insn.  */
  ps = CPU_PROFILE_STATE (cpu);
  if (! ps->vliw_branch_taken)
    {
      int penalty;
      /* (1 << 4): The pc is the 5th element in inputs, outputs.
	 ??? can be cleaned up */
      PROFILE_DATA *p = CPU_PROFILE_DATA (cpu);
      int taken = (referenced & (1 << 4)) != 0;
      if (taken)
	{
	  ++PROFILE_MODEL_TAKEN_COUNT (p);
	  ps->vliw_branch_taken = 1;
	  if (BRANCH_PREDICTED (ps))
	    penalty = 1;
	  else
	    penalty = 3;
	}
      else
	{
	  ++PROFILE_MODEL_UNTAKEN_COUNT (p);
	  if (BRANCH_PREDICTED (ps))
	    penalty = 3;
	  else
	    penalty = 0;
	}
      if (penalty > 0)
	{
	  /* Additional 1 cycle penalty if the branch address is not 8 byte
	     aligned.  */
	  if (ps->branch_address & 7)
	    ++penalty;
	  update_branch_penalty (cpu, penalty);
	  PROFILE_MODEL_CTI_STALL_CYCLES (p) += penalty;
	}
    }

  return cycles;
}

int
frvbf_model_fr400_u_trap (SIM_CPU *cpu, const IDESC *idesc,
			  int unit_num, int referenced,
			  INT in_GRi, INT in_GRj,
			  INT in_ICCi_2, INT in_FCCi_2)
{
  /* Modelling for this unit is the same as for fr500.  */
  return frvbf_model_fr500_u_trap (cpu, idesc, unit_num, referenced,
				   in_GRi, in_GRj, in_ICCi_2, in_FCCi_2);
}

int
frvbf_model_fr400_u_check (SIM_CPU *cpu, const IDESC *idesc,
			   int unit_num, int referenced,
			   INT in_ICCi_3, INT in_FCCi_3)
{
  /* Modelling for this unit is the same as for fr500.  */
  return frvbf_model_fr500_u_check (cpu, idesc, unit_num, referenced,
				    in_ICCi_3, in_FCCi_3);
}

int
frvbf_model_fr400_u_set_hilo (SIM_CPU *cpu, const IDESC *idesc,
			     int unit_num, int referenced,
			     INT out_GRkhi, INT out_GRklo)
{
  /* Modelling for this unit is the same as for fr500.  */
  return frvbf_model_fr500_u_set_hilo (cpu, idesc, unit_num, referenced,
				       out_GRkhi, out_GRklo);
}

int
frvbf_model_fr400_u_gr_load (SIM_CPU *cpu, const IDESC *idesc,
			     int unit_num, int referenced,
			     INT in_GRi, INT in_GRj,
			     INT out_GRk, INT out_GRdoublek)
{
  /* Modelling for this unit is the same as for fr500.  */
  return frvbf_model_fr500_u_gr_load (cpu, idesc, unit_num, referenced,
				      in_GRi, in_GRj, out_GRk, out_GRdoublek);
}

int
frvbf_model_fr400_u_gr_store (SIM_CPU *cpu, const IDESC *idesc,
			      int unit_num, int referenced,
			      INT in_GRi, INT in_GRj,
			      INT in_GRk, INT in_GRdoublek)
{
  /* Modelling for this unit is the same as for fr500.  */
  return frvbf_model_fr500_u_gr_store (cpu, idesc, unit_num, referenced,
				       in_GRi, in_GRj, in_GRk, in_GRdoublek);
}

int
frvbf_model_fr400_u_fr_load (SIM_CPU *cpu, const IDESC *idesc,
			     int unit_num, int referenced,
			     INT in_GRi, INT in_GRj,
			     INT out_FRk, INT out_FRdoublek)
{
  int cycles;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    {
      /* Pass 1 is the same as for fr500.  */
      return frvbf_model_fr500_u_fr_load (cpu, idesc, unit_num, referenced,
					  in_GRi, in_GRj, out_FRk,
					  out_FRdoublek);
    }

  cycles = idesc->timing->units[unit_num].done;

  /* The latency of FRk for a load will depend on how long it takes to retrieve
     the the data from the cache or memory.  */
  update_FR_latency_for_load (cpu, out_FRk, cycles);
  update_FRdouble_latency_for_load (cpu, out_FRdoublek, cycles);

  set_use_is_fp_load (cpu, out_FRk, out_FRdoublek);

  return cycles;
}

int
frvbf_model_fr400_u_fr_store (SIM_CPU *cpu, const IDESC *idesc,
			      int unit_num, int referenced,
			      INT in_GRi, INT in_GRj,
			      INT in_FRk, INT in_FRdoublek)
{
  int cycles;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    {
      /* The entire VLIW insn must wait if there is a dependency on a register
	 which is not ready yet.
	 The latency of the registers may be less than previously recorded,
	 depending on how they were used previously.
	 See Table 13-8 in the LSI.  */
      if (in_GRi >= 0)
	{
	  if (use_is_gr_complex (cpu, in_GRi))
	    decrease_GR_busy (cpu, in_GRi, 1);
	}
      if (in_GRj != in_GRi && in_GRj >= 0)
	{
	  if (use_is_gr_complex (cpu, in_GRj))
	    decrease_GR_busy (cpu, in_GRj, 1);
	}
      if (in_FRk >= 0)
	{
	  if (use_is_media_p4 (cpu, in_FRk) || use_is_media_p6 (cpu, in_FRk))
	    decrease_FR_busy (cpu, in_FRk, 1);
	  else
	    enforce_full_fr_latency (cpu, in_FRk);
	}
      vliw_wait_for_GR (cpu, in_GRi);
      vliw_wait_for_GR (cpu, in_GRj);
      vliw_wait_for_FR (cpu, in_FRk);
      vliw_wait_for_FRdouble (cpu, in_FRdoublek);
      handle_resource_wait (cpu);
      load_wait_for_GR (cpu, in_GRi);
      load_wait_for_GR (cpu, in_GRj);
      load_wait_for_FR (cpu, in_FRk);
      load_wait_for_FRdouble (cpu, in_FRdoublek);
      trace_vliw_wait_cycles (cpu);
      return 0;
    }

  cycles = idesc->timing->units[unit_num].done;

  return cycles;
}

int
frvbf_model_fr400_u_swap (SIM_CPU *cpu, const IDESC *idesc,
			  int unit_num, int referenced,
			  INT in_GRi, INT in_GRj, INT out_GRk)
{
  /* Modelling for this unit is the same as for fr500.  */
  return frvbf_model_fr500_u_swap (cpu, idesc, unit_num, referenced,
				   in_GRi, in_GRj, out_GRk);
}

int
frvbf_model_fr400_u_fr2gr (SIM_CPU *cpu, const IDESC *idesc,
			   int unit_num, int referenced,
			   INT in_FRk, INT out_GRj)
{
  int cycles;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    {
      /* The entire VLIW insn must wait if there is a dependency on a register
	 which is not ready yet.
	 The latency of the registers may be less than previously recorded,
	 depending on how they were used previously.
	 See Table 13-8 in the LSI.  */
      if (in_FRk >= 0)
	{
	  if (use_is_media_p4 (cpu, in_FRk) || use_is_media_p6 (cpu, in_FRk))
	    decrease_FR_busy (cpu, in_FRk, 1);
	  else
	    enforce_full_fr_latency (cpu, in_FRk);
	}
      vliw_wait_for_FR (cpu, in_FRk);
      vliw_wait_for_GR (cpu, out_GRj);
      handle_resource_wait (cpu);
      load_wait_for_FR (cpu, in_FRk);
      load_wait_for_GR (cpu, out_GRj);
      trace_vliw_wait_cycles (cpu);
      return 0;
    }

  /* The latency of GRj is 2 cycles.  */
  cycles = idesc->timing->units[unit_num].done;
  update_GR_latency (cpu, out_GRj, cycles + 2);
  set_use_is_gr_complex (cpu, out_GRj);

  return cycles;
}

int
frvbf_model_fr400_u_spr2gr (SIM_CPU *cpu, const IDESC *idesc,
			   int unit_num, int referenced,
			   INT in_spr, INT out_GRj)
{
  /* Modelling for this unit is the same as for fr500.  */
  return frvbf_model_fr500_u_spr2gr (cpu, idesc, unit_num, referenced,
				     in_spr, out_GRj);
}

int
frvbf_model_fr400_u_gr2fr (SIM_CPU *cpu, const IDESC *idesc,
			   int unit_num, int referenced,
			   INT in_GRj, INT out_FRk)
{
  int cycles;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    {
      /* Pass 1 is the same as for fr500.  */
      frvbf_model_fr500_u_gr2fr (cpu, idesc, unit_num, referenced,
				 in_GRj, out_FRk);
    }

  /* The latency of FRk is 1 cycles.  */
  cycles = idesc->timing->units[unit_num].done;
  update_FR_latency (cpu, out_FRk, cycles + 1);

  return cycles;
}

int
frvbf_model_fr400_u_gr2spr (SIM_CPU *cpu, const IDESC *idesc,
			    int unit_num, int referenced,
			    INT in_GRj, INT out_spr)
{
  /* Modelling for this unit is the same as for fr500.  */
  return frvbf_model_fr500_u_gr2spr (cpu, idesc, unit_num, referenced,
				     in_GRj, out_spr);
}

int
frvbf_model_fr400_u_media_1 (SIM_CPU *cpu, const IDESC *idesc,
			     int unit_num, int referenced,
			     INT in_FRi, INT in_FRj,
			     INT out_FRk)
{
  int cycles;
  FRV_PROFILE_STATE *ps;
  const CGEN_INSN *insn;
  int busy_adjustment[] = {0, 0};
  int *fr;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    return 0;

  /* The preprocessing can execute right away.  */
  cycles = idesc->timing->units[unit_num].done;

  ps = CPU_PROFILE_STATE (cpu);
  insn = idesc->idata;

  /* The latency of the registers may be less than previously recorded,
     depending on how they were used previously.
     See Table 13-8 in the LSI.  */
  if (in_FRi >= 0)
    {
      if (use_is_fp_load (cpu, in_FRi))
	{
	  busy_adjustment[0] = 1;
	  decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]);
	}
      else
	enforce_full_fr_latency (cpu, in_FRi);
    }
  if (in_FRj >= 0 && in_FRj != in_FRi)
    {
      if (use_is_fp_load (cpu, in_FRj))
	{
	  busy_adjustment[1] = 1;
	  decrease_FR_busy (cpu, in_FRj, busy_adjustment[1]);
	}
      else
	enforce_full_fr_latency (cpu, in_FRj);
    }

  /* The post processing must wait if there is a dependency on a FR
     which is not ready yet.  */
  ps->post_wait = cycles;
  post_wait_for_FR (cpu, in_FRi);
  post_wait_for_FR (cpu, in_FRj);
  post_wait_for_FR (cpu, out_FRk);

  /* Restore the busy cycles of the registers we used.  */
  fr = ps->fr_busy;
  if (in_FRi >= 0)
    fr[in_FRi] += busy_adjustment[0];
  if (in_FRj >= 0)
    fr[in_FRj] += busy_adjustment[1];

  /* The latency of the output register will be at least the latency of the
     other inputs.  Once initiated, post-processing has no latency.  */
  if (out_FRk >= 0)
    {
      update_FR_latency (cpu, out_FRk, ps->post_wait);
      update_FR_ptime (cpu, out_FRk, 0);
    }

  return cycles;
}

int
frvbf_model_fr400_u_media_1_quad (SIM_CPU *cpu, const IDESC *idesc,
				  int unit_num, int referenced,
				  INT in_FRi, INT in_FRj,
				  INT out_FRk)
{
  int cycles;
  INT dual_FRi;
  INT dual_FRj;
  INT dual_FRk;
  FRV_PROFILE_STATE *ps;
  int busy_adjustment[] = {0, 0, 0, 0};
  int *fr;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    return 0;

  /* The preprocessing can execute right away.  */
  cycles = idesc->timing->units[unit_num].done;

  ps = CPU_PROFILE_STATE (cpu);
  dual_FRi = DUAL_REG (in_FRi);
  dual_FRj = DUAL_REG (in_FRj);
  dual_FRk = DUAL_REG (out_FRk);

  /* The latency of the registers may be less than previously recorded,
     depending on how they were used previously.
     See Table 13-8 in the LSI.  */
  if (use_is_fp_load (cpu, in_FRi))
    {
      busy_adjustment[0] = 1;
      decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]);
    }
  else
    enforce_full_fr_latency (cpu, in_FRi);
  if (dual_FRi >= 0 && use_is_fp_load (cpu, dual_FRi))
    {
      busy_adjustment[1] = 1;
      decrease_FR_busy (cpu, dual_FRi, busy_adjustment[1]);
    }
  else
    enforce_full_fr_latency (cpu, dual_FRi);
  if (in_FRj != in_FRi)
    {
      if (use_is_fp_load (cpu, in_FRj))
	{
	  busy_adjustment[2] = 1;
	  decrease_FR_busy (cpu, in_FRj, busy_adjustment[2]);
	}
      else
	enforce_full_fr_latency (cpu, in_FRj);
      if (dual_FRj >= 0 && use_is_fp_load (cpu, dual_FRj))
	{
	  busy_adjustment[3] = 1;
	  decrease_FR_busy (cpu, dual_FRj, busy_adjustment[3]);
	}
      else
	enforce_full_fr_latency (cpu, dual_FRj);
    }

  /* The post processing must wait if there is a dependency on a FR
     which is not ready yet.  */
  ps->post_wait = cycles;
  post_wait_for_FR (cpu, in_FRi);
  post_wait_for_FR (cpu, dual_FRi);
  post_wait_for_FR (cpu, in_FRj);
  post_wait_for_FR (cpu, dual_FRj);
  post_wait_for_FR (cpu, out_FRk);
  post_wait_for_FR (cpu, dual_FRk);

  /* Restore the busy cycles of the registers we used.  */
  fr = ps->fr_busy;
  fr[in_FRi] += busy_adjustment[0];
  if (dual_FRi >= 0)
    fr[dual_FRi] += busy_adjustment[1];
  fr[in_FRj] += busy_adjustment[2];
  if (dual_FRj >= 0)
    fr[dual_FRj] += busy_adjustment[3];

  /* The latency of the output register will be at least the latency of the
     other inputs.  */
  update_FR_latency (cpu, out_FRk, ps->post_wait);

  /* Once initiated, post-processing has no latency.  */
  update_FR_ptime (cpu, out_FRk, 0);

  if (dual_FRk >= 0)
    {
      update_FR_latency (cpu, dual_FRk, ps->post_wait);
      update_FR_ptime (cpu, dual_FRk, 0);
    }

  return cycles;
}

int
frvbf_model_fr400_u_media_hilo (SIM_CPU *cpu, const IDESC *idesc,
				int unit_num, int referenced,
				INT out_FRkhi, INT out_FRklo)
{
  int cycles;
  FRV_PROFILE_STATE *ps;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    return 0;

  /* The preprocessing can execute right away.  */
  cycles = idesc->timing->units[unit_num].done;

  ps = CPU_PROFILE_STATE (cpu);

  /* The post processing must wait if there is a dependency on a FR
     which is not ready yet.  */
  ps->post_wait = cycles;
  post_wait_for_FR (cpu, out_FRkhi);
  post_wait_for_FR (cpu, out_FRklo);

  /* The latency of the output register will be at least the latency of the
     other inputs.  Once initiated, post-processing has no latency.  */
  if (out_FRkhi >= 0)
    {
      update_FR_latency (cpu, out_FRkhi, ps->post_wait);
      update_FR_ptime (cpu, out_FRkhi, 0);
    }
  if (out_FRklo >= 0)
    {
      update_FR_latency (cpu, out_FRklo, ps->post_wait);
      update_FR_ptime (cpu, out_FRklo, 0);
    }

  return cycles;
}

int
frvbf_model_fr400_u_media_2 (SIM_CPU *cpu, const IDESC *idesc,
			     int unit_num, int referenced,
			     INT in_FRi, INT in_FRj,
			     INT out_ACC40Sk, INT out_ACC40Uk)
{
  int cycles;
  INT dual_ACC40Sk;
  INT dual_ACC40Uk;
  FRV_PROFILE_STATE *ps;
  int busy_adjustment[] = {0, 0, 0, 0, 0, 0};
  int *fr;
  int *acc;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    return 0;

  /* The preprocessing can execute right away.  */
  cycles = idesc->timing->units[unit_num].done;

  ps = CPU_PROFILE_STATE (cpu);
  dual_ACC40Sk = DUAL_REG (out_ACC40Sk);
  dual_ACC40Uk = DUAL_REG (out_ACC40Uk);

  /* The latency of the registers may be less than previously recorded,
     depending on how they were used previously.
     See Table 13-8 in the LSI.  */
  if (in_FRi >= 0)
    {
      if (use_is_fp_load (cpu, in_FRi))
	{
	  busy_adjustment[0] = 1;
	  decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]);
	}
      else
	enforce_full_fr_latency (cpu, in_FRi);
    }
  if (in_FRj >= 0 && in_FRj != in_FRi)
    {
      if (use_is_fp_load (cpu, in_FRj))
	{
	  busy_adjustment[1] = 1;
	  decrease_FR_busy (cpu, in_FRj, busy_adjustment[1]);
	}
      else
	enforce_full_fr_latency (cpu, in_FRj);
    }
  if (out_ACC40Sk >= 0)
    {
      if (acc_use_is_media_p2 (cpu, out_ACC40Sk))
	{
	  busy_adjustment[2] = 1;
	  decrease_ACC_busy (cpu, out_ACC40Sk, busy_adjustment[2]);
	}
    }
  if (dual_ACC40Sk >= 0)
    {
      if (acc_use_is_media_p2 (cpu, dual_ACC40Sk))
	{
	  busy_adjustment[3] = 1;
	  decrease_ACC_busy (cpu, dual_ACC40Sk, busy_adjustment[3]);
	}
    }
  if (out_ACC40Uk >= 0)
    {
      if (acc_use_is_media_p2 (cpu, out_ACC40Uk))
	{
	  busy_adjustment[4] = 1;
	  decrease_ACC_busy (cpu, out_ACC40Uk, busy_adjustment[4]);
	}
    }
  if (dual_ACC40Uk >= 0)
    {
      if (acc_use_is_media_p2 (cpu, dual_ACC40Uk))
	{
	  busy_adjustment[5] = 1;
	  decrease_ACC_busy (cpu, dual_ACC40Uk, busy_adjustment[5]);
	}
    }

  /* The post processing must wait if there is a dependency on a FR
     which is not ready yet.  */
  ps->post_wait = cycles;
  post_wait_for_FR (cpu, in_FRi);
  post_wait_for_FR (cpu, in_FRj);
  post_wait_for_ACC (cpu, out_ACC40Sk);
  post_wait_for_ACC (cpu, dual_ACC40Sk);
  post_wait_for_ACC (cpu, out_ACC40Uk);
  post_wait_for_ACC (cpu, dual_ACC40Uk);

  /* Restore the busy cycles of the registers we used.  */
  fr = ps->fr_busy;
  acc = ps->acc_busy;
  fr[in_FRi] += busy_adjustment[0];
  fr[in_FRj] += busy_adjustment[1];
  if (out_ACC40Sk >= 0)
    acc[out_ACC40Sk] += busy_adjustment[2];
  if (dual_ACC40Sk >= 0)
    acc[dual_ACC40Sk] += busy_adjustment[3];
  if (out_ACC40Uk >= 0)
    acc[out_ACC40Uk] += busy_adjustment[4];
  if (dual_ACC40Uk >= 0)
    acc[dual_ACC40Uk] += busy_adjustment[5];

  /* The latency of the output register will be at least the latency of the
     other inputs.  Once initiated, post-processing will take 1 cycles.  */
  if (out_ACC40Sk >= 0)
    {
      update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1);
      set_acc_use_is_media_p2 (cpu, out_ACC40Sk);
    }
  if (dual_ACC40Sk >= 0)
    {
      update_ACC_latency (cpu, dual_ACC40Sk, ps->post_wait + 1);
      set_acc_use_is_media_p2 (cpu, dual_ACC40Sk);
    }
  if (out_ACC40Uk >= 0)
    {
      update_ACC_latency (cpu, out_ACC40Uk, ps->post_wait + 1);
      set_acc_use_is_media_p2 (cpu, out_ACC40Uk);
    }
  if (dual_ACC40Uk >= 0)
    {
      update_ACC_latency (cpu, dual_ACC40Uk, ps->post_wait + 1);
      set_acc_use_is_media_p2 (cpu, dual_ACC40Uk);
    }

  return cycles;
}

int
frvbf_model_fr400_u_media_2_quad (SIM_CPU *cpu, const IDESC *idesc,
				  int unit_num, int referenced,
				  INT in_FRi, INT in_FRj,
				  INT out_ACC40Sk, INT out_ACC40Uk)
{
  int cycles;
  INT dual_FRi;
  INT dual_FRj;
  INT ACC40Sk_1;
  INT ACC40Sk_2;
  INT ACC40Sk_3;
  INT ACC40Uk_1;
  INT ACC40Uk_2;
  INT ACC40Uk_3;
  FRV_PROFILE_STATE *ps;
  int busy_adjustment[] = {0, 0, 0, 0, 0, 0, 0 ,0};
  int *fr;
  int *acc;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    return 0;

  /* The preprocessing can execute right away.  */
  cycles = idesc->timing->units[unit_num].done;

  dual_FRi = DUAL_REG (in_FRi);
  dual_FRj = DUAL_REG (in_FRj);
  ACC40Sk_1 = DUAL_REG (out_ACC40Sk);
  ACC40Sk_2 = DUAL_REG (ACC40Sk_1);
  ACC40Sk_3 = DUAL_REG (ACC40Sk_2);
  ACC40Uk_1 = DUAL_REG (out_ACC40Uk);
  ACC40Uk_2 = DUAL_REG (ACC40Uk_1);
  ACC40Uk_3 = DUAL_REG (ACC40Uk_2);

  ps = CPU_PROFILE_STATE (cpu);
  /* The latency of the registers may be less than previously recorded,
     depending on how they were used previously.
     See Table 13-8 in the LSI.  */
  if (use_is_fp_load (cpu, in_FRi))
    {
      busy_adjustment[0] = 1;
      decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]);
    }
  else
    enforce_full_fr_latency (cpu, in_FRi);
  if (dual_FRi >= 0 && use_is_fp_load (cpu, dual_FRi))
    {
      busy_adjustment[1] = 1;
      decrease_FR_busy (cpu, dual_FRi, busy_adjustment[1]);
    }
  else
    enforce_full_fr_latency (cpu, dual_FRi);
  if (in_FRj != in_FRi)
    {
      if (use_is_fp_load (cpu, in_FRj))
	{
	  busy_adjustment[2] = 1;
	  decrease_FR_busy (cpu, in_FRj, busy_adjustment[2]);
	}
      else
	enforce_full_fr_latency (cpu, in_FRj);
      if (dual_FRj >= 0 && use_is_fp_load (cpu, dual_FRj))
	{
	  busy_adjustment[3] = 1;
	  decrease_FR_busy (cpu, dual_FRj, busy_adjustment[3]);
	}
      else
	enforce_full_fr_latency (cpu, dual_FRj);
    }
  if (out_ACC40Sk >= 0)
    {
      if (acc_use_is_media_p2 (cpu, out_ACC40Sk))
	{
	  busy_adjustment[4] = 1;
	  decrease_ACC_busy (cpu, out_ACC40Sk, busy_adjustment[4]);
	}
      if (ACC40Sk_1 >= 0)
	{
	  if (acc_use_is_media_p2 (cpu, ACC40Sk_1))
	    {
	      busy_adjustment[5] = 1;
	      decrease_ACC_busy (cpu, ACC40Sk_1, busy_adjustment[5]);
	    }
	}
      if (ACC40Sk_2 >= 0)
	{
	  if (acc_use_is_media_p2 (cpu, ACC40Sk_2))
	    {
	      busy_adjustment[6] = 1;
	      decrease_ACC_busy (cpu, ACC40Sk_2, busy_adjustment[6]);
	    }
	}
      if (ACC40Sk_3 >= 0)
	{
	  if (acc_use_is_media_p2 (cpu, ACC40Sk_3))
	    {
	      busy_adjustment[7] = 1;
	      decrease_ACC_busy (cpu, ACC40Sk_3, busy_adjustment[7]);
	    }
	}
    }
  else if (out_ACC40Uk >= 0)
    {
      if (acc_use_is_media_p2 (cpu, out_ACC40Uk))
	{
	  busy_adjustment[4] = 1;
	  decrease_ACC_busy (cpu, out_ACC40Uk, busy_adjustment[4]);
	}
      if (ACC40Uk_1 >= 0)
	{
	  if (acc_use_is_media_p2 (cpu, ACC40Uk_1))
	    {
	      busy_adjustment[5] = 1;
	      decrease_ACC_busy (cpu, ACC40Uk_1, busy_adjustment[5]);
	    }
	}
      if (ACC40Uk_2 >= 0)
	{
	  if (acc_use_is_media_p2 (cpu, ACC40Uk_2))
	    {
	      busy_adjustment[6] = 1;
	      decrease_ACC_busy (cpu, ACC40Uk_2, busy_adjustment[6]);
	    }
	}
      if (ACC40Uk_3 >= 0)
	{
	  if (acc_use_is_media_p2 (cpu, ACC40Uk_3))
	    {
	      busy_adjustment[7] = 1;
	      decrease_ACC_busy (cpu, ACC40Uk_3, busy_adjustment[7]);
	    }
	}
    }

  /* The post processing must wait if there is a dependency on a FR
     which is not ready yet.  */
  ps->post_wait = cycles;
  post_wait_for_FR (cpu, in_FRi);
  post_wait_for_FR (cpu, dual_FRi);
  post_wait_for_FR (cpu, in_FRj);
  post_wait_for_FR (cpu, dual_FRj);
  post_wait_for_ACC (cpu, out_ACC40Sk);
  post_wait_for_ACC (cpu, ACC40Sk_1);
  post_wait_for_ACC (cpu, ACC40Sk_2);
  post_wait_for_ACC (cpu, ACC40Sk_3);
  post_wait_for_ACC (cpu, out_ACC40Uk);
  post_wait_for_ACC (cpu, ACC40Uk_1);
  post_wait_for_ACC (cpu, ACC40Uk_2);
  post_wait_for_ACC (cpu, ACC40Uk_3);

  /* Restore the busy cycles of the registers we used.  */
  fr = ps->fr_busy;
  acc = ps->acc_busy;
  fr[in_FRi] += busy_adjustment[0];
  if (dual_FRi >= 0)
    fr[dual_FRi] += busy_adjustment[1];
  fr[in_FRj] += busy_adjustment[2];
  if (dual_FRj > 0)
    fr[dual_FRj] += busy_adjustment[3];
  if (out_ACC40Sk >= 0)
    {
      acc[out_ACC40Sk] += busy_adjustment[4];
      if (ACC40Sk_1 >= 0)
	acc[ACC40Sk_1] += busy_adjustment[5];
      if (ACC40Sk_2 >= 0)
	acc[ACC40Sk_2] += busy_adjustment[6];
      if (ACC40Sk_3 >= 0)
	acc[ACC40Sk_3] += busy_adjustment[7];
    }
  else if (out_ACC40Uk >= 0)
    {
      acc[out_ACC40Uk] += busy_adjustment[4];
      if (ACC40Uk_1 >= 0)
	acc[ACC40Uk_1] += busy_adjustment[5];
      if (ACC40Uk_2 >= 0)
	acc[ACC40Uk_2] += busy_adjustment[6];
      if (ACC40Uk_3 >= 0)
	acc[ACC40Uk_3] += busy_adjustment[7];
    }

  /* The latency of the output register will be at least the latency of the
     other inputs.  Once initiated, post-processing will take 1 cycle.  */
  if (out_ACC40Sk >= 0)
    {
      update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1);

      set_acc_use_is_media_p2 (cpu, out_ACC40Sk);
      if (ACC40Sk_1 >= 0)
	{
	  update_ACC_latency (cpu, ACC40Sk_1, ps->post_wait + 1);

	  set_acc_use_is_media_p2 (cpu, ACC40Sk_1);
	}
      if (ACC40Sk_2 >= 0)
	{
	  update_ACC_latency (cpu, ACC40Sk_2, ps->post_wait + 1);

	  set_acc_use_is_media_p2 (cpu, ACC40Sk_2);
	}
      if (ACC40Sk_3 >= 0)
	{
	  update_ACC_latency (cpu, ACC40Sk_3, ps->post_wait + 1);

	  set_acc_use_is_media_p2 (cpu, ACC40Sk_3);
	}
    }
  else if (out_ACC40Uk >= 0)
    {
      update_ACC_latency (cpu, out_ACC40Uk, ps->post_wait + 1);

      set_acc_use_is_media_p2 (cpu, out_ACC40Uk);
      if (ACC40Uk_1 >= 0)
	{
	  update_ACC_latency (cpu, ACC40Uk_1, ps->post_wait + 1);

	  set_acc_use_is_media_p2 (cpu, ACC40Uk_1);
	}
      if (ACC40Uk_2 >= 0)
	{
	  update_ACC_latency (cpu, ACC40Uk_2, ps->post_wait + 1);

	  set_acc_use_is_media_p2 (cpu, ACC40Uk_2);
	}
      if (ACC40Uk_3 >= 0)
	{
	  update_ACC_latency (cpu, ACC40Uk_3, ps->post_wait + 1);

	  set_acc_use_is_media_p2 (cpu, ACC40Uk_3);
	}
    }

  return cycles;
}

int
frvbf_model_fr400_u_media_2_acc (SIM_CPU *cpu, const IDESC *idesc,
				 int unit_num, int referenced,
				 INT in_ACC40Si, INT out_ACC40Sk)
{
  int cycles;
  INT ACC40Si_1;
  FRV_PROFILE_STATE *ps;
  int busy_adjustment[] = {0, 0, 0};
  int *acc;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    return 0;

  /* The preprocessing can execute right away.  */
  cycles = idesc->timing->units[unit_num].done;

  ACC40Si_1 = DUAL_REG (in_ACC40Si);

  ps = CPU_PROFILE_STATE (cpu);
  /* The latency of the registers may be less than previously recorded,
     depending on how they were used previously.
     See Table 13-8 in the LSI.  */
  if (acc_use_is_media_p2 (cpu, in_ACC40Si))
    {
      busy_adjustment[0] = 1;
      decrease_ACC_busy (cpu, in_ACC40Si, busy_adjustment[0]);
    }
  if (ACC40Si_1 >= 0 && acc_use_is_media_p2 (cpu, ACC40Si_1))
    {
      busy_adjustment[1] = 1;
      decrease_ACC_busy (cpu, ACC40Si_1, busy_adjustment[1]);
    }
  if (out_ACC40Sk != in_ACC40Si && out_ACC40Sk != ACC40Si_1
      && acc_use_is_media_p2 (cpu, out_ACC40Sk))
    {
      busy_adjustment[2] = 1;
      decrease_ACC_busy (cpu, out_ACC40Sk, busy_adjustment[2]);
    }

  /* The post processing must wait if there is a dependency on a register
     which is not ready yet.  */
  ps->post_wait = cycles;
  post_wait_for_ACC (cpu, in_ACC40Si);
  post_wait_for_ACC (cpu, ACC40Si_1);
  post_wait_for_ACC (cpu, out_ACC40Sk);

  /* Restore the busy cycles of the registers we used.  */
  acc = ps->acc_busy;
  acc[in_ACC40Si] += busy_adjustment[0];
  if (ACC40Si_1 >= 0)
    acc[ACC40Si_1] += busy_adjustment[1];
  acc[out_ACC40Sk] += busy_adjustment[2];

  /* The latency of the output register will be at least the latency of the
     other inputs.  Once initiated, post-processing will take 1 cycle.  */
  update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1);
  set_acc_use_is_media_p2 (cpu, out_ACC40Sk);

  return cycles;
}

int
frvbf_model_fr400_u_media_2_acc_dual (SIM_CPU *cpu, const IDESC *idesc,
				      int unit_num, int referenced,
				      INT in_ACC40Si, INT out_ACC40Sk)
{
  int cycles;
  INT ACC40Si_1;
  INT ACC40Si_2;
  INT ACC40Si_3;
  INT ACC40Sk_1;
  FRV_PROFILE_STATE *ps;
  int busy_adjustment[] = {0, 0, 0, 0, 0, 0};
  int *acc;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    return 0;

  /* The preprocessing can execute right away.  */
  cycles = idesc->timing->units[unit_num].done;

  ACC40Si_1 = DUAL_REG (in_ACC40Si);
  ACC40Si_2 = DUAL_REG (ACC40Si_1);
  ACC40Si_3 = DUAL_REG (ACC40Si_2);
  ACC40Sk_1 = DUAL_REG (out_ACC40Sk);

  ps = CPU_PROFILE_STATE (cpu);
  /* The latency of the registers may be less than previously recorded,
     depending on how they were used previously.
     See Table 13-8 in the LSI.  */
  if (acc_use_is_media_p2 (cpu, in_ACC40Si))
    {
      busy_adjustment[0] = 1;
      decrease_ACC_busy (cpu, in_ACC40Si, busy_adjustment[0]);
    }
  if (ACC40Si_1 >= 0 && acc_use_is_media_p2 (cpu, ACC40Si_1))
    {
      busy_adjustment[1] = 1;
      decrease_ACC_busy (cpu, ACC40Si_1, busy_adjustment[1]);
    }
  if (ACC40Si_2 >= 0 && acc_use_is_media_p2 (cpu, ACC40Si_2))
    {
      busy_adjustment[2] = 1;
      decrease_ACC_busy (cpu, ACC40Si_2, busy_adjustment[2]);
    }
  if (ACC40Si_3 >= 0 && acc_use_is_media_p2 (cpu, ACC40Si_3))
    {
      busy_adjustment[3] = 1;
      decrease_ACC_busy (cpu, ACC40Si_3, busy_adjustment[3]);
    }
  if (out_ACC40Sk != in_ACC40Si && out_ACC40Sk != ACC40Si_1
      && out_ACC40Sk != ACC40Si_2 && out_ACC40Sk != ACC40Si_3)
    {
      if (acc_use_is_media_p2 (cpu, out_ACC40Sk))
	{
	  busy_adjustment[4] = 1;
	  decrease_ACC_busy (cpu, out_ACC40Sk, busy_adjustment[4]);
	}
    }
  if (ACC40Sk_1 != in_ACC40Si && ACC40Sk_1 != ACC40Si_1
      && ACC40Sk_1 != ACC40Si_2 && ACC40Sk_1 != ACC40Si_3)
    {
      if (acc_use_is_media_p2 (cpu, ACC40Sk_1))
	{
	  busy_adjustment[5] = 1;
	  decrease_ACC_busy (cpu, ACC40Sk_1, busy_adjustment[5]);
	}
    }

  /* The post processing must wait if there is a dependency on a register
     which is not ready yet.  */
  ps->post_wait = cycles;
  post_wait_for_ACC (cpu, in_ACC40Si);
  post_wait_for_ACC (cpu, ACC40Si_1);
  post_wait_for_ACC (cpu, ACC40Si_2);
  post_wait_for_ACC (cpu, ACC40Si_3);
  post_wait_for_ACC (cpu, out_ACC40Sk);
  post_wait_for_ACC (cpu, ACC40Sk_1);

  /* Restore the busy cycles of the registers we used.  */
  acc = ps->acc_busy;
  acc[in_ACC40Si] += busy_adjustment[0];
  if (ACC40Si_1 >= 0)
    acc[ACC40Si_1] += busy_adjustment[1];
  if (ACC40Si_2 >= 0)
    acc[ACC40Si_2] += busy_adjustment[2];
  if (ACC40Si_3 >= 0)
    acc[ACC40Si_3] += busy_adjustment[3];
  acc[out_ACC40Sk] += busy_adjustment[4];
  if (ACC40Sk_1 >= 0)
    acc[ACC40Sk_1] += busy_adjustment[5];

  /* The latency of the output register will be at least the latency of the
     other inputs.  Once initiated, post-processing will take 1 cycle.  */
  update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1);
  set_acc_use_is_media_p2 (cpu, out_ACC40Sk);
  if (ACC40Sk_1 >= 0)
    {
      update_ACC_latency (cpu, ACC40Sk_1, ps->post_wait + 1);
      set_acc_use_is_media_p2 (cpu, ACC40Sk_1);
    }

  return cycles;
}

int
frvbf_model_fr400_u_media_2_add_sub (SIM_CPU *cpu, const IDESC *idesc,
				     int unit_num, int referenced,
				     INT in_ACC40Si, INT out_ACC40Sk)
{
  int cycles;
  INT ACC40Si_1;
  INT ACC40Sk_1;
  FRV_PROFILE_STATE *ps;
  int busy_adjustment[] = {0, 0, 0, 0};
  int *acc;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    return 0;

  /* The preprocessing can execute right away.  */
  cycles = idesc->timing->units[unit_num].done;

  ACC40Si_1 = DUAL_REG (in_ACC40Si);
  ACC40Sk_1 = DUAL_REG (out_ACC40Sk);

  ps = CPU_PROFILE_STATE (cpu);
  /* The latency of the registers may be less than previously recorded,
     depending on how they were used previously.
     See Table 13-8 in the LSI.  */
  if (acc_use_is_media_p2 (cpu, in_ACC40Si))
    {
      busy_adjustment[0] = 1;
      decrease_ACC_busy (cpu, in_ACC40Si, busy_adjustment[0]);
    }
  if (ACC40Si_1 >= 0 && acc_use_is_media_p2 (cpu, ACC40Si_1))
    {
      busy_adjustment[1] = 1;
      decrease_ACC_busy (cpu, ACC40Si_1, busy_adjustment[1]);
    }
  if (out_ACC40Sk != in_ACC40Si && out_ACC40Sk != ACC40Si_1)
    {
      if (acc_use_is_media_p2 (cpu, out_ACC40Sk))
	{
	  busy_adjustment[2] = 1;
	  decrease_ACC_busy (cpu, out_ACC40Sk, busy_adjustment[2]);
	}
    }
  if (ACC40Sk_1 != in_ACC40Si && ACC40Sk_1 != ACC40Si_1)
    {
      if (acc_use_is_media_p2 (cpu, ACC40Sk_1))
	{
	  busy_adjustment[3] = 1;
	  decrease_ACC_busy (cpu, ACC40Sk_1, busy_adjustment[3]);
	}
    }

  /* The post processing must wait if there is a dependency on a register
     which is not ready yet.  */
  ps->post_wait = cycles;
  post_wait_for_ACC (cpu, in_ACC40Si);
  post_wait_for_ACC (cpu, ACC40Si_1);
  post_wait_for_ACC (cpu, out_ACC40Sk);
  post_wait_for_ACC (cpu, ACC40Sk_1);

  /* Restore the busy cycles of the registers we used.  */
  acc = ps->acc_busy;
  acc[in_ACC40Si] += busy_adjustment[0];
  if (ACC40Si_1 >= 0)
    acc[ACC40Si_1] += busy_adjustment[1];
  acc[out_ACC40Sk] += busy_adjustment[2];
  if (ACC40Sk_1 >= 0)
    acc[ACC40Sk_1] += busy_adjustment[3];

  /* The latency of the output register will be at least the latency of the
     other inputs.  Once initiated, post-processing will take 1 cycle.  */
  update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1);
  set_acc_use_is_media_p2 (cpu, out_ACC40Sk);
  if (ACC40Sk_1 >= 0)
    {
      update_ACC_latency (cpu, ACC40Sk_1, ps->post_wait + 1);
      set_acc_use_is_media_p2 (cpu, ACC40Sk_1);
    }

  return cycles;
}

int
frvbf_model_fr400_u_media_2_add_sub_dual (SIM_CPU *cpu, const IDESC *idesc,
					  int unit_num, int referenced,
					  INT in_ACC40Si, INT out_ACC40Sk)
{
  int cycles;
  INT ACC40Si_1;
  INT ACC40Si_2;
  INT ACC40Si_3;
  INT ACC40Sk_1;
  INT ACC40Sk_2;
  INT ACC40Sk_3;
  FRV_PROFILE_STATE *ps;
  int busy_adjustment[] = {0, 0, 0, 0, 0, 0, 0, 0};
  int *acc;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    return 0;

  /* The preprocessing can execute right away.  */
  cycles = idesc->timing->units[unit_num].done;

  ACC40Si_1 = DUAL_REG (in_ACC40Si);
  ACC40Si_2 = DUAL_REG (ACC40Si_1);
  ACC40Si_3 = DUAL_REG (ACC40Si_2);
  ACC40Sk_1 = DUAL_REG (out_ACC40Sk);
  ACC40Sk_2 = DUAL_REG (ACC40Sk_1);
  ACC40Sk_3 = DUAL_REG (ACC40Sk_2);

  ps = CPU_PROFILE_STATE (cpu);
  /* The latency of the registers may be less than previously recorded,
     depending on how they were used previously.
     See Table 13-8 in the LSI.  */
  if (acc_use_is_media_p2 (cpu, in_ACC40Si))
    {
      busy_adjustment[0] = 1;
      decrease_ACC_busy (cpu, in_ACC40Si, busy_adjustment[0]);
    }
  if (ACC40Si_1 >= 0 && acc_use_is_media_p2 (cpu, ACC40Si_1))
    {
      busy_adjustment[1] = 1;
      decrease_ACC_busy (cpu, ACC40Si_1, busy_adjustment[1]);
    }
  if (ACC40Si_2 >= 0 && acc_use_is_media_p2 (cpu, ACC40Si_2))
    {
      busy_adjustment[2] = 1;
      decrease_ACC_busy (cpu, ACC40Si_2, busy_adjustment[2]);
    }
  if (ACC40Si_3 >= 0 && acc_use_is_media_p2 (cpu, ACC40Si_3))
    {
      busy_adjustment[3] = 1;
      decrease_ACC_busy (cpu, ACC40Si_3, busy_adjustment[3]);
    }
  if (out_ACC40Sk != in_ACC40Si && out_ACC40Sk != ACC40Si_1
      && out_ACC40Sk != ACC40Si_2 && out_ACC40Sk != ACC40Si_3)
    {
      if (acc_use_is_media_p2 (cpu, out_ACC40Sk))
	{
	  busy_adjustment[4] = 1;
	  decrease_ACC_busy (cpu, out_ACC40Sk, busy_adjustment[4]);
	}
    }
  if (ACC40Sk_1 != in_ACC40Si && ACC40Sk_1 != ACC40Si_1
      && ACC40Sk_1 != ACC40Si_2 && ACC40Sk_1 != ACC40Si_3)
    {
      if (acc_use_is_media_p2 (cpu, ACC40Sk_1))
	{
	  busy_adjustment[5] = 1;
	  decrease_ACC_busy (cpu, ACC40Sk_1, busy_adjustment[5]);
	}
    }
  if (ACC40Sk_2 != in_ACC40Si && ACC40Sk_2 != ACC40Si_1
      && ACC40Sk_2 != ACC40Si_2 && ACC40Sk_2 != ACC40Si_3)
    {
      if (acc_use_is_media_p2 (cpu, ACC40Sk_2))
	{
	  busy_adjustment[6] = 1;
	  decrease_ACC_busy (cpu, ACC40Sk_2, busy_adjustment[6]);
	}
    }
  if (ACC40Sk_3 != in_ACC40Si && ACC40Sk_3 != ACC40Si_1
      && ACC40Sk_3 != ACC40Si_2 && ACC40Sk_3 != ACC40Si_3)
    {
      if (acc_use_is_media_p2 (cpu, ACC40Sk_3))
	{
	  busy_adjustment[7] = 1;
	  decrease_ACC_busy (cpu, ACC40Sk_3, busy_adjustment[7]);
	}
    }

  /* The post processing must wait if there is a dependency on a register
     which is not ready yet.  */
  ps->post_wait = cycles;
  post_wait_for_ACC (cpu, in_ACC40Si);
  post_wait_for_ACC (cpu, ACC40Si_1);
  post_wait_for_ACC (cpu, ACC40Si_2);
  post_wait_for_ACC (cpu, ACC40Si_3);
  post_wait_for_ACC (cpu, out_ACC40Sk);
  post_wait_for_ACC (cpu, ACC40Sk_1);
  post_wait_for_ACC (cpu, ACC40Sk_2);
  post_wait_for_ACC (cpu, ACC40Sk_3);

  /* Restore the busy cycles of the registers we used.  */
  acc = ps->acc_busy;
  acc[in_ACC40Si] += busy_adjustment[0];
  if (ACC40Si_1 >= 0)
    acc[ACC40Si_1] += busy_adjustment[1];
  if (ACC40Si_2 >= 0)
    acc[ACC40Si_2] += busy_adjustment[2];
  if (ACC40Si_3 >= 0)
    acc[ACC40Si_3] += busy_adjustment[3];
  acc[out_ACC40Sk] += busy_adjustment[4];
  if (ACC40Sk_1 >= 0)
    acc[ACC40Sk_1] += busy_adjustment[5];
  if (ACC40Sk_2 >= 0)
    acc[ACC40Sk_2] += busy_adjustment[6];
  if (ACC40Sk_3 >= 0)
    acc[ACC40Sk_3] += busy_adjustment[7];

  /* The latency of the output register will be at least the latency of the
     other inputs.  Once initiated, post-processing will take 1 cycle.  */
  update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1);
  set_acc_use_is_media_p2 (cpu, out_ACC40Sk);
  if (ACC40Sk_1 >= 0)
    {
      update_ACC_latency (cpu, ACC40Sk_1, ps->post_wait + 1);
      set_acc_use_is_media_p2 (cpu, ACC40Sk_1);
    }
  if (ACC40Sk_2 >= 0)
    {
      update_ACC_latency (cpu, ACC40Sk_2, ps->post_wait + 1);
      set_acc_use_is_media_p2 (cpu, ACC40Sk_2);
    }
  if (ACC40Sk_3 >= 0)
    {
      update_ACC_latency (cpu, ACC40Sk_3, ps->post_wait + 1);
      set_acc_use_is_media_p2 (cpu, ACC40Sk_3);
    }

  return cycles;
}

int
frvbf_model_fr400_u_media_3 (SIM_CPU *cpu, const IDESC *idesc,
			     int unit_num, int referenced,
			     INT in_FRi, INT in_FRj,
			     INT out_FRk)
{
  /* Modelling is the same as media unit 1.  */
  return frvbf_model_fr400_u_media_1 (cpu, idesc, unit_num, referenced,
				      in_FRi, in_FRj, out_FRk);
}

int
frvbf_model_fr400_u_media_3_dual (SIM_CPU *cpu, const IDESC *idesc,
				  int unit_num, int referenced,
				  INT in_FRi, INT out_FRk)
{
  int cycles;
  INT dual_FRi;
  FRV_PROFILE_STATE *ps;
  int busy_adjustment[] = {0, 0};
  int *fr;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    return 0;

  /* The preprocessing can execute right away.  */
  cycles = idesc->timing->units[unit_num].done;

  ps = CPU_PROFILE_STATE (cpu);
  dual_FRi = DUAL_REG (in_FRi);

  /* The latency of the registers may be less than previously recorded,
     depending on how they were used previously.
     See Table 13-8 in the LSI.  */
  if (use_is_fp_load (cpu, in_FRi))
    {
      busy_adjustment[0] = 1;
      decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]);
    }
  else
    enforce_full_fr_latency (cpu, in_FRi);
  if (dual_FRi >= 0 && use_is_fp_load (cpu, dual_FRi))
    {
      busy_adjustment[1] = 1;
      decrease_FR_busy (cpu, dual_FRi, busy_adjustment[1]);
    }
  else
    enforce_full_fr_latency (cpu, dual_FRi);

  /* The post processing must wait if there is a dependency on a FR
     which is not ready yet.  */
  ps->post_wait = cycles;
  post_wait_for_FR (cpu, in_FRi);
  post_wait_for_FR (cpu, dual_FRi);
  post_wait_for_FR (cpu, out_FRk);

  /* Restore the busy cycles of the registers we used.  */
  fr = ps->fr_busy;
  fr[in_FRi] += busy_adjustment[0];
  if (dual_FRi >= 0)
    fr[dual_FRi] += busy_adjustment[1];

  /* The latency of the output register will be at least the latency of the
     other inputs.  */
  update_FR_latency (cpu, out_FRk, ps->post_wait);

  /* Once initiated, post-processing has no latency.  */
  update_FR_ptime (cpu, out_FRk, 0);

  return cycles;
}

int
frvbf_model_fr400_u_media_3_quad (SIM_CPU *cpu, const IDESC *idesc,
				  int unit_num, int referenced,
				  INT in_FRi, INT in_FRj,
				  INT out_FRk)
{
  /* Modelling is the same as media unit 1.  */
  return frvbf_model_fr400_u_media_1_quad (cpu, idesc, unit_num, referenced,
					   in_FRi, in_FRj, out_FRk);
}

int
frvbf_model_fr400_u_media_4 (SIM_CPU *cpu, const IDESC *idesc,
			     int unit_num, int referenced,
			     INT in_ACC40Si, INT in_FRj,
			     INT out_ACC40Sk, INT out_FRk)
{
  int cycles;
  FRV_PROFILE_STATE *ps;
  const CGEN_INSN *insn;
  int busy_adjustment[] = {0};
  int *fr;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    return 0;

  /* The preprocessing can execute right away.  */
  cycles = idesc->timing->units[unit_num].done;

  ps = CPU_PROFILE_STATE (cpu);
  insn = idesc->idata;

  /* The latency of the registers may be less than previously recorded,
     depending on how they were used previously.
     See Table 13-8 in the LSI.  */
  if (in_FRj >= 0)
    {
      if (use_is_fp_load (cpu, in_FRj))
	{
	  busy_adjustment[0] = 1;
	  decrease_FR_busy (cpu, in_FRj, busy_adjustment[0]);
	}
      else
	enforce_full_fr_latency (cpu, in_FRj);
    }

  /* The post processing must wait if there is a dependency on a FR
     which is not ready yet.  */
  ps->post_wait = cycles;
  post_wait_for_ACC (cpu, in_ACC40Si);
  post_wait_for_ACC (cpu, out_ACC40Sk);
  post_wait_for_FR (cpu, in_FRj);
  post_wait_for_FR (cpu, out_FRk);

  /* Restore the busy cycles of the registers we used.  */
  fr = ps->fr_busy;

  /* The latency of the output register will be at least the latency of the
     other inputs.  Once initiated, post-processing will take 1 cycle.  */
  if (out_FRk >= 0)
    {
      update_FR_latency (cpu, out_FRk, ps->post_wait);
      update_FR_ptime (cpu, out_FRk, 1);
      /* Mark this use of the register as media unit 4.  */
      set_use_is_media_p4 (cpu, out_FRk);
    }
  else if (out_ACC40Sk >= 0)
    {
      update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait);
      update_ACC_ptime (cpu, out_ACC40Sk, 1);
      /* Mark this use of the register as media unit 4.  */
      set_acc_use_is_media_p4 (cpu, out_ACC40Sk);
    }

  return cycles;
}

int
frvbf_model_fr400_u_media_4_accg (SIM_CPU *cpu, const IDESC *idesc,
				  int unit_num, int referenced,
				  INT in_ACCGi, INT in_FRinti,
				  INT out_ACCGk, INT out_FRintk)
{
  /* Modelling is the same as media-4 unit except use accumulator guards
     as input instead of accumulators.  */
  return frvbf_model_fr400_u_media_4 (cpu, idesc, unit_num, referenced,
				      in_ACCGi, in_FRinti,
				      out_ACCGk, out_FRintk);
}

int
frvbf_model_fr400_u_media_4_acc_dual (SIM_CPU *cpu, const IDESC *idesc,
				      int unit_num, int referenced,
				      INT in_ACC40Si, INT out_FRk)
{
  int cycles;
  FRV_PROFILE_STATE *ps;
  const CGEN_INSN *insn;
  INT ACC40Si_1;
  INT FRk_1;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    return 0;

  /* The preprocessing can execute right away.  */
  cycles = idesc->timing->units[unit_num].done;

  ps = CPU_PROFILE_STATE (cpu);
  ACC40Si_1 = DUAL_REG (in_ACC40Si);
  FRk_1 = DUAL_REG (out_FRk);

  insn = idesc->idata;

  /* The post processing must wait if there is a dependency on a FR
     which is not ready yet.  */
  ps->post_wait = cycles;
  post_wait_for_ACC (cpu, in_ACC40Si);
  post_wait_for_ACC (cpu, ACC40Si_1);
  post_wait_for_FR (cpu, out_FRk);
  post_wait_for_FR (cpu, FRk_1);

  /* The latency of the output register will be at least the latency of the
     other inputs.  Once initiated, post-processing will take 1 cycle.  */
  if (out_FRk >= 0)
    {
      update_FR_latency (cpu, out_FRk, ps->post_wait);
      update_FR_ptime (cpu, out_FRk, 1);
      /* Mark this use of the register as media unit 4.  */
      set_use_is_media_p4 (cpu, out_FRk);
    }
  if (FRk_1 >= 0)
    {
      update_FR_latency (cpu, FRk_1, ps->post_wait);
      update_FR_ptime (cpu, FRk_1, 1);
      /* Mark this use of the register as media unit 4.  */
      set_use_is_media_p4 (cpu, FRk_1);
    }

  return cycles;
}

int
frvbf_model_fr400_u_media_6 (SIM_CPU *cpu, const IDESC *idesc,
			     int unit_num, int referenced,
			     INT in_FRi, INT out_FRk)
{
  int cycles;
  FRV_PROFILE_STATE *ps;
  const CGEN_INSN *insn;
  int busy_adjustment[] = {0};
  int *fr;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    return 0;

  /* The preprocessing can execute right away.  */
  cycles = idesc->timing->units[unit_num].done;

  ps = CPU_PROFILE_STATE (cpu);
  insn = idesc->idata;

  /* The latency of the registers may be less than previously recorded,
     depending on how they were used previously.
     See Table 13-8 in the LSI.  */
  if (in_FRi >= 0)
    {
      if (use_is_fp_load (cpu, in_FRi))
	{
	  busy_adjustment[0] = 1;
	  decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]);
	}
      else
	enforce_full_fr_latency (cpu, in_FRi);
    }

  /* The post processing must wait if there is a dependency on a FR
     which is not ready yet.  */
  ps->post_wait = cycles;
  post_wait_for_FR (cpu, in_FRi);
  post_wait_for_FR (cpu, out_FRk);

  /* Restore the busy cycles of the registers we used.  */
  fr = ps->fr_busy;
  if (in_FRi >= 0)
    fr[in_FRi] += busy_adjustment[0];

  /* The latency of the output register will be at least the latency of the
     other inputs.  Once initiated, post-processing will take 1 cycle.  */
  if (out_FRk >= 0)
    {
      update_FR_latency (cpu, out_FRk, ps->post_wait);
      update_FR_ptime (cpu, out_FRk, 1);

      /* Mark this use of the register as media unit 1.  */
      set_use_is_media_p6 (cpu, out_FRk);
    }

  return cycles;
}

int
frvbf_model_fr400_u_media_7 (SIM_CPU *cpu, const IDESC *idesc,
			     int unit_num, int referenced,
			     INT in_FRinti, INT in_FRintj,
			     INT out_FCCk)
{
  int cycles;
  FRV_PROFILE_STATE *ps;
  int busy_adjustment[] = {0, 0};
  int *fr;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    return 0;

  /* The preprocessing can execute right away.  */
  cycles = idesc->timing->units[unit_num].done;

  /* The post processing must wait if there is a dependency on a FR
     which is not ready yet.  */
  ps = CPU_PROFILE_STATE (cpu);

  /* The latency of the registers may be less than previously recorded,
     depending on how they were used previously.
     See Table 13-8 in the LSI.  */
  if (in_FRinti >= 0)
    {
      if (use_is_fp_load (cpu, in_FRinti))
	{
	  busy_adjustment[0] = 1;
	  decrease_FR_busy (cpu, in_FRinti, busy_adjustment[0]);
	}
      else
	enforce_full_fr_latency (cpu, in_FRinti);
    }
  if (in_FRintj >= 0 && in_FRintj != in_FRinti)
    {
      if (use_is_fp_load (cpu, in_FRintj))
	{
	  busy_adjustment[1] = 1;
	  decrease_FR_busy (cpu, in_FRintj, busy_adjustment[1]);
	}
      else
	enforce_full_fr_latency (cpu, in_FRintj);
    }

  ps->post_wait = cycles;
  post_wait_for_FR (cpu, in_FRinti);
  post_wait_for_FR (cpu, in_FRintj);
  post_wait_for_CCR (cpu, out_FCCk);

  /* Restore the busy cycles of the registers we used.  */
  fr = ps->fr_busy;
  if (in_FRinti >= 0)
    fr[in_FRinti] += busy_adjustment[0];
  if (in_FRintj >= 0)
    fr[in_FRintj] += busy_adjustment[1];

  /* The latency of FCCi_2 will be the latency of the other inputs plus 1
     cycle.  */
  update_CCR_latency (cpu, out_FCCk, ps->post_wait + 1);

  return cycles;
}

int
frvbf_model_fr400_u_media_dual_expand (SIM_CPU *cpu, const IDESC *idesc,
				       int unit_num, int referenced,
				       INT in_FRi,
				       INT out_FRk)
{
  /* Insns using this unit are media-3 class insns, with a dual FRk output.  */
  int cycles;
  INT dual_FRk;
  FRV_PROFILE_STATE *ps;
  int busy_adjustment[] = {0};
  int *fr;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    return 0;

  /* The preprocessing can execute right away.  */
  cycles = idesc->timing->units[unit_num].done;

  /* If the previous use of the registers was a media op,
     then their latency will be less than previously recorded.
     See Table 13-13 in the LSI.  */
  dual_FRk = DUAL_REG (out_FRk);
  ps = CPU_PROFILE_STATE (cpu);
  if (use_is_fp_load (cpu, in_FRi))
    {
      busy_adjustment[0] = 1;
      decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]);
    }
  else
    enforce_full_fr_latency (cpu, in_FRi);

  /* The post processing must wait if there is a dependency on a FR
     which is not ready yet.  */
  ps->post_wait = cycles;
  post_wait_for_FR (cpu, in_FRi);
  post_wait_for_FR (cpu, out_FRk);
  post_wait_for_FR (cpu, dual_FRk);

  /* Restore the busy cycles of the registers we used.  */
  fr = ps->fr_busy;
  fr[in_FRi] += busy_adjustment[0];

  /* The latency of the output register will be at least the latency of the
     other inputs.  Once initiated, post-processing has no latency.  */
  update_FR_latency (cpu, out_FRk, ps->post_wait);
  update_FR_ptime (cpu, out_FRk, 0);

  if (dual_FRk >= 0)
    {
      update_FR_latency (cpu, dual_FRk, ps->post_wait);
      update_FR_ptime (cpu, dual_FRk, 0);
    }

  return cycles;
}

int
frvbf_model_fr400_u_media_dual_htob (SIM_CPU *cpu, const IDESC *idesc,
				     int unit_num, int referenced,
				     INT in_FRj,
				     INT out_FRk)
{
  /* Insns using this unit are media-3 class insns, with a dual FRj input.  */
  int cycles;
  INT dual_FRj;
  FRV_PROFILE_STATE *ps;
  int busy_adjustment[] = {0, 0};
  int *fr;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    return 0;

  /* The preprocessing can execute right away.  */
  cycles = idesc->timing->units[unit_num].done;

  /* If the previous use of the registers was a media op,
     then their latency will be less than previously recorded.
     See Table 13-13 in the LSI.  */
  dual_FRj = DUAL_REG (in_FRj);
  ps = CPU_PROFILE_STATE (cpu);
  if (use_is_fp_load (cpu, in_FRj))
    {
      busy_adjustment[0] = 1;
      decrease_FR_busy (cpu, in_FRj, busy_adjustment[0]);
    }
  else
    enforce_full_fr_latency (cpu, in_FRj);
  if (dual_FRj >= 0)
    {
      if (use_is_fp_load (cpu, dual_FRj))
	{
	  busy_adjustment[1] = 1;
	  decrease_FR_busy (cpu, dual_FRj, busy_adjustment[1]);
	}
      else
	enforce_full_fr_latency (cpu, dual_FRj);
    }

  /* The post processing must wait if there is a dependency on a FR
     which is not ready yet.  */
  ps->post_wait = cycles;
  post_wait_for_FR (cpu, in_FRj);
  post_wait_for_FR (cpu, dual_FRj);
  post_wait_for_FR (cpu, out_FRk);

  /* Restore the busy cycles of the registers we used.  */
  fr = ps->fr_busy;
  fr[in_FRj] += busy_adjustment[0];
  if (dual_FRj >= 0)
    fr[dual_FRj] += busy_adjustment[1];

  /* The latency of the output register will be at least the latency of the
     other inputs.  */
  update_FR_latency (cpu, out_FRk, ps->post_wait);

  /* Once initiated, post-processing has no latency.  */
  update_FR_ptime (cpu, out_FRk, 0);

  return cycles;
}

int
frvbf_model_fr400_u_ici (SIM_CPU *cpu, const IDESC *idesc,
			 int unit_num, int referenced,
			 INT in_GRi, INT in_GRj)
{
  /* Modelling for this unit is the same as for fr500.  */
  return frvbf_model_fr500_u_ici (cpu, idesc, unit_num, referenced,
				  in_GRi, in_GRj);
}

int
frvbf_model_fr400_u_dci (SIM_CPU *cpu, const IDESC *idesc,
			 int unit_num, int referenced,
			 INT in_GRi, INT in_GRj)
{
  /* Modelling for this unit is the same as for fr500.  */
  return frvbf_model_fr500_u_dci (cpu, idesc, unit_num, referenced,
				  in_GRi, in_GRj);
}

int
frvbf_model_fr400_u_dcf (SIM_CPU *cpu, const IDESC *idesc,
			 int unit_num, int referenced,
			 INT in_GRi, INT in_GRj)
{
  /* Modelling for this unit is the same as for fr500.  */
  return frvbf_model_fr500_u_dcf (cpu, idesc, unit_num, referenced,
				  in_GRi, in_GRj);
}

int
frvbf_model_fr400_u_icpl (SIM_CPU *cpu, const IDESC *idesc,
			  int unit_num, int referenced,
			  INT in_GRi, INT in_GRj)
{
  /* Modelling for this unit is the same as for fr500.  */
  return frvbf_model_fr500_u_icpl (cpu, idesc, unit_num, referenced,
				   in_GRi, in_GRj);
}

int
frvbf_model_fr400_u_dcpl (SIM_CPU *cpu, const IDESC *idesc,
			  int unit_num, int referenced,
			  INT in_GRi, INT in_GRj)
{
  /* Modelling for this unit is the same as for fr500.  */
  return frvbf_model_fr500_u_dcpl (cpu, idesc, unit_num, referenced,
				   in_GRi, in_GRj);
}

int
frvbf_model_fr400_u_icul (SIM_CPU *cpu, const IDESC *idesc,
			  int unit_num, int referenced,
			  INT in_GRi, INT in_GRj)
{
  /* Modelling for this unit is the same as for fr500.  */
  return frvbf_model_fr500_u_icul (cpu, idesc, unit_num, referenced,
				   in_GRi, in_GRj);
}

int
frvbf_model_fr400_u_dcul (SIM_CPU *cpu, const IDESC *idesc,
			  int unit_num, int referenced,
			  INT in_GRi, INT in_GRj)
{
  /* Modelling for this unit is the same as for fr500.  */
  return frvbf_model_fr500_u_dcul (cpu, idesc, unit_num, referenced,
				   in_GRi, in_GRj);
}

int
frvbf_model_fr400_u_barrier (SIM_CPU *cpu, const IDESC *idesc,
			     int unit_num, int referenced)
{
  /* Modelling for this unit is the same as for fr500.  */
  return frvbf_model_fr500_u_barrier (cpu, idesc, unit_num, referenced);
}

int
frvbf_model_fr400_u_membar (SIM_CPU *cpu, const IDESC *idesc,
			    int unit_num, int referenced)
{
  /* Modelling for this unit is the same as for fr500.  */
  return frvbf_model_fr500_u_membar (cpu, idesc, unit_num, referenced);
}

#endif /* WITH_PROFILE_MODEL_P */