/* $Id: tiffcrop.c,v 1.3.2.12 2010-06-11 22:24:23 bfriesen Exp $ */
/* tiffcrop.c -- a port of tiffcp.c extended to include manipulations of
* the image data through additional options listed below
*
* Original code:
* Copyright (c) 1988-1997 Sam Leffler
* Copyright (c) 1991-1997 Silicon Graphics, Inc.
* Additions (c) Richard Nolde 2006-2009
*
* Permission to use, copy, modify, distribute, and sell this software and
* its documentation for any purpose is hereby granted without fee, provided
* that (i) the above copyright notices and this permission notice appear in
* all copies of the software and related documentation, and (ii) the names of
* Sam Leffler and Silicon Graphics may not be used in any advertising or
* publicity relating to the software without the specific, prior written
* permission of Sam Leffler and Silicon Graphics.
*
* THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
* EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
* WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
*
* IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS OR ANY OTHER COPYRIGHT
* HOLDERS BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL
* DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
* DATA OR PROFITS, WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND
* ON ANY THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE
* OR PERFORMANCE OF THIS SOFTWARE.
*
* Some portions of the current code are derived from tiffcp, primarly in
* the areas of lowlevel reading and writing of TAGS, scanlines and tiles though
* some of the original functions have been extended to support arbitrary bit
* depths. These functions are presented at the top of this file.
*
* Add support for the options below to extract sections of image(s)
* and to modify the whole image or selected portions of each image by
* rotations, mirroring, and colorscale/colormap inversion of selected
* types of TIFF images when appropriate. Some color model dependent
* functions are restricted to bilevel or 8 bit per sample data.
* See the man page for the full explanations.
*
* New Options:
* -h Display the syntax guide.
* -v Report the version and last build date for tiffcrop and libtiff.
* -z x1,y1,x2,y2:x3,y3,x4,y4:..xN,yN,xN + 1, yN + 1
* Specify a series of coordinates to define rectangular
* regions by the top left and lower right corners.
* -e c|d|i|m|s export mode for images and selections from input images
* combined All images and selections are written to a single file (default)
* with multiple selections from one image combined into a single image
* divided All images and selections are written to a single file
* with each selection from one image written to a new image
* image Each input image is written to a new file (numeric filename sequence)
* with multiple selections from the image combined into one image
* multiple Each input image is written to a new file (numeric filename sequence)
* with each selection from the image written to a new image
* separated Individual selections from each image are written to separate files
* -U units [in, cm, px ] inches, centimeters or pixels
* -H # Set horizontal resolution of output images to #
* -V # Set vertical resolution of output images to #
* -J # Horizontal margin of output page to # expressed in current
* units when sectioning image into columns x rows
* using the -S cols:rows option.
* -K # Vertical margin of output page to # expressed in current
* units when sectioning image into columns x rows
* using the -S cols:rows option.
* -X # Horizontal dimension of region to extract expressed in current
* units
* -Y # Vertical dimension of region to extract expressed in current
* units
* -O orient Orientation for output image, portrait, landscape, auto
* -P page Page size for output image segments, eg letter, legal, tabloid,
* etc.
* -S cols:rows Divide the image into equal sized segments using cols across
* and rows down
* -E t|l|r|b Edge to use as origin
* -m #,#,#,# Margins from edges for selection: top, left, bottom, right
* (commas separated)
* -Z #:#,#:# Zones of the image designated as zone X of Y,
* eg 1:3 would be first of three equal portions measured
* from reference edge
* -N odd|even|#,#-#,#|last
* Select sequences and/or ranges of images within file
* to process. The words odd or even may be used to specify
* all odd or even numbered images the word last may be used
* in place of a number in the sequence to indicate the final
* image in the file without knowing how many images there are.
* -R # Rotate image or crop selection by 90,180,or 270 degrees
* clockwise
* -F h|v Flip (mirror) image or crop selection horizontally
* or vertically
* -I [black|white|data|both]
* Invert color space, eg dark to light for bilevel and grayscale images
* If argument is white or black, set the PHOTOMETRIC_INTERPRETATION
* tag to MinIsBlack or MinIsWhite without altering the image data
* If the argument is data or both, the image data are modified:
* both inverts the data and the PHOTOMETRIC_INTERPRETATION tag,
* data inverts the data but not the PHOTOMETRIC_INTERPRETATION tag
* -D input:<filename1>,output:<filename2>,format:<raw|txt>,level:N,debug:N
* Dump raw data for input and/or output images to individual files
* in raw (binary) format or text (ASCII) representing binary data
* as strings of 1s and 0s. The filename arguments are used as stems
* from which individual files are created for each image. Text format
* includes annotations for image parameters and scanline info. Level
* selects which functions dump data, with higher numbers selecting
* lower level, scanline level routines. Debug reports a limited set
* of messages to monitor progess without enabling dump logs.
*/
static char tiffcrop_version_id[] = "2.2";
static char tiffcrop_rev_date[] = "11-03-2009";
#include "tif_config.h"
#include "tiffiop.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <ctype.h>
#include <limits.h>
#include <sys/stat.h>
#include <assert.h>
#ifdef HAVE_UNISTD_H
# include <unistd.h>
#endif
#ifdef HAVE_STDINT_H
# include <stdint.h>
#endif
#ifndef HAVE_GETOPT
extern int getopt(int, char**, char*);
#endif
#include "tiffio.h"
#if defined(VMS)
# define unlink delete
#endif
#ifndef PATH_MAX
#define PATH_MAX 1024
#endif
#ifndef streq
#define streq(a,b) (strcmp((a),(b)) == 0)
#endif
#define strneq(a,b,n) (strncmp((a),(b),(n)) == 0)
#define TRUE 1
#define FALSE 0
/*
* Definitions and data structures required to support cropping and image
* manipulations.
*/
#define EDGE_TOP 1
#define EDGE_LEFT 2
#define EDGE_BOTTOM 3
#define EDGE_RIGHT 4
#define EDGE_CENTER 5
#define MIRROR_HORIZ 1
#define MIRROR_VERT 2
#define MIRROR_BOTH 3
#define ROTATECW_90 8
#define ROTATECW_180 16
#define ROTATECW_270 32
#define ROTATE_ANY ROTATECW_90 || ROTATECW_180 || ROTATECW_270
#define CROP_NONE 0
#define CROP_MARGINS 1
#define CROP_WIDTH 2
#define CROP_LENGTH 4
#define CROP_ZONES 8
#define CROP_REGIONS 16
#define CROP_ROTATE 32
#define CROP_MIRROR 64
#define CROP_INVERT 128
/* Modes for writing out images and selections */
#define ONE_FILE_COMPOSITE 0 /* One file, sections combined sections */
#define ONE_FILE_SEPARATED 1 /* One file, sections to new IFDs */
#define FILE_PER_IMAGE_COMPOSITE 2 /* One file per image, combined sections */
#define FILE_PER_IMAGE_SEPARATED 3 /* One file per input image */
#define FILE_PER_SELECTION 4 /* One file per selection */
#define COMPOSITE_IMAGES 0 /* Selections combined into one image */
#define SEPARATED_IMAGES 1 /* Selections saved to separate images */
#define STRIP 1
#define TILE 2
#define MAX_REGIONS 8 /* number of regions to extract from a single page */
#define MAX_OUTBUFFS 8 /* must match larger of zones or regions */
#define MAX_SECTIONS 32 /* number of sections per page to write to output */
#define MAX_IMAGES 2048 /* number of images in descrete list, not in the file */
#define MAX_SAMPLES 8 /* maximum number of samples per pixel supported */
#define MAX_BITS_PER_SAMPLE 64 /* maximum bit depth supported */
#define DUMP_NONE 0
#define DUMP_TEXT 1
#define DUMP_RAW 2
/* Offsets into buffer for margins and fixed width and length segments */
struct offset {
uint32 tmargin;
uint32 lmargin;
uint32 bmargin;
uint32 rmargin;
uint32 crop_width;
uint32 crop_length;
uint32 startx;
uint32 endx;
uint32 starty;
uint32 endy;
};
/* Description of a zone within the image. Position 1 of 3 zones would be
* the first third of the image. These are computed after margins and
* width/length requests are applied so that you can extract multiple
* zones from within a larger region for OCR or barcode recognition.
*/
struct buffinfo {
uint32 size; /* size of this buffer */
unsigned char *buffer; /* address of the allocated buffer */
};
struct zone {
int position; /* ordinal of segment to be extracted */
int total; /* total equal sized divisions of crop area */
};
struct pageseg {
uint32 x1; /* index of left edge */
uint32 x2; /* index of right edge */
uint32 y1; /* index of top edge */
uint32 y2; /* index of bottom edge */
int position; /* ordinal of segment to be extracted */
int total; /* total equal sized divisions of crop area */
uint32 buffsize; /* size of buffer needed to hold the cropped zone */
};
struct coordpairs {
double X1; /* index of left edge in current units */
double X2; /* index of right edge in current units */
double Y1; /* index of top edge in current units */
double Y2; /* index of bottom edge in current units */
};
struct region {
uint32 x1; /* pixel offset of left edge */
uint32 x2; /* pixel offset of right edge */
uint32 y1; /* pixel offset of top edge */
uint32 y2; /* picel offset of bottom edge */
uint32 width; /* width in pixels */
uint32 length; /* length in pixels */
uint32 buffsize; /* size of buffer needed to hold the cropped region */
unsigned char *buffptr; /* address of start of the region */
};
/* Cropping parameters from command line and image data
* Note: This should be renamed to proc_opts and expanded to include all current globals
* if possible, but each function that accesses global variables will have to be redone.
*/
struct crop_mask {
double width; /* Selection width for master crop region in requested units */
double length; /* Selection length for master crop region in requesed units */
double margins[4]; /* Top, left, bottom, right margins */
float xres; /* Horizontal resolution read from image*/
float yres; /* Vertical resolution read from image */
uint32 combined_width; /* Width of combined cropped zones */
uint32 combined_length; /* Length of combined cropped zones */
uint32 bufftotal; /* Size of buffer needed to hold all the cropped region */
uint16 img_mode; /* Composite or separate images created from zones or regions */
uint16 exp_mode; /* Export input images or selections to one or more files */
uint16 crop_mode; /* Crop options to be applied */
uint16 res_unit; /* Resolution unit for margins and selections */
uint16 edge_ref; /* Reference edge for sections extraction and combination */
uint16 rotation; /* Clockwise rotation of the extracted region or image */
uint16 mirror; /* Mirror extracted region or image horizontally or vertically */
uint16 invert; /* Invert the color map of image or region */
uint16 photometric; /* Status of photometric interpretation for inverted image */
uint16 selections; /* Number of regions or zones selected */
uint16 regions; /* Number of regions delimited by corner coordinates */
struct region regionlist[MAX_REGIONS]; /* Regions within page or master crop region */
uint16 zones; /* Number of zones delimited by Ordinal:Total requested */
struct zone zonelist[MAX_REGIONS]; /* Zones indices to define a region */
struct coordpairs corners[MAX_REGIONS]; /* Coordinates of upper left and lower right corner */
};
#define MAX_PAPERNAMES 49
#define MAX_PAPERNAME_LENGTH 15
#define DEFAULT_RESUNIT RESUNIT_INCH
#define DEFAULT_PAGE_HEIGHT 14.0
#define DEFAULT_PAGE_WIDTH 8.5
#define DEFAULT_RESOLUTION 300
#define DEFAULT_PAPER_SIZE "legal"
#define ORIENTATION_NONE 0
#define ORIENTATION_PORTRAIT 1
#define ORIENTATION_LANDSCAPE 2
#define ORIENTATION_SEASCAPE 4
#define ORIENTATION_AUTO 16
#define PAGE_MODE_NONE 0
#define PAGE_MODE_RESOLUTION 1
#define PAGE_MODE_PAPERSIZE 2
#define PAGE_MODE_MARGINS 4
#define PAGE_MODE_ROWSCOLS 8
#define INVERT_DATA_ONLY 10
#define INVERT_DATA_AND_TAG 11
struct paperdef {
char name[MAX_PAPERNAME_LENGTH];
double width;
double length;
double asratio;
};
/* European page sizes corrected from update sent by
* thomas . jarosch @ intra2net . com on 5/7/2010
* Paper Size Width Length Aspect Ratio */
struct paperdef PaperTable[MAX_PAPERNAMES] = {
{"default", 8.500, 14.000, 0.607},
{"pa4", 8.264, 11.000, 0.751},
{"letter", 8.500, 11.000, 0.773},
{"legal", 8.500, 14.000, 0.607},
{"half-letter", 8.500, 5.514, 1.542},
{"executive", 7.264, 10.528, 0.690},
{"tabloid", 11.000, 17.000, 0.647},
{"11x17", 11.000, 17.000, 0.647},
{"ledger", 17.000, 11.000, 1.545},
{"archa", 9.000, 12.000, 0.750},
{"archb", 12.000, 18.000, 0.667},
{"archc", 18.000, 24.000, 0.750},
{"archd", 24.000, 36.000, 0.667},
{"arche", 36.000, 48.000, 0.750},
{"csheet", 17.000, 22.000, 0.773},
{"dsheet", 22.000, 34.000, 0.647},
{"esheet", 34.000, 44.000, 0.773},
{"superb", 11.708, 17.042, 0.687},
{"commercial", 4.139, 9.528, 0.434},
{"monarch", 3.889, 7.528, 0.517},
{"envelope-dl", 4.333, 8.681, 0.499},
{"envelope-c5", 6.389, 9.028, 0.708},
{"europostcard", 4.139, 5.833, 0.710},
{"a0", 33.110, 46.811, 0.707},
{"a1", 23.386, 33.110, 0.706},
{"a2", 16.535, 23.386, 0.707},
{"a3", 11.693, 16.535, 0.707},
{"a4", 8.268, 11.693, 0.707},
{"a5", 5.827, 8.268, 0.705},
{"a6", 4.134, 5.827, 0.709},
{"a7", 2.913, 4.134, 0.705},
{"a8", 2.047, 2.913, 0.703},
{"a9", 1.457, 2.047, 0.712},
{"a10", 1.024, 1.457, 0.703},
{"b0", 39.370, 55.669, 0.707},
{"b1", 27.835, 39.370, 0.707},
{"b2", 19.685, 27.835, 0.707},
{"b3", 13.898, 19.685, 0.706},
{"b4", 9.843, 13.898, 0.708},
{"b5", 6.929, 9.843, 0.704},
{"b6", 4.921, 6.929, 0.710},
{"c0", 36.102, 51.063, 0.707},
{"c1", 25.512, 36.102, 0.707},
{"c2", 18.031, 25.512, 0.707},
{"c3", 12.756, 18.031, 0.707},
{"c4", 9.016, 12.756, 0.707},
{"c5", 6.378, 9.016, 0.707},
{"c6", 4.488, 6.378, 0.704},
{"", 0.000, 0.000, 1.000},
};
/* Structure to define in input image parameters */
struct image_data {
float xres;
float yres;
uint32 width;
uint32 length;
uint16 res_unit;
uint16 bps;
uint16 spp;
uint16 planar;
uint16 photometric;
uint16 orientation;
uint16 adjustments;
};
/* Structure to define the output image modifiers */
struct pagedef {
char name[16];
double width; /* width in pixels */
double length; /* length in pixels */
double hmargin; /* margins to subtract from width of sections */
double vmargin; /* margins to subtract from height of sections */
double hres; /* horizontal resolution for output */
double vres; /* vertical resolution for output */
uint32 mode; /* bitmask of modifiers to page format */
uint16 res_unit; /* resolution unit for output image */
unsigned int rows; /* number of section rows */
unsigned int cols; /* number of section cols */
unsigned int orient; /* portrait, landscape, seascape, auto */
};
struct dump_opts {
int debug;
int format;
int level;
char mode[4];
char infilename[PATH_MAX + 1];
char outfilename[PATH_MAX + 1];
FILE *infile;
FILE *outfile;
};
/* globals */
static int outtiled = -1;
static uint32 tilewidth = 0;
static uint32 tilelength = 0;
static uint16 config = 0;
static uint16 compression = 0;
static uint16 predictor = 0;
static uint16 fillorder = 0;
static uint32 rowsperstrip = 0;
static uint32 g3opts = 0;
static int ignore = FALSE; /* if true, ignore read errors */
static uint32 defg3opts = (uint32) -1;
static int quality = 100; /* JPEG quality */
static int jpegcolormode = -1; /* was JPEGCOLORMODE_RGB; */
static uint16 defcompression = (uint16) -1;
static uint16 defpredictor = (uint16) -1;
static int pageNum = 0;
static int little_endian = 1;
/* Functions adapted from tiffcp with additions or significant modifications */
static int readContigStripsIntoBuffer (TIFF*, uint8*);
static int readSeparateStripsIntoBuffer (TIFF*, uint8*, uint32, uint32, tsample_t, struct dump_opts *);
static int readContigTilesIntoBuffer (TIFF*, uint8*, uint32, uint32, uint32, uint32, tsample_t, uint16);
static int readSeparateTilesIntoBuffer (TIFF*, uint8*, uint32, uint32, uint32, uint32, tsample_t, uint16);
static int writeBufferToContigStrips (TIFF*, uint8*, uint32);
static int writeBufferToContigTiles (TIFF*, uint8*, uint32, uint32, tsample_t, struct dump_opts *);
static int writeBufferToSeparateStrips (TIFF*, uint8*, uint32, uint32, tsample_t, struct dump_opts *);
static int writeBufferToSeparateTiles (TIFF*, uint8*, uint32, uint32, tsample_t, struct dump_opts *);
static int extractContigSamplesToBuffer (uint8 *, uint8 *, uint32, uint32, tsample_t,
uint16, uint16, struct dump_opts *);
static int processCompressOptions(char*);
static void usage(void);
/* All other functions by Richard Nolde, not found in tiffcp */
static void initImageData (struct image_data *);
static void initCropMasks (struct crop_mask *);
static void initPageSetup (struct pagedef *, struct pageseg *, struct buffinfo []);
static void initDumpOptions(struct dump_opts *);
/* Command line and file naming functions */
void process_command_opts (int, char *[], char *, char *, uint32 *,
uint16 *, uint16 *, uint32 *, uint32 *, uint32 *,
struct crop_mask *, struct pagedef *,
struct dump_opts *,
unsigned int *, unsigned int *);
static int update_output_file (TIFF **, char *, int, char *, unsigned int *);
/* * High level functions for whole image manipulation */
static int get_page_geometry (char *, struct pagedef*);
static int computeInputPixelOffsets(struct crop_mask *, struct image_data *,
struct offset *);
static int computeOutputPixelOffsets (struct crop_mask *, struct image_data *,
struct pagedef *, struct pageseg *,
struct dump_opts *);
static int loadImage(TIFF *, struct image_data *, struct dump_opts *, unsigned char **);
static int correct_orientation(struct image_data *, unsigned char **);
static int getCropOffsets(struct image_data *, struct crop_mask *, struct dump_opts *);
static int processCropSelections(struct image_data *, struct crop_mask *,
unsigned char **, struct buffinfo []);
static int writeSelections(TIFF *, TIFF **, struct crop_mask *, struct image_data *,
struct dump_opts *, struct buffinfo [],
char *, char *, unsigned int*, unsigned int);
/* Section functions */
static int createImageSection(uint32, unsigned char **);
static int extractImageSection(struct image_data *, struct pageseg *,
unsigned char *, unsigned char *);
static int writeSingleSection(TIFF *, TIFF *, struct image_data *,
struct dump_opts *, uint32, uint32,
double, double, unsigned char *);
static int writeImageSections(TIFF *, TIFF *, struct image_data *,
struct pagedef *, struct pageseg *,
struct dump_opts *, unsigned char *,
unsigned char **);
/* Whole image functions */
static int createCroppedImage(struct image_data *, struct crop_mask *,
unsigned char **, unsigned char **);
static int writeCroppedImage(TIFF *, TIFF *, struct image_data *image,
struct dump_opts * dump,
uint32, uint32, unsigned char *, int, int);
/* Image manipulation functions */
static int rotateContigSamples8bits(uint16, uint16, uint16, uint32,
uint32, uint32, uint8 *, uint8 *);
static int rotateContigSamples16bits(uint16, uint16, uint16, uint32,
uint32, uint32, uint8 *, uint8 *);
static int rotateContigSamples24bits(uint16, uint16, uint16, uint32,
uint32, uint32, uint8 *, uint8 *);
static int rotateContigSamples32bits(uint16, uint16, uint16, uint32,
uint32, uint32, uint8 *, uint8 *);
static int rotateImage(uint16, struct image_data *, uint32 *, uint32 *,
unsigned char **);
static int mirrorImage(uint16, uint16, uint16, uint32, uint32,
unsigned char *);
static int invertImage(uint16, uint16, uint16, uint32, uint32,
unsigned char *);
/* Functions to reverse the sequence of samples in a scanline */
static int reverseSamples8bits (uint16, uint16, uint32, uint8 *, uint8 *);
static int reverseSamples16bits (uint16, uint16, uint32, uint8 *, uint8 *);
static int reverseSamples24bits (uint16, uint16, uint32, uint8 *, uint8 *);
static int reverseSamples32bits (uint16, uint16, uint32, uint8 *, uint8 *);
static int reverseSamplesBytes (uint16, uint16, uint32, uint8 *, uint8 *);
/* Functions for manipulating individual samples in an image */
static int extractSeparateRegion(struct image_data *, struct crop_mask *,
unsigned char *, unsigned char *, int);
static int extractCompositeRegions(struct image_data *, struct crop_mask *,
unsigned char *, unsigned char *);
static int extractContigSamples8bits (uint8 *, uint8 *, uint32,
tsample_t, uint16, uint16,
tsample_t, uint32, uint32);
static int extractContigSamples16bits (uint8 *, uint8 *, uint32,
tsample_t, uint16, uint16,
tsample_t, uint32, uint32);
static int extractContigSamples24bits (uint8 *, uint8 *, uint32,
tsample_t, uint16, uint16,
tsample_t, uint32, uint32);
static int extractContigSamples32bits (uint8 *, uint8 *, uint32,
tsample_t, uint16, uint16,
tsample_t, uint32, uint32);
static int extractContigSamplesBytes (uint8 *, uint8 *, uint32,
tsample_t, uint16, uint16,
tsample_t, uint32, uint32);
static int extractContigSamplesShifted8bits (uint8 *, uint8 *, uint32,
tsample_t, uint16, uint16,
tsample_t, uint32, uint32,
int);
static int extractContigSamplesShifted16bits (uint8 *, uint8 *, uint32,
tsample_t, uint16, uint16,
tsample_t, uint32, uint32,
int);
static int extractContigSamplesShifted24bits (uint8 *, uint8 *, uint32,
tsample_t, uint16, uint16,
tsample_t, uint32, uint32,
int);
static int extractContigSamplesShifted32bits (uint8 *, uint8 *, uint32,
tsample_t, uint16, uint16,
tsample_t, uint32, uint32,
int);
static int extractContigSamplesToTileBuffer(uint8 *, uint8 *, uint32, uint32,
uint32, uint32, tsample_t, uint16,
uint16, uint16, struct dump_opts *);
/* Functions to combine separate planes into interleaved planes */
static int combineSeparateSamples8bits (uint8 *[], uint8 *, uint32, uint32,
uint16, uint16, FILE *, int, int);
static int combineSeparateSamples16bits (uint8 *[], uint8 *, uint32, uint32,
uint16, uint16, FILE *, int, int);
static int combineSeparateSamples24bits (uint8 *[], uint8 *, uint32, uint32,
uint16, uint16, FILE *, int, int);
static int combineSeparateSamples32bits (uint8 *[], uint8 *, uint32, uint32,
uint16, uint16, FILE *, int, int);
static int combineSeparateSamplesBytes (unsigned char *[], unsigned char *,
uint32, uint32, tsample_t, uint16,
FILE *, int, int);
static int combineSeparateTileSamples8bits (uint8 *[], uint8 *, uint32, uint32,
uint32, uint32, uint16, uint16,
FILE *, int, int);
static int combineSeparateTileSamples16bits (uint8 *[], uint8 *, uint32, uint32,
uint32, uint32, uint16, uint16,
FILE *, int, int);
static int combineSeparateTileSamples24bits (uint8 *[], uint8 *, uint32, uint32,
uint32, uint32, uint16, uint16,
FILE *, int, int);
static int combineSeparateTileSamples32bits (uint8 *[], uint8 *, uint32, uint32,
uint32, uint32, uint16, uint16,
FILE *, int, int);
static int combineSeparateTileSamplesBytes (unsigned char *[], unsigned char *,
uint32, uint32, uint32, uint32,
tsample_t, uint16, FILE *, int, int);
/* Dump functions for debugging */
static void dump_info (FILE *, int, char *, char *, ...);
static int dump_data (FILE *, int, char *, unsigned char *, uint32);
static int dump_byte (FILE *, int, char *, unsigned char);
static int dump_short (FILE *, int, char *, uint16);
static int dump_long (FILE *, int, char *, uint32);
static int dump_wide (FILE *, int, char *, uint64);
static int dump_buffer (FILE *, int, uint32, uint32, uint32, unsigned char *);
/* End function declarations */
/* Functions derived in whole or in part from tiffcp */
/* The following functions are taken largely intact from tiffcp */
static char* stuff[] = {
"usage: tiffcrop [options] source1 ... sourceN destination",
"where options are:",
" -h Print this syntax listing",
" -v Print tiffcrop version identifier and last revision date",
" ",
" -a Append to output instead of overwriting",
" -d offset Set initial directory offset, counting first image as one, not zero",
" -p contig Pack samples contiguously (e.g. RGBRGB...)",
" -p separate Store samples separately (e.g. RRR...GGG...BBB...)",
" -s Write output in strips",
" -t Write output in tiles",
" -i Ignore read errors",
" ",
" -r # Make each strip have no more than # rows",
" -w # Set output tile width (pixels)",
" -l # Set output tile length (pixels)",
" ",
" -f lsb2msb Force lsb-to-msb FillOrder for output",
" -f msb2lsb Force msb-to-lsb FillOrder for output",
"",
" -c lzw[:opts] Compress output with Lempel-Ziv & Welch encoding",
" -c zip[:opts] Compress output with deflate encoding",
" -c jpeg[:opts] compress output with JPEG encoding",
" -c packbits Compress output with packbits encoding",
" -c g3[:opts] Compress output with CCITT Group 3 encoding",
" -c g4 Compress output with CCITT Group 4 encoding",
" -c none Use no compression algorithm on output",
" ",
"Group 3 options:",
" 1d Use default CCITT Group 3 1D-encoding",
" 2d Use optional CCITT Group 3 2D-encoding",
" fill Byte-align EOL codes",
"For example, -c g3:2d:fill to get G3-2D-encoded data with byte-aligned EOLs",
" ",
"JPEG options:",
" # Set compression quality level (0-100, default 100)",
" r Output color image as raw RGB rather than YCbCr",
" a Output color image as RGB or YCbCr with auto detection",
"For example, -c jpeg:r:50 to get JPEG-encoded RGB data with 50% comp. quality",
" ",
"LZW and deflate options:",
" # Set predictor value",
"For example, -c lzw:2 to get LZW-encoded data with horizontal differencing",
" ",
"Page and selection options:",
" -N odd|even|#,#-#,#|last sequences and ranges of images within file to process",
" The words odd or even may be used to specify all odd or even numbered images.",
" The word last may be used in place of a number in the sequence to indicate.",
" The final image in the file without knowing how many images there are.",
" Numbers are counted from one even though TIFF IFDs are counted from zero.",
" ",
" -E t|l|r|b edge to use as origin for width and length of crop region",
" -U units [in, cm, px ] inches, centimeters or pixels",
" ",
" -m #,#,#,# margins from edges for selection: top, left, bottom, right separated by commas",
" -X # horizontal dimension of region to extract expressed in current units",
" -Y # vertical dimension of region to extract expressed in current units",
" -Z #:#,#:# zones of the image designated as position X of Y,",
" eg 1:3 would be first of three equal portions measured from reference edge",
" -z x1,y1,x2,y2:...:xN,yN,xN+1,yN+1",
" regions of the image designated by upper left and lower right coordinates",
"",
"Export grouping options:",
" -e c|d|i|m|s export mode for images and selections from input images.",
" When exporting a composite image from multiple zones or regions",
" (combined and image modes), the selections must have equal sizes",
" for the axis perpendicular to the edge specified with -E.",
" c|combined All images and selections are written to a single file (default).",
" with multiple selections from one image combined into a single image.",
" d|divided All images and selections are written to a single file",
" with each selection from one image written to a new image.",
" i|image Each input image is written to a new file (numeric filename sequence)",
" with multiple selections from the image combined into one image.",
" m|multiple Each input image is written to a new file (numeric filename sequence)",
" with each selection from the image written to a new image.",
" s|separated Individual selections from each image are written to separate files.",
"",
"Output options:",
" -H # Set horizontal resolution of output images to #",
" -V # Set vertical resolution of output images to #",
" -J # Set horizontal margin of output page to # expressed in current units",
" when sectioning image into columns x rows using the -S cols:rows option",
" -K # Set verticalal margin of output page to # expressed in current units",
" when sectioning image into columns x rows using the -S cols:rows option",
" ",
" -O orient orientation for output image, portrait, landscape, auto",
" -P page page size for output image segments, eg letter, legal, tabloid, etc",
" use #.#x#.# to specify a custom page size in the currently defined units",
" where #.# represents the width and length",
" -S cols:rows Divide the image into equal sized segments using cols across and rows down.",
" ",
" -F hor|vert|both",
" flip (mirror) image or region horizontally, vertically, or both",
" -R # [90,180,or 270] degrees clockwise rotation of image or extracted region",
" -I [black|white|data|both]",
" invert color space, eg dark to light for bilevel and grayscale images",
" If argument is white or black, set the PHOTOMETRIC_INTERPRETATION ",
" tag to MinIsBlack or MinIsWhite without altering the image data",
" If the argument is data or both, the image data are modified:",
" both inverts the data and the PHOTOMETRIC_INTERPRETATION tag,",
" data inverts the data but not the PHOTOMETRIC_INTERPRETATION tag",
" ",
"-D opt1:value1,opt2:value2,opt3:value3:opt4:value4",
" Debug/dump program progress and/or data to non-TIFF files.",
" Options include the following and must be joined as a comma",
" separate list. The use of this option is generally limited to",
" program debugging and development of future options.",
" ",
" debug:N Display limited program progress indicators where larger N",
" increase the level of detail. Note: Tiffcrop may be compiled with",
" -DDEVELMODE to enable additional very low level debug reporting.",
"",
" Format:txt|raw Format any logged data as ASCII text or raw binary ",
" values. ASCII text dumps include strings of ones and zeroes",
" representing the binary values in the image data plus identifying headers.",
" ",
" level:N Specify the level of detail presented in the dump files.",
" This can vary from dumps of the entire input or output image data to dumps",
" of data processed by specific functions. Current range of levels is 1 to 3.",
" ",
" input:full-path-to-directory/input-dumpname",
" ",
" output:full-path-to-directory/output-dumpnaem",
" ",
" When dump files are being written, each image will be written to a separate",
" file with the name built by adding a numeric sequence value to the dumpname",
" and an extension of .txt for ASCII dumps or .bin for binary dumps.",
" ",
" The four debug/dump options are independent, though it makes little sense to",
" specify a dump file without specifying a detail level.",
" ",
NULL
};
/* This function could be modified to pass starting sample offset
* and number of samples as args to select fewer than spp
* from input image. These would then be passed to individual
* extractContigSampleXX routines.
*/
static int readContigTilesIntoBuffer (TIFF* in, uint8* buf,
uint32 imagelength,
uint32 imagewidth,
uint32 tw, uint32 tl,
tsample_t spp, uint16 bps)
{
int status = 1;
tsample_t sample = 0;
tsample_t count = spp;
uint32 row, col, trow;
uint32 nrow, ncol;
uint32 dst_rowsize, shift_width;
uint32 bytes_per_sample, bytes_per_pixel;
uint32 trailing_bits, prev_trailing_bits;
uint32 tile_rowsize = TIFFTileRowSize(in);
uint32 src_offset, dst_offset;
uint32 row_offset, col_offset;
uint8 *bufp = (uint8*) buf;
unsigned char *src = NULL;
unsigned char *dst = NULL;
tsize_t tbytes = 0, tile_buffsize = 0;
tsize_t tilesize = TIFFTileSize(in);
unsigned char *tilebuf = NULL;
bytes_per_sample = (bps + 7) / 8;
bytes_per_pixel = ((bps * spp) + 7) / 8;
if ((bps % 8) == 0)
shift_width = 0;
else
{
if (bytes_per_pixel < (bytes_per_sample + 1))
shift_width = bytes_per_pixel;
else
shift_width = bytes_per_sample + 1;
}
tile_buffsize = tilesize;
if (tilesize < (tsize_t)(tl * tile_rowsize))
{
#ifdef DEBUG2
TIFFError("readContigTilesIntoBuffer",
"Tilesize %lu is too small, using alternate calculation %u",
tilesize, tl * tile_rowsize);
#endif
tile_buffsize = tl * tile_rowsize;
}
tilebuf = _TIFFmalloc(tile_buffsize);
if (tilebuf == 0)
return 0;
dst_rowsize = ((imagewidth * bps * spp) + 7) / 8;
for (row = 0; row < imagelength; row += tl)
{
nrow = (row + tl > imagelength) ? imagelength - row : tl;
for (col = 0; col < imagewidth; col += tw)
{
tbytes = TIFFReadTile(in, tilebuf, col, row, 0, 0);
if (tbytes < tilesize && !ignore)
{
TIFFError(TIFFFileName(in),
"Error, can't read tile at row %lu col %lu, Read %lu bytes of %lu",
(unsigned long) col, (unsigned long) row, (unsigned long)tbytes,
(unsigned long)tilesize);
status = 0;
_TIFFfree(tilebuf);
return status;
}
row_offset = row * dst_rowsize;
col_offset = ((col * bps * spp) + 7)/ 8;
bufp = buf + row_offset + col_offset;
if (col + tw > imagewidth)
ncol = imagewidth - col;
else
ncol = tw;
/* Each tile scanline will start on a byte boundary but it
* has to be merged into the scanline for the entire
* image buffer and the previous segment may not have
* ended on a byte boundary
*/
/* Optimization for common bit depths, all samples */
if (((bps % 8) == 0) && (count == spp))
{
for (trow = 0; trow < nrow; trow++)
{
src_offset = trow * tile_rowsize;
_TIFFmemcpy (bufp, tilebuf + src_offset, (ncol * spp * bps) / 8);
bufp += (imagewidth * bps * spp) / 8;
}
}
else
{
/* Bit depths not a multiple of 8 and/or extract fewer than spp samples */
prev_trailing_bits = trailing_bits = 0;
trailing_bits = (ncol * bps * spp) % 8;
/* for (trow = 0; tl < nrow; trow++) */
for (trow = 0; trow < nrow; trow++)
{
src_offset = trow * tile_rowsize;
src = tilebuf + src_offset;
dst_offset = (row + trow) * dst_rowsize;
dst = buf + dst_offset + col_offset;
switch (shift_width)
{
case 0: if (extractContigSamplesBytes (src, dst, ncol, sample,
spp, bps, count, 0, ncol))
{
TIFFError("readContigTilesIntoBuffer",
"Unable to extract row %d from tile %lu",
row, (unsigned long)TIFFCurrentTile(in));
return 1;
}
break;
case 1: if (bps == 1)
{
if (extractContigSamplesShifted8bits (src, dst, ncol,
sample, spp,
bps, count,
0, ncol,
prev_trailing_bits))
{
TIFFError("readContigTilesIntoBuffer",
"Unable to extract row %d from tile %lu",
row, (unsigned long)TIFFCurrentTile(in));
return 1;
}
break;
}
else
if (extractContigSamplesShifted16bits (src, dst, ncol,
sample, spp,
bps, count,
0, ncol,
prev_trailing_bits))
{
TIFFError("readContigTilesIntoBuffer",
"Unable to extract row %d from tile %lu",
row, (unsigned long)TIFFCurrentTile(in));
return 1;
}
break;
case 2: if (extractContigSamplesShifted24bits (src, dst, ncol,
sample, spp,
bps, count,
0, ncol,
prev_trailing_bits))
{
TIFFError("readContigTilesIntoBuffer",
"Unable to extract row %d from tile %lu",
row, (unsigned long)TIFFCurrentTile(in));
return 1;
}
break;
case 3:
case 4:
case 5: if (extractContigSamplesShifted32bits (src, dst, ncol,
sample, spp,
bps, count,
0, ncol,
prev_trailing_bits))
{
TIFFError("readContigTilesIntoBuffer",
"Unable to extract row %d from tile %lu",
row, (unsigned long)TIFFCurrentTile(in));
return 1;
}
break;
default: TIFFError("readContigTilesIntoBuffer", "Unsupported bit depth %d", bps);
return 1;
}
}
prev_trailing_bits += trailing_bits;
if (prev_trailing_bits > 7)
prev_trailing_bits-= 8;
}
}
}
_TIFFfree(tilebuf);
return status;
}
static int readSeparateTilesIntoBuffer (TIFF* in, uint8 *obuf,
uint32 imagelength, uint32 imagewidth,
uint32 tw, uint32 tl,
uint16 spp, uint16 bps)
{
int i, status = 1, sample;
int shift_width, bytes_per_pixel;
uint16 bytes_per_sample;
uint32 row, col; /* Current row and col of image */
uint32 nrow, ncol; /* Number of rows and cols in current tile */
uint32 row_offset, col_offset; /* Output buffer offsets */
tsize_t tbytes = 0, tilesize = TIFFTileSize(in);
tsample_t s;
uint8* bufp = (uint8*)obuf;
unsigned char *srcbuffs[MAX_SAMPLES];
unsigned char *tbuff = NULL;
bytes_per_sample = (bps + 7) / 8;
for (sample = 0; (sample < spp) && (sample < MAX_SAMPLES); sample++)
{
srcbuffs[sample] = NULL;
tbuff = (unsigned char *)_TIFFmalloc(tilesize + 8);
if (!tbuff)
{
TIFFError ("readSeparateTilesIntoBuffer",
"Unable to allocate tile read buffer for sample %d", sample);
for (i = 0; i < sample; i++)
_TIFFfree (srcbuffs[i]);
return 0;
}
srcbuffs[sample] = tbuff;
}
/* Each tile contains only the data for a single plane
* arranged in scanlines of tw * bytes_per_sample bytes.
*/
for (row = 0; row < imagelength; row += tl)
{
nrow = (row + tl > imagelength) ? imagelength - row : tl;
for (col = 0; col < imagewidth; col += tw)
{
for (s = 0; s < spp; s++)
{ /* Read each plane of a tile set into srcbuffs[s] */
tbytes = TIFFReadTile(in, srcbuffs[s], col, row, 0, s);
if (tbytes < 0 && !ignore)
{
TIFFError(TIFFFileName(in),
"Error, can't read tile for row %lu col %lu, "
"sample %lu",
(unsigned long) col, (unsigned long) row,
(unsigned long) s);
status = 0;
for (sample = 0; (sample < spp) && (sample < MAX_SAMPLES); sample++)
{
tbuff = srcbuffs[sample];
if (tbuff != NULL)
_TIFFfree(tbuff);
}
return status;
}
}
/* Tiles on the right edge may be padded out to tw
* which must be a multiple of 16.
* Ncol represents the visible (non padding) portion.
*/
if (col + tw > imagewidth)
ncol = imagewidth - col;
else
ncol = tw;
row_offset = row * (((imagewidth * spp * bps) + 7) / 8);
col_offset = ((col * spp * bps) + 7) / 8;
bufp = obuf + row_offset + col_offset;
if ((bps % 8) == 0)
{
if (combineSeparateTileSamplesBytes(srcbuffs, bufp, ncol, nrow, imagewidth,
tw, spp, bps, NULL, 0, 0))
{
status = 0;
break;
}
}
else
{
bytes_per_pixel = ((bps * spp) + 7) / 8;
if (bytes_per_pixel < (bytes_per_sample + 1))
shift_width = bytes_per_pixel;
else
shift_width = bytes_per_sample + 1;
switch (shift_width)
{
case 1: if (combineSeparateTileSamples8bits (srcbuffs, bufp, ncol, nrow,
imagewidth, tw, spp, bps,
NULL, 0, 0))
{
status = 0;
break;
}
break;
case 2: if (combineSeparateTileSamples16bits (srcbuffs, bufp, ncol, nrow,
imagewidth, tw, spp, bps,
NULL, 0, 0))
{
status = 0;
break;
}
break;
case 3: if (combineSeparateTileSamples24bits (srcbuffs, bufp, ncol, nrow,
imagewidth, tw, spp, bps,
NULL, 0, 0))
{
status = 0;
break;
}
break;
case 4:
case 5:
case 6:
case 7:
case 8: if (combineSeparateTileSamples32bits (srcbuffs, bufp, ncol, nrow,
imagewidth, tw, spp, bps,
NULL, 0, 0))
{
status = 0;
break;
}
break;
default: TIFFError ("readSeparateTilesIntoBuffer", "Unsupported bit depth: %d", bps);
status = 0;
break;
}
}
}
}
for (sample = 0; (sample < spp) && (sample < MAX_SAMPLES); sample++)
{
tbuff = srcbuffs[sample];
if (tbuff != NULL)
_TIFFfree(tbuff);
}
return status;
}
static int writeBufferToContigStrips(TIFF* out, uint8* buf, uint32 imagelength)
{
uint32 row, nrows, rowsperstrip;
tstrip_t strip = 0;
tsize_t stripsize;
TIFFGetFieldDefaulted(out, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
for (row = 0; row < imagelength; row += rowsperstrip)
{
nrows = (row + rowsperstrip > imagelength) ?
imagelength - row : rowsperstrip;
stripsize = TIFFVStripSize(out, nrows);
if (TIFFWriteEncodedStrip(out, strip++, buf, stripsize) < 0)
{
TIFFError(TIFFFileName(out), "Error, can't write strip %u", strip - 1);
return 1;
}
buf += stripsize;
}
return 0;
}
/* Abandon plans to modify code so that plannar orientation separate images
* do not have all samples for each channel written before all samples
* for the next channel have been abandoned.
* Libtiff internals seem to depend on all data for a given sample
* being contiguous within a strip or tile when PLANAR_CONFIG is
* separate. All strips or tiles of a given plane are written
* before any strips or tiles of a different plane are stored.
*/
static int
writeBufferToSeparateStrips (TIFF* out, uint8* buf,
uint32 length, uint32 width, uint16 spp,
struct dump_opts *dump)
{
uint8 *src;
uint16 bps;
uint32 row, nrows, rowsize, rowsperstrip;
uint32 bytes_per_sample;
tsample_t s;
tstrip_t strip = 0;
tsize_t stripsize = TIFFStripSize(out);
tsize_t rowstripsize, scanlinesize = TIFFScanlineSize(out);
tsize_t total_bytes = 0;
tdata_t obuf;
(void) TIFFGetFieldDefaulted(out, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
(void) TIFFGetField(out, TIFFTAG_BITSPERSAMPLE, &bps);
bytes_per_sample = (bps + 7) / 8;
rowsize = ((bps * spp * width) + 7) / 8; /* source has interleaved samples */
rowstripsize = rowsperstrip * bytes_per_sample * (width + 1);
obuf = _TIFFmalloc (rowstripsize);
if (obuf == NULL)
return 1;
for (s = 0; s < spp; s++)
{
for (row = 0; row < length; row += rowsperstrip)
{
nrows = (row + rowsperstrip > length) ? length - row : rowsperstrip;
stripsize = TIFFVStripSize(out, nrows);
src = buf + (row * rowsize);
total_bytes += stripsize;
memset (obuf, '\0', rowstripsize);
if (extractContigSamplesToBuffer(obuf, src, nrows, width, s, spp, bps, dump))
{
_TIFFfree(obuf);
return 1;
}
if ((dump->outfile != NULL) && (dump->level == 1))
{
dump_info(dump->outfile, dump->format,"",
"Sample %2d, Strip: %2d, bytes: %4d, Row %4d, bytes: %4d, Input offset: %6d",
s + 1, strip + 1, stripsize, row + 1, scanlinesize, src - buf);
dump_buffer(dump->outfile, dump->format, nrows, scanlinesize, row, obuf);
}
if (TIFFWriteEncodedStrip(out, strip++, obuf, stripsize) < 0)
{
TIFFError(TIFFFileName(out), "Error, can't write strip %u", strip - 1);
_TIFFfree(obuf);
return 1;
}
}
}
_TIFFfree(obuf);
return 0;
}
/* Extract all planes from contiguous buffer into a single tile buffer
* to be written out as a tile.
*/
static int writeBufferToContigTiles (TIFF* out, uint8* buf, uint32 imagelength,
uint32 imagewidth, tsample_t spp,
struct dump_opts* dump)
{
uint16 bps;
uint32 tl, tw;
uint32 row, col, nrow, ncol;
uint32 src_rowsize, col_offset;
uint32 tile_rowsize = TIFFTileRowSize(out);
uint8* bufp = (uint8*) buf;
tsize_t tile_buffsize = 0;
tsize_t tilesize = TIFFTileSize(out);
unsigned char *tilebuf = NULL;
TIFFGetField(out, TIFFTAG_TILELENGTH, &tl);
TIFFGetField(out, TIFFTAG_TILEWIDTH, &tw);
TIFFGetField(out, TIFFTAG_BITSPERSAMPLE, &bps);
tile_buffsize = tilesize;
if (tilesize < (tsize_t)(tl * tile_rowsize))
{
#ifdef DEBUG2
TIFFError("writeBufferToContigTiles",
"Tilesize %lu is too small, using alternate calculation %u",
tilesize, tl * tile_rowsize);
#endif
tile_buffsize = tl * tile_rowsize;
}
tilebuf = _TIFFmalloc(tile_buffsize);
if (tilebuf == 0)
return 1;
src_rowsize = ((imagewidth * spp * bps) + 7) / 8;
for (row = 0; row < imagelength; row += tl)
{
nrow = (row + tl > imagelength) ? imagelength - row : tl;
for (col = 0; col < imagewidth; col += tw)
{
/* Calculate visible portion of tile. */
if (col + tw > imagewidth)
ncol = imagewidth - col;
else
ncol = tw;
col_offset = (((col * bps * spp) + 7) / 8);
bufp = buf + (row * src_rowsize) + col_offset;
if (extractContigSamplesToTileBuffer(tilebuf, bufp, nrow, ncol, imagewidth,
tw, 0, spp, spp, bps, dump) > 0)
{
TIFFError("writeBufferToContigTiles",
"Unable to extract data to tile for row %lu, col %lu",
(unsigned long) row, (unsigned long)col);
_TIFFfree(tilebuf);
return 1;
}
if (TIFFWriteTile(out, tilebuf, col, row, 0, 0) < 0)
{
TIFFError("writeBufferToContigTiles",
"Cannot write tile at %lu %lu",
(unsigned long) col, (unsigned long) row);
_TIFFfree(tilebuf);
return 1;
}
}
}
_TIFFfree(tilebuf);
return 0;
} /* end writeBufferToContigTiles */
/* Extract each plane from contiguous buffer into a single tile buffer
* to be written out as a tile.
*/
static int writeBufferToSeparateTiles (TIFF* out, uint8* buf, uint32 imagelength,
uint32 imagewidth, tsample_t spp,
struct dump_opts * dump)
{
tdata_t obuf = _TIFFmalloc(TIFFTileSize(out));
uint32 tl, tw;
uint32 row, col, nrow, ncol;
uint32 src_rowsize, col_offset;
uint16 bps;
tsample_t s;
uint8* bufp = (uint8*) buf;
if (obuf == NULL)
return 1;
TIFFGetField(out, TIFFTAG_TILELENGTH, &tl);
TIFFGetField(out, TIFFTAG_TILEWIDTH, &tw);
TIFFGetField(out, TIFFTAG_BITSPERSAMPLE, &bps);
src_rowsize = ((imagewidth * spp * bps) + 7) / 8;
for (row = 0; row < imagelength; row += tl)
{
nrow = (row + tl > imagelength) ? imagelength - row : tl;
for (col = 0; col < imagewidth; col += tw)
{
/* Calculate visible portion of tile. */
if (col + tw > imagewidth)
ncol = imagewidth - col;
else
ncol = tw;
col_offset = (((col * bps * spp) + 7) / 8);
bufp = buf + (row * src_rowsize) + col_offset;
for (s = 0; s < spp; s++)
{
if (extractContigSamplesToTileBuffer(obuf, bufp, nrow, ncol, imagewidth,
tw, s, 1, spp, bps, dump) > 0)
{
TIFFError("writeBufferToSeparateTiles",
"Unable to extract data to tile for row %lu, col %lu sample %d",
(unsigned long) row, (unsigned long)col, (int)s);
_TIFFfree(obuf);
return 1;
}
if (TIFFWriteTile(out, obuf, col, row, 0, s) < 0)
{
TIFFError("writeBufferToseparateTiles",
"Cannot write tile at %lu %lu sample %lu",
(unsigned long) col, (unsigned long) row,
(unsigned long) s);
_TIFFfree(obuf);
return 1;
}
}
}
}
_TIFFfree(obuf);
return 0;
} /* end writeBufferToSeparateTiles */
static void
processG3Options(char* cp)
{
if( (cp = strchr(cp, ':')) ) {
if (defg3opts == (uint32) -1)
defg3opts = 0;
do {
cp++;
if (strneq(cp, "1d", 2))
defg3opts &= ~GROUP3OPT_2DENCODING;
else if (strneq(cp, "2d", 2))
defg3opts |= GROUP3OPT_2DENCODING;
else if (strneq(cp, "fill", 4))
defg3opts |= GROUP3OPT_FILLBITS;
else
usage();
} while( (cp = strchr(cp, ':')) );
}
}
static int
processCompressOptions(char* opt)
{
char* cp = NULL;
if (strneq(opt, "none",4))
{
defcompression = COMPRESSION_NONE;
/* DELETE ME: This should not be needed */
cp = strchr(opt, ':');
if (cp)
{
if (cp[1] == 'r' )
jpegcolormode = JPEGCOLORMODE_RAW;
else if (cp[1] == 'a' )
jpegcolormode = JPEGCOLORMODE_RGB;
}
/* end DELETE ME: */
}
else if (streq(opt, "packbits"))
{
defcompression = COMPRESSION_PACKBITS;
}
else if (strneq(opt, "jpeg", 4))
{
cp = strchr(opt, ':');
defcompression = COMPRESSION_JPEG;
while ( cp )
{
if (isdigit((int)cp[1]))
quality = atoi(cp+1);
else if (cp[1] == 'r' )
jpegcolormode = JPEGCOLORMODE_RAW;
else if (cp[1] == 'a' )
jpegcolormode = JPEGCOLORMODE_RGB;
else
usage();
cp = strchr(cp+1,':');
}
}
else if (strneq(opt, "g3", 2))
{
processG3Options(opt);
defcompression = COMPRESSION_CCITTFAX3;
}
else if (streq(opt, "g4"))
{
defcompression = COMPRESSION_CCITTFAX4;
}
else if (strneq(opt, "lzw", 3))
{
cp = strchr(opt, ':');
if (cp)
defpredictor = atoi(cp+1);
defcompression = COMPRESSION_LZW;
}
else if (strneq(opt, "zip", 3))
{
cp = strchr(opt, ':');
if (cp)
defpredictor = atoi(cp+1);
defcompression = COMPRESSION_ADOBE_DEFLATE;
}
else
return (0);
return (1);
}
static void
usage(void)
{
char buf[BUFSIZ];
int i;
setbuf(stderr, buf);
fprintf(stderr, "\n%s\n", TIFFGetVersion());
for (i = 0; stuff[i] != NULL; i++)
fprintf(stderr, "%s\n", stuff[i]);
exit(-1);
}
#define CopyField(tag, v) \
if (TIFFGetField(in, tag, &v)) TIFFSetField(out, tag, v)
#define CopyField2(tag, v1, v2) \
if (TIFFGetField(in, tag, &v1, &v2)) TIFFSetField(out, tag, v1, v2)
#define CopyField3(tag, v1, v2, v3) \
if (TIFFGetField(in, tag, &v1, &v2, &v3)) TIFFSetField(out, tag, v1, v2, v3)
#define CopyField4(tag, v1, v2, v3, v4) \
if (TIFFGetField(in, tag, &v1, &v2, &v3, &v4)) TIFFSetField(out, tag, v1, v2, v3, v4)
static void
cpTag(TIFF* in, TIFF* out, uint16 tag, uint16 count, TIFFDataType type)
{
switch (type) {
case TIFF_SHORT:
if (count == 1) {
uint16 shortv;
CopyField(tag, shortv);
} else if (count == 2) {
uint16 shortv1, shortv2;
CopyField2(tag, shortv1, shortv2);
} else if (count == 4) {
uint16 *tr, *tg, *tb, *ta;
CopyField4(tag, tr, tg, tb, ta);
} else if (count == (uint16) -1) {
uint16 shortv1;
uint16* shortav;
CopyField2(tag, shortv1, shortav);
}
break;
case TIFF_LONG:
{ uint32 longv;
CopyField(tag, longv);
}
break;
case TIFF_RATIONAL:
if (count == 1) {
float floatv;
CopyField(tag, floatv);
} else if (count == (uint16) -1) {
float* floatav;
CopyField(tag, floatav);
}
break;
case TIFF_ASCII:
{ char* stringv;
CopyField(tag, stringv);
}
break;
case TIFF_DOUBLE:
if (count == 1) {
double doublev;
CopyField(tag, doublev);
} else if (count == (uint16) -1) {
double* doubleav;
CopyField(tag, doubleav);
}
break;
default:
TIFFError(TIFFFileName(in),
"Data type %d is not supported, tag %d skipped.",
tag, type);
}
}
static struct cpTag {
uint16 tag;
uint16 count;
TIFFDataType type;
} tags[] = {
{ TIFFTAG_SUBFILETYPE, 1, TIFF_LONG },
{ TIFFTAG_THRESHHOLDING, 1, TIFF_SHORT },
{ TIFFTAG_DOCUMENTNAME, 1, TIFF_ASCII },
{ TIFFTAG_IMAGEDESCRIPTION, 1, TIFF_ASCII },
{ TIFFTAG_MAKE, 1, TIFF_ASCII },
{ TIFFTAG_MODEL, 1, TIFF_ASCII },
{ TIFFTAG_MINSAMPLEVALUE, 1, TIFF_SHORT },
{ TIFFTAG_MAXSAMPLEVALUE, 1, TIFF_SHORT },
{ TIFFTAG_XRESOLUTION, 1, TIFF_RATIONAL },
{ TIFFTAG_YRESOLUTION, 1, TIFF_RATIONAL },
{ TIFFTAG_PAGENAME, 1, TIFF_ASCII },
{ TIFFTAG_XPOSITION, 1, TIFF_RATIONAL },
{ TIFFTAG_YPOSITION, 1, TIFF_RATIONAL },
{ TIFFTAG_RESOLUTIONUNIT, 1, TIFF_SHORT },
{ TIFFTAG_SOFTWARE, 1, TIFF_ASCII },
{ TIFFTAG_DATETIME, 1, TIFF_ASCII },
{ TIFFTAG_ARTIST, 1, TIFF_ASCII },
{ TIFFTAG_HOSTCOMPUTER, 1, TIFF_ASCII },
{ TIFFTAG_WHITEPOINT, (uint16) -1, TIFF_RATIONAL },
{ TIFFTAG_PRIMARYCHROMATICITIES,(uint16) -1,TIFF_RATIONAL },
{ TIFFTAG_HALFTONEHINTS, 2, TIFF_SHORT },
{ TIFFTAG_INKSET, 1, TIFF_SHORT },
{ TIFFTAG_DOTRANGE, 2, TIFF_SHORT },
{ TIFFTAG_TARGETPRINTER, 1, TIFF_ASCII },
{ TIFFTAG_SAMPLEFORMAT, 1, TIFF_SHORT },
{ TIFFTAG_YCBCRCOEFFICIENTS, (uint16) -1,TIFF_RATIONAL },
{ TIFFTAG_YCBCRSUBSAMPLING, 2, TIFF_SHORT },
{ TIFFTAG_YCBCRPOSITIONING, 1, TIFF_SHORT },
{ TIFFTAG_REFERENCEBLACKWHITE, (uint16) -1,TIFF_RATIONAL },
{ TIFFTAG_EXTRASAMPLES, (uint16) -1, TIFF_SHORT },
{ TIFFTAG_SMINSAMPLEVALUE, 1, TIFF_DOUBLE },
{ TIFFTAG_SMAXSAMPLEVALUE, 1, TIFF_DOUBLE },
{ TIFFTAG_STONITS, 1, TIFF_DOUBLE },
};
#define NTAGS (sizeof (tags) / sizeof (tags[0]))
#define CopyTag(tag, count, type) cpTag(in, out, tag, count, type)
/* Functions written by Richard Nolde, with exceptions noted. */
void process_command_opts (int argc, char *argv[], char *mp, char *mode, uint32 *dirnum,
uint16 *defconfig, uint16 *deffillorder, uint32 *deftilewidth,
uint32 *deftilelength, uint32 *defrowsperstrip,
struct crop_mask *crop_data, struct pagedef *page,
struct dump_opts *dump,
unsigned int *imagelist, unsigned int *image_count )
{
int c, good_args = 0;
char *opt_offset = NULL; /* Position in string of value sought */
char *opt_ptr = NULL; /* Pointer to next token in option set */
char *sep = NULL; /* Pointer to a token separator */
unsigned int i, j, start, end;
extern int optind;
extern char* optarg;
*mp++ = 'w';
*mp = '\0';
while ((c = getopt(argc, argv,
"ac:d:e:f:hil:m:p:r:stvw:z:BCD:E:F:H:I:J:K:LMN:O:P:R:S:U:V:X:Y:Z:")) != -1)
{
good_args++;
switch (c) {
case 'a': mode[0] = 'a'; /* append to output */
break;
case 'c': if (!processCompressOptions(optarg)) /* compression scheme */
{
TIFFError ("Unknown compression option", "%s", optarg);
TIFFError ("For valid options type", "tiffcrop -h");
exit (-1);
}
break;
case 'd': start = strtoul(optarg, NULL, 0); /* initial IFD offset */
if (start == 0)
{
TIFFError ("","Directory offset must be greater than zero");
TIFFError ("For valid options type", "tiffcrop -h");
exit (-1);
}
*dirnum = start - 1;
break;
case 'e': switch (tolower(optarg[0])) /* image export modes*/
{
case 'c': crop_data->exp_mode = ONE_FILE_COMPOSITE;
crop_data->img_mode = COMPOSITE_IMAGES;
break; /* Composite */
case 'd': crop_data->exp_mode = ONE_FILE_SEPARATED;
crop_data->img_mode = SEPARATED_IMAGES;
break; /* Divided */
case 'i': crop_data->exp_mode = FILE_PER_IMAGE_COMPOSITE;
crop_data->img_mode = COMPOSITE_IMAGES;
break; /* Image */
case 'm': crop_data->exp_mode = FILE_PER_IMAGE_SEPARATED;
crop_data->img_mode = SEPARATED_IMAGES;
break; /* Multiple */
case 's': crop_data->exp_mode = FILE_PER_SELECTION;
crop_data->img_mode = SEPARATED_IMAGES;
break; /* Sections */
default: TIFFError ("Unknown export mode","%s", optarg);
TIFFError ("For valid options type", "tiffcrop -h");
exit (-1);
}
break;
case 'f': if (streq(optarg, "lsb2msb")) /* fill order */
*deffillorder = FILLORDER_LSB2MSB;
else if (streq(optarg, "msb2lsb"))
*deffillorder = FILLORDER_MSB2LSB;
else
{
TIFFError ("Unknown fill order", "%s", optarg);
TIFFError ("For valid options type", "tiffcrop -h");
exit (-1);
}
break;
case 'h': usage();
break;
case 'i': ignore = TRUE; /* ignore errors */
break;
case 'l': outtiled = TRUE; /* tile length */
*deftilelength = atoi(optarg);
break;
case 'p': /* planar configuration */
if (streq(optarg, "separate"))
*defconfig = PLANARCONFIG_SEPARATE;
else if (streq(optarg, "contig"))
*defconfig = PLANARCONFIG_CONTIG;
else
{
TIFFError ("Unkown planar configuration", "%s", optarg);
TIFFError ("For valid options type", "tiffcrop -h");
exit (-1);
}
break;
case 'r': /* rows/strip */
*defrowsperstrip = atol(optarg);
break;
case 's': /* generate stripped output */
outtiled = FALSE;
break;
case 't': /* generate tiled output */
outtiled = TRUE;
break;
case 'v': TIFFError("Library Release", "%s", TIFFGetVersion());
TIFFError ("Tiffcrop version", "%s, last updated: %s",
tiffcrop_version_id, tiffcrop_rev_date);
TIFFError ("Tiffcp code", "Copyright (c) 1988-1997 Sam Leffler");
TIFFError (" ", "Copyright (c) 1991-1997 Silicon Graphics, Inc");
TIFFError ("Tiffcrop additions", "Copyright (c) 2007-2009 Richard Nolde");
exit (0);
break;
case 'w': /* tile width */
outtiled = TRUE;
*deftilewidth = atoi(optarg);
break;
case 'z': /* regions of an image specified as x1,y1,x2,y2:x3,y3,x4,y4 etc */
crop_data->crop_mode |= CROP_REGIONS;
for (i = 0, opt_ptr = strtok (optarg, ":");
((opt_ptr != NULL) && (i < MAX_REGIONS));
(opt_ptr = strtok (NULL, ":")), i++)
{
crop_data->regions++;
if (sscanf(opt_ptr, "%lf,%lf,%lf,%lf",
&crop_data->corners[i].X1, &crop_data->corners[i].Y1,
&crop_data->corners[i].X2, &crop_data->corners[i].Y2) != 4)
{
TIFFError ("Unable to parse coordinates for region", "%d %s", i, optarg);
TIFFError ("For valid options type", "tiffcrop -h");
exit (-1);
}
}
/* check for remaining elements over MAX_REGIONS */
if ((opt_ptr != NULL) && (i >= MAX_REGIONS))
{
TIFFError ("Region list exceeds limit of", "%d regions %s", MAX_REGIONS, optarg);
TIFFError ("For valid options type", "tiffcrop -h");
exit (-1);;
}
break;
/* options for file open modes */
case 'B': *mp++ = 'b'; *mp = '\0';
break;
case 'L': *mp++ = 'l'; *mp = '\0';
break;
case 'M': *mp++ = 'm'; *mp = '\0';
break;
case 'C': *mp++ = 'c'; *mp = '\0';
break;
/* options for Debugging / data dump */
case 'D': for (i = 0, opt_ptr = strtok (optarg, ",");
(opt_ptr != NULL);
(opt_ptr = strtok (NULL, ",")), i++)
{
opt_offset = strpbrk(opt_ptr, ":=");
/*
opt_offset = strchr(opt_ptr, ':');
*/
if (opt_offset == NULL)
{
TIFFError("Invalid dump option", "%s", optarg);
TIFFError ("For valid options type", "tiffcrop -h");
exit (-1);
}
*opt_offset = '\0';
/* convert option to lowercase */
end = strlen (opt_ptr);
for (i = 0; i < end; i++)
*(opt_ptr + i) = tolower(*(opt_ptr + i));
/* Look for dump format specification */
if (strncmp(opt_ptr, "for", 3) == 0)
{
/* convert value to lowercase */
end = strlen (opt_offset + 1);
for (i = 1; i <= end; i++)
*(opt_offset + i) = tolower(*(opt_offset + i));
/* check dump format value */
if (strncmp (opt_offset + 1, "txt", 3) == 0)
{
dump->format = DUMP_TEXT;
strcpy (dump->mode, "w");
}
else
{
if (strncmp(opt_offset + 1, "raw", 3) == 0)
{
dump->format = DUMP_RAW;
strcpy (dump->mode, "wb");
}
else
{
TIFFError("parse_command_opts", "Unknown dump format %s", opt_offset + 1);
TIFFError ("For valid options type", "tiffcrop -h");
exit (-1);
}
}
}
else
{ /* Look for dump level specification */
if (strncmp (opt_ptr, "lev", 3) == 0)
dump->level = atoi(opt_offset + 1);
/* Look for input data dump file name */
if (strncmp (opt_ptr, "in", 2) == 0)
strncpy (dump->infilename, opt_offset + 1, PATH_MAX - 20);
/* Look for output data dump file name */
if (strncmp (opt_ptr, "out", 3) == 0)
strncpy (dump->outfilename, opt_offset + 1, PATH_MAX - 20);
if (strncmp (opt_ptr, "deb", 3) == 0)
dump->debug = atoi(opt_offset + 1);
}
}
if ((strlen(dump->infilename)) || (strlen(dump->outfilename)))
{
if (dump->level == 1)
TIFFError("","Defaulting to dump level 1, no data.");
if (dump->format == DUMP_NONE)
{
TIFFError("", "You must specify a dump format for dump files");
TIFFError ("For valid options type", "tiffcrop -h");
exit (-1);
}
}
break;
/* image manipulation routine options */
case 'm': /* margins to exclude from selection, uppercase M was already used */
/* order of values must be TOP, LEFT, BOTTOM, RIGHT */
crop_data->crop_mode |= CROP_MARGINS;
for (i = 0, opt_ptr = strtok (optarg, ",:");
((opt_ptr != NULL) && (i < 4));
(opt_ptr = strtok (NULL, ",:")), i++)
{
crop_data->margins[i] = atof(opt_ptr);
}
break;
case 'E': /* edge reference */
switch (tolower(optarg[0]))
{
case 't': crop_data->edge_ref = EDGE_TOP;
break;
case 'b': crop_data->edge_ref = EDGE_BOTTOM;
break;
case 'l': crop_data->edge_ref = EDGE_LEFT;
break;
case 'r': crop_data->edge_ref = EDGE_RIGHT;
break;
default: TIFFError ("Edge reference must be top, bottom, left, or right", "%s", optarg);
TIFFError ("For valid options type", "tiffcrop -h");
exit (-1);
}
break;
case 'F': /* flip eg mirror image or cropped segment, M was already used */
crop_data->crop_mode |= CROP_MIRROR;
switch (tolower(optarg[0]))
{
case 'h': crop_data->mirror = MIRROR_HORIZ;
break;
case 'v': crop_data->mirror = MIRROR_VERT;
break;
case 'b': crop_data->mirror = MIRROR_BOTH;
break;
default: TIFFError ("Flip mode must be horiz, vert, or both", "%s", optarg);
TIFFError ("For valid options type", "tiffcrop -h");
exit (-1);
}
break;
case 'H': /* set horizontal resolution to new value */
page->hres = atof (optarg);
page->mode |= PAGE_MODE_RESOLUTION;
break;
case 'I': /* invert the color space, eg black to white */
crop_data->crop_mode |= CROP_INVERT;
/* The PHOTOMETIC_INTERPRETATION tag may be updated */
if (streq(optarg, "black"))
{
crop_data->photometric = PHOTOMETRIC_MINISBLACK;
continue;
}
if (streq(optarg, "white"))
{
crop_data->photometric = PHOTOMETRIC_MINISWHITE;
continue;
}
if (streq(optarg, "data"))
{
crop_data->photometric = INVERT_DATA_ONLY;
continue;
}
if (streq(optarg, "both"))
{
crop_data->photometric = INVERT_DATA_AND_TAG;
continue;
}
TIFFError("Missing or unknown option for inverting PHOTOMETRIC_INTERPRETATION", "%s", optarg);
TIFFError ("For valid options type", "tiffcrop -h");
exit (-1);
break;
case 'J': /* horizontal margin for sectioned ouput pages */
page->hmargin = atof(optarg);
page->mode |= PAGE_MODE_MARGINS;
break;
case 'K': /* vertical margin for sectioned ouput pages*/
page->vmargin = atof(optarg);
page->mode |= PAGE_MODE_MARGINS;
break;
case 'N': /* list of images to process */
for (i = 0, opt_ptr = strtok (optarg, ",");
((opt_ptr != NULL) && (i < MAX_IMAGES));
(opt_ptr = strtok (NULL, ",")))
{ /* We do not know how many images are in file yet
* so we build a list to include the maximum allowed
* and follow it until we hit the end of the file.
* Image count is not accurate for odd, even, last
* so page numbers won't be valid either.
*/
if (streq(opt_ptr, "odd"))
{
for (j = 1; j <= MAX_IMAGES; j += 2)
imagelist[i++] = j;
*image_count = (MAX_IMAGES - 1) / 2;
break;
}
else
{
if (streq(opt_ptr, "even"))
{
for (j = 2; j <= MAX_IMAGES; j += 2)
imagelist[i++] = j;
*image_count = MAX_IMAGES / 2;
break;
}
else
{
if (streq(opt_ptr, "last"))
imagelist[i++] = MAX_IMAGES;
else /* single value between commas */
{
sep = strpbrk(opt_ptr, ":-");
if (!sep)
imagelist[i++] = atoi(opt_ptr);
else
{
*sep = '\0';
start = atoi (opt_ptr);
if (!strcmp((sep + 1), "last"))
end = MAX_IMAGES;
else
end = atoi (sep + 1);
for (j = start; j <= end && j - start + i < MAX_IMAGES; j++)
imagelist[i++] = j;
}
}
}
}
}
*image_count = i;
break;
case 'O': /* page orientation */
switch (tolower(optarg[0]))
{
case 'a': page->orient = ORIENTATION_AUTO;
break;
case 'p': page->orient = ORIENTATION_PORTRAIT;
break;
case 'l': page->orient = ORIENTATION_LANDSCAPE;
break;
default: TIFFError ("Orientation must be portrait, landscape, or auto.", "%s", optarg);
TIFFError ("For valid options type", "tiffcrop -h");
exit (-1);
}
break;
case 'P': /* page size selection */
if (sscanf(optarg, "%lfx%lf", &page->width, &page->length) == 2)
{
strcpy (page->name, "Custom");
page->mode |= PAGE_MODE_PAPERSIZE;
break;
}
if (get_page_geometry (optarg, page))
{
if (!strcmp(optarg, "list"))
{
TIFFError("", "Name Width Length (in inches)");
for (i = 0; i < MAX_PAPERNAMES - 1; i++)
TIFFError ("", "%-15.15s %5.2f %5.2f",
PaperTable[i].name, PaperTable[i].width,
PaperTable[i].length);
exit (-1);
}
TIFFError ("Invalid paper size", "%s", optarg);
TIFFError ("", "Select one of:");
TIFFError("", "Name Width Length (in inches)");
for (i = 0; i < MAX_PAPERNAMES - 1; i++)
TIFFError ("", "%-15.15s %5.2f %5.2f",
PaperTable[i].name, PaperTable[i].width,
PaperTable[i].length);
exit (-1);
}
else
{
page->mode |= PAGE_MODE_PAPERSIZE;
}
break;
case 'R': /* rotate image or cropped segment */
crop_data->crop_mode |= CROP_ROTATE;
switch (strtoul(optarg, NULL, 0))
{
case 90: crop_data->rotation = (uint16)90;
break;
case 180: crop_data->rotation = (uint16)180;
break;
case 270: crop_data->rotation = (uint16)270;
break;
default: TIFFError ("Rotation must be 90, 180, or 270 degrees clockwise", "%s", optarg);
TIFFError ("For valid options type", "tiffcrop -h");
exit (-1);
}
break;
case 'S': /* subdivide into Cols:Rows sections, eg 3:2 would be 3 across and 2 down */
sep = strpbrk(optarg, ",:");
if (sep)
{
*sep = '\0';
page->cols = atoi(optarg);
page->rows = atoi(sep +1);
}
else
{
page->cols = atoi(optarg);
page->rows = atoi(optarg);
}
if ((page->cols * page->rows) > MAX_SECTIONS)
{
TIFFError ("Limit for subdivisions, ie rows x columns, exceeded", "%d", MAX_SECTIONS);
exit (-1);
}
page->mode |= PAGE_MODE_ROWSCOLS;
break;
case 'U': /* units for measurements and offsets */
if (streq(optarg, "in"))
{
crop_data->res_unit = RESUNIT_INCH;
page->res_unit = RESUNIT_INCH;
}
else if (streq(optarg, "cm"))
{
crop_data->res_unit = RESUNIT_CENTIMETER;
page->res_unit = RESUNIT_CENTIMETER;
}
else if (streq(optarg, "px"))
{
crop_data->res_unit = RESUNIT_NONE;
page->res_unit = RESUNIT_NONE;
}
else
{
TIFFError ("Illegal unit of measure","%s", optarg);
TIFFError ("For valid options type", "tiffcrop -h");
exit (-1);
}
break;
case 'V': /* set vertical resolution to new value */
page->vres = atof (optarg);
page->mode |= PAGE_MODE_RESOLUTION;
break;
case 'X': /* selection width */
crop_data->crop_mode |= CROP_WIDTH;
crop_data->width = atof(optarg);
break;
case 'Y': /* selection length */
crop_data->crop_mode |= CROP_LENGTH;
crop_data->length = atof(optarg);
break;
case 'Z': /* zones of an image X:Y read as zone X of Y */
crop_data->crop_mode |= CROP_ZONES;
for (i = 0, opt_ptr = strtok (optarg, ",");
((opt_ptr != NULL) && (i < MAX_REGIONS));
(opt_ptr = strtok (NULL, ",")), i++)
{
crop_data->zones++;
opt_offset = strchr(opt_ptr, ':');
*opt_offset = '\0';
crop_data->zonelist[i].position = atoi(opt_ptr);
crop_data->zonelist[i].total = atoi(opt_offset + 1);
}
/* check for remaining elements over MAX_REGIONS */
if ((opt_ptr != NULL) && (i >= MAX_REGIONS))
{
TIFFError("Zone list exceeds region limit", "%d", MAX_REGIONS);
exit (-1);
}
break;
case '?': TIFFError ("For valid options type", "tiffcrop -h");
exit (-1);
/*NOTREACHED*/
}
}
} /* end process_command_opts */
/* Start a new output file if one has not been previously opened or
* autoindex is set to non-zero. Update page and file counters
* so TIFFTAG PAGENUM will be correct in image.
*/
static int
update_output_file (TIFF **tiffout, char *mode, int autoindex,
char *outname, unsigned int *page)
{
static int findex = 0; /* file sequence indicator */
char *sep;
char filenum[16];
char export_ext[16];
char exportname[PATH_MAX];
strcpy (export_ext, ".tiff");
if (autoindex && (*tiffout != NULL))
{
/* Close any export file that was previously opened */
TIFFClose (*tiffout);
*tiffout = NULL;
}
strncpy (exportname, outname, PATH_MAX - 15);
if (*tiffout == NULL) /* This is a new export file */
{
if (autoindex)
{ /* create a new filename for each export */
findex++;
if ((sep = strstr(exportname, ".tif")) || (sep = strstr(exportname, ".TIF")))
{
strncpy (export_ext, sep, 5);
*sep = '\0';
}
else
strncpy (export_ext, ".tiff", 5);
export_ext[5] = '\0';
snprintf(filenum, sizeof(filenum), "-%03d%s", findex, export_ext);
filenum[15] = '\0';
strncat (exportname, filenum, 14);
}
*tiffout = TIFFOpen(exportname, mode);
if (*tiffout == NULL)
{
TIFFError("update_output_file", "Unable to open output file %s\n", exportname);
return 1;
}
*page = 0;
return 0;
}
else
(*page)++;
return 0;
} /* end update_output_file */
int
main(int argc, char* argv[])
{
extern int optind;
uint16 defconfig = (uint16) -1;
uint16 deffillorder = 0;
uint32 deftilewidth = (uint32) 0;
uint32 deftilelength = (uint32) 0;
uint32 defrowsperstrip = (uint32) 0;
uint32 dirnum = 0;
TIFF *in = NULL;
TIFF *out = NULL;
char mode[10];
char *mp = mode;
/** RJN additions **/
struct image_data image; /* Image parameters for one image */
struct crop_mask crop; /* Cropping parameters for all images */
struct pagedef page; /* Page definition for output pages */
struct pageseg sections[MAX_SECTIONS]; /* Sections of one output page */
struct buffinfo seg_buffs[MAX_SECTIONS]; /* Segment buffer sizes and pointers */
struct dump_opts dump; /* Data dump options */
unsigned char *read_buff = NULL; /* Input image data buffer */
unsigned char *crop_buff = NULL; /* Crop area buffer */
unsigned char *sect_buff = NULL; /* Image section buffer */
unsigned char *sect_src = NULL; /* Image section buffer pointer */
unsigned int imagelist[MAX_IMAGES + 1]; /* individually specified images */
unsigned int image_count = 0;
unsigned int dump_images = 0;
unsigned int next_image = 0;
unsigned int next_page = 0;
unsigned int total_pages = 0;
unsigned int total_images = 0;
unsigned int end_of_input = FALSE;
int seg, length;
char temp_filename[PATH_MAX + 1];
memset (temp_filename, '\0', PATH_MAX + 1);
little_endian = *((unsigned char *)&little_endian) & '1';
initImageData(&image);
initCropMasks(&crop);
initPageSetup(&page, sections, seg_buffs);
initDumpOptions(&dump);
process_command_opts (argc, argv, mp, mode, &dirnum, &defconfig,
&deffillorder, &deftilewidth, &deftilelength, &defrowsperstrip,
&crop, &page, &dump, imagelist, &image_count);
if (argc - optind < 2)
usage();
if ((argc - optind) == 2)
pageNum = -1;
else
total_images = 0;
/* read multiple input files and write to output file(s) */
while (optind < argc - 1)
{
in = TIFFOpen (argv[optind], "r");
if (in == NULL)
return (-3);
/* If only one input file is specified, we can use directory count */
total_images = TIFFNumberOfDirectories(in);
if (image_count == 0)
{
dirnum = 0;
total_pages = total_images; /* Only valid with single input file */
}
else
{
dirnum = (tdir_t)(imagelist[next_image] - 1);
next_image++;
/* Total pages only valid for enumerated list of pages not derived
* using odd, even, or last keywords.
*/
if (image_count > total_images)
image_count = total_images;
total_pages = image_count;
}
/* MAX_IMAGES is used for special case "last" in selection list */
if (dirnum == (MAX_IMAGES - 1))
dirnum = total_images - 1;
if (dirnum > (total_images))
{
TIFFError (TIFFFileName(in),
"Invalid image number %d, File contains only %d images",
(int)dirnum + 1, total_images);
if (out != NULL)
(void) TIFFClose(out);
return (1);
}
if (dirnum != 0 && !TIFFSetDirectory(in, (tdir_t)dirnum))
{
TIFFError(TIFFFileName(in),"Error, setting subdirectory at %d", dirnum);
if (out != NULL)
(void) TIFFClose(out);
return (1);
}
end_of_input = FALSE;
while (end_of_input == FALSE)
{
config = defconfig;
compression = defcompression;
predictor = defpredictor;
fillorder = deffillorder;
rowsperstrip = defrowsperstrip;
tilewidth = deftilewidth;
tilelength = deftilelength;
g3opts = defg3opts;
if (dump.format != DUMP_NONE)
{
/* manage input and/or output dump files here */
dump_images++;
length = strlen(dump.infilename);
if (length > 0)
{
if (dump.infile != NULL)
fclose (dump.infile);
snprintf(temp_filename, sizeof(temp_filename), "%s-read-%03d.%s",
dump.infilename, dump_images,
(dump.format == DUMP_TEXT) ? "txt" : "raw");
if ((dump.infile = fopen(temp_filename, dump.mode)) == NULL)
{
TIFFError ("Unable to open dump file for writing", "%s", temp_filename);
exit (-1);
}
dump_info(dump.infile, dump.format, "Reading image","%d from %s",
dump_images, TIFFFileName(in));
}
length = strlen(dump.outfilename);
if (length > 0)
{
if (dump.outfile != NULL)
fclose (dump.outfile);
snprintf(temp_filename, sizeof(temp_filename), "%s-write-%03d.%s",
dump.outfilename, dump_images,
(dump.format == DUMP_TEXT) ? "txt" : "raw");
if ((dump.outfile = fopen(temp_filename, dump.mode)) == NULL)
{
TIFFError ("Unable to open dump file for writing", "%s", temp_filename);
exit (-1);
}
dump_info(dump.outfile, dump.format, "Writing image","%d from %s",
dump_images, TIFFFileName(in));
}
}
if (dump.debug)
TIFFError("main", "Reading image %4d of %4d total pages.", dirnum + 1, total_pages);
if (loadImage(in, &image, &dump, &read_buff))
{
TIFFError("main", "Unable to load source image");
exit (-1);
}
/* Correct the image orientation if it was not ORIENTATION_TOPLEFT.
*/
if (image.adjustments != 0)
{
if (correct_orientation(&image, &read_buff))
TIFFError("main", "Unable to correct image orientation");
}
if (getCropOffsets(&image, &crop, &dump))
{
TIFFError("main", "Unable to define crop regions");
exit (-1);
}
if (crop.selections > 0)
{
if (processCropSelections(&image, &crop, &read_buff, seg_buffs))
{
TIFFError("main", "Unable to process image selections");
exit (-1);
}
}
else /* Single image segment without zones or regions */
{
if (createCroppedImage(&image, &crop, &read_buff, &crop_buff))
{
TIFFError("main", "Unable to create output image");
exit (-1);
}
}
if (page.mode == PAGE_MODE_NONE)
{ /* Whole image or sections not based on output page size */
if (crop.selections > 0)
{
writeSelections(in, &out, &crop, &image, &dump, seg_buffs,
mp, argv[argc - 1], &next_page, total_pages);
}
else /* One file all images and sections */
{
if (update_output_file (&out, mp, crop.exp_mode, argv[argc - 1],
&next_page))
exit (1);
if (writeCroppedImage(in, out, &image, &dump,crop.combined_width,
crop.combined_length, crop_buff, next_page, total_pages))
{
TIFFError("main", "Unable to write new image");
exit (-1);
}
}
}
else
{
/* If we used a crop buffer, our data is there, otherwise it is
* in the read_buffer
*/
if (crop_buff != NULL)
sect_src = crop_buff;
else
sect_src = read_buff;
/* Break input image into pages or rows and columns */
if (computeOutputPixelOffsets(&crop, &image, &page, sections, &dump))
{
TIFFError("main", "Unable to compute output section data");
exit (-1);
}
/* If there are multiple files on the command line, the final one is assumed
* to be the output filename into which the images are written.
*/
if (update_output_file (&out, mp, crop.exp_mode, argv[argc - 1], &next_page))
exit (1);
if (writeImageSections(in, out, &image, &page, sections, &dump, sect_src, §_buff))
{
TIFFError("main", "Unable to write image sections");
exit (-1);
}
}
/* No image list specified, just read the next image */
if (image_count == 0)
dirnum++;
else
{
dirnum = (tdir_t)(imagelist[next_image] - 1);
next_image++;
}
if (dirnum == MAX_IMAGES - 1)
dirnum = TIFFNumberOfDirectories(in) - 1;
if (!TIFFSetDirectory(in, (tdir_t)dirnum))
end_of_input = TRUE;
}
TIFFClose(in);
optind++;
}
/* If we did not use the read buffer as the crop buffer */
if (read_buff)
_TIFFfree(read_buff);
if (crop_buff)
_TIFFfree(crop_buff);
if (sect_buff)
_TIFFfree(sect_buff);
/* Clean up any segment buffers used for zones or regions */
for (seg = 0; seg < crop.selections; seg++)
_TIFFfree (seg_buffs[seg].buffer);
if (dump.format != DUMP_NONE)
{
if (dump.infile != NULL)
fclose (dump.infile);
if (dump.outfile != NULL)
{
dump_info (dump.outfile, dump.format, "", "Completed run for %s", TIFFFileName(out));
fclose (dump.outfile);
}
}
TIFFClose(out);
return (0);
} /* end main */
/* Debugging functions */
static int dump_data (FILE *dumpfile, int format, char *dump_tag, unsigned char *data, uint32 count)
{
int j, k;
uint32 i;
char dump_array[10];
unsigned char bitset;
if (dumpfile == NULL)
{
TIFFError ("", "Invalid FILE pointer for dump file\n");
return (1);
}
if (format == DUMP_TEXT)
{
fprintf (dumpfile," %s ", dump_tag);
for (i = 0; i < count; i++)
{
for (j = 0, k = 7; j < 8; j++, k--)
{
bitset = (*(data + i)) & (((unsigned char)1 << k)) ? 1 : 0;
sprintf(&dump_array[j], (bitset) ? "1" : "0");
}
dump_array[8] = '\0';
fprintf (dumpfile," %s", dump_array);
}
fprintf (dumpfile,"\n");
}
else
{
if ((fwrite (data, 1, count, dumpfile)) != count)
{
TIFFError ("", "Unable to write binary data to dump file\n");
return (1);
}
}
return (0);
}
static int dump_byte (FILE *dumpfile, int format, char *dump_tag, unsigned char data)
{
int j, k;
char dump_array[10];
unsigned char bitset;
if (dumpfile == NULL)
{
TIFFError ("", "Invalid FILE pointer for dump file\n");
return (1);
}
if (format == DUMP_TEXT)
{
fprintf (dumpfile," %s ", dump_tag);
for (j = 0, k = 7; j < 8; j++, k--)
{
bitset = data & (((unsigned char)1 << k)) ? 1 : 0;
sprintf(&dump_array[j], (bitset) ? "1" : "0");
}
dump_array[8] = '\0';
fprintf (dumpfile," %s\n", dump_array);
}
else
{
if ((fwrite (&data, 1, 1, dumpfile)) != 1)
{
TIFFError ("", "Unable to write binary data to dump file\n");
return (1);
}
}
return (0);
}
static int dump_short (FILE *dumpfile, int format, char *dump_tag, uint16 data)
{
int j, k;
char dump_array[20];
unsigned char bitset;
if (dumpfile == NULL)
{
TIFFError ("", "Invalid FILE pointer for dump file\n");
return (1);
}
if (format == DUMP_TEXT)
{
fprintf (dumpfile," %s ", dump_tag);
for (j = 0, k = 15; k >= 0; j++, k--)
{
bitset = data & (((unsigned char)1 << k)) ? 1 : 0;
sprintf(&dump_array[j], (bitset) ? "1" : "0");
if ((k % 8) == 0)
sprintf(&dump_array[++j], " ");
}
dump_array[17] = '\0';
fprintf (dumpfile," %s\n", dump_array);
}
else
{
if ((fwrite (&data, 2, 1, dumpfile)) != 2)
{
TIFFError ("", "Unable to write binary data to dump file\n");
return (1);
}
}
return (0);
}
static int dump_long (FILE *dumpfile, int format, char *dump_tag, uint32 data)
{
int j, k;
char dump_array[40];
unsigned char bitset;
if (dumpfile == NULL)
{
TIFFError ("", "Invalid FILE pointer for dump file\n");
return (1);
}
if (format == DUMP_TEXT)
{
fprintf (dumpfile," %s ", dump_tag);
for (j = 0, k = 31; k >= 0; j++, k--)
{
bitset = data & (((uint32)1 << k)) ? 1 : 0;
sprintf(&dump_array[j], (bitset) ? "1" : "0");
if ((k % 8) == 0)
sprintf(&dump_array[++j], " ");
}
dump_array[35] = '\0';
fprintf (dumpfile," %s\n", dump_array);
}
else
{
if ((fwrite (&data, 4, 1, dumpfile)) != 4)
{
TIFFError ("", "Unable to write binary data to dump file\n");
return (1);
}
}
return (0);
}
static int dump_wide (FILE *dumpfile, int format, char *dump_tag, uint64 data)
{
int j, k;
char dump_array[80];
unsigned char bitset;
if (dumpfile == NULL)
{
TIFFError ("", "Invalid FILE pointer for dump file\n");
return (1);
}
if (format == DUMP_TEXT)
{
fprintf (dumpfile," %s ", dump_tag);
for (j = 0, k = 63; k >= 0; j++, k--)
{
bitset = data & (((uint64)1 << k)) ? 1 : 0;
sprintf(&dump_array[j], (bitset) ? "1" : "0");
if ((k % 8) == 0)
sprintf(&dump_array[++j], " ");
}
dump_array[71] = '\0';
fprintf (dumpfile," %s\n", dump_array);
}
else
{
if ((fwrite (&data, 8, 1, dumpfile)) != 8)
{
TIFFError ("", "Unable to write binary data to dump file\n");
return (1);
}
}
return (0);
}
static void dump_info(FILE *dumpfile, int format, char *prefix, char *msg, ...)
{
if (format == DUMP_TEXT)
{
va_list ap;
va_start(ap, msg);
fprintf(dumpfile, "%s ", prefix);
vfprintf(dumpfile, msg, ap);
fprintf(dumpfile, "\n");
}
}
static int dump_buffer (FILE* dumpfile, int format, uint32 rows, uint32 width,
uint32 row, unsigned char *buff)
{
int j, k;
uint32 i;
unsigned char * dump_ptr;
if (dumpfile == NULL)
{
TIFFError ("", "Invalid FILE pointer for dump file\n");
return (1);
}
for (i = 0; i < rows; i++)
{
dump_ptr = buff + (i * width);
if (format == DUMP_TEXT)
dump_info (dumpfile, format, "",
"Row %4d, %d bytes at offset %d",
row + i + 1, width, row * width);
for (j = 0, k = width; k >= 10; j += 10, k -= 10, dump_ptr += 10)
dump_data (dumpfile, format, "", dump_ptr, 10);
if (k > 0)
dump_data (dumpfile, format, "", dump_ptr, k);
}
return (0);
}
/* Extract one or more samples from an interleaved buffer. If count == 1,
* only the sample plane indicated by sample will be extracted. If count > 1,
* count samples beginning at sample will be extracted. Portions of a
* scanline can be extracted by specifying a start and end value.
*/
static int
extractContigSamplesBytes (uint8 *in, uint8 *out, uint32 cols,
tsample_t sample, uint16 spp, uint16 bps,
tsample_t count, uint32 start, uint32 end)
{
int i, bytes_per_sample, sindex;
uint32 col, dst_rowsize, bit_offset;
uint32 src_byte, src_bit;
uint8 *src = in;
uint8 *dst = out;
if ((src == NULL) || (dst == NULL))
{
TIFFError("extractContigSamplesBytes","Invalid input or output buffer");
return (1);
}
if ((start > end) || (start > cols))
{
TIFFError ("extractContigSamplesBytes",
"Invalid start column value %d ignored", start);
start = 0;
}
if ((end == 0) || (end > cols))
{
TIFFError ("extractContigSamplesBytes",
"Invalid end column value %d ignored", end);
end = cols;
}
dst_rowsize = (bps * (end - start) * count) / 8;
bytes_per_sample = (bps + 7) / 8;
/* Optimize case for copying all samples */
if (count == spp)
{
src = in + (start * spp * bytes_per_sample);
_TIFFmemcpy (dst, src, dst_rowsize);
}
else
{
for (col = start; col < end; col++)
{
for (sindex = sample; (sindex < spp) && (sindex < (sample + count)); sindex++)
{
bit_offset = col * bps * spp;
if (sindex == 0)
{
src_byte = bit_offset / 8;
src_bit = bit_offset % 8;
}
else
{
src_byte = (bit_offset + (sindex * bps)) / 8;
src_bit = (bit_offset + (sindex * bps)) % 8;
}
src = in + src_byte;
for (i = 0; i < bytes_per_sample; i++)
*dst++ = *src++;
}
}
}
return (0);
} /* end extractContigSamplesBytes */
static int
extractContigSamples8bits (uint8 *in, uint8 *out, uint32 cols,
tsample_t sample, uint16 spp, uint16 bps,
tsample_t count, uint32 start, uint32 end)
{
int ready_bits = 0, sindex = 0;
uint32 col, src_byte, src_bit, bit_offset;
uint8 maskbits = 0, matchbits = 0;
uint8 buff1 = 0, buff2 = 0;
uint8 *src = in;
uint8 *dst = out;
if ((src == NULL) || (dst == NULL))
{
TIFFError("extractContigSamples8bits","Invalid input or output buffer");
return (1);
}
if ((start > end) || (start > cols))
{
TIFFError ("extractContigSamples8bits",
"Invalid start column value %d ignored", start);
start = 0;
}
if ((end == 0) || (end > cols))
{
TIFFError ("extractContigSamples8bits",
"Invalid end column value %d ignored", end);
end = cols;
}
ready_bits = 0;
maskbits = (uint8)-1 >> ( 8 - bps);
buff1 = buff2 = 0;
for (col = start; col < end; col++)
{ /* Compute src byte(s) and bits within byte(s) */
bit_offset = col * bps * spp;
for (sindex = sample; (sindex < spp) && (sindex < (sample + count)); sindex++)
{
if (sindex == 0)
{
src_byte = bit_offset / 8;
src_bit = bit_offset % 8;
}
else
{
src_byte = (bit_offset + (sindex * bps)) / 8;
src_bit = (bit_offset + (sindex * bps)) % 8;
}
src = in + src_byte;
matchbits = maskbits << (8 - src_bit - bps);
buff1 = ((*src) & matchbits) << (src_bit);
/* If we have a full buffer's worth, write it out */
if (ready_bits >= 8)
{
*dst++ = buff2;
buff2 = buff1;
ready_bits -= 8;
}
else
buff2 = (buff2 | (buff1 >> ready_bits));
ready_bits += bps;
}
}
while (ready_bits > 0)
{
buff1 = (buff2 & ((unsigned int)255 << (8 - ready_bits)));
*dst++ = buff1;
ready_bits -= 8;
}
return (0);
} /* end extractContigSamples8bits */
static int
extractContigSamples16bits (uint8 *in, uint8 *out, uint32 cols,
tsample_t sample, uint16 spp, uint16 bps,
tsample_t count, uint32 start, uint32 end)
{
int ready_bits = 0, sindex = 0;
uint32 col, src_byte, src_bit, bit_offset;
uint16 maskbits = 0, matchbits = 0;
uint16 buff1 = 0, buff2 = 0;
uint8 bytebuff = 0;
uint8 *src = in;
uint8 *dst = out;
if ((src == NULL) || (dst == NULL))
{
TIFFError("extractContigSamples16bits","Invalid input or output buffer");
return (1);
}
if ((start > end) || (start > cols))
{
TIFFError ("extractContigSamples16bits",
"Invalid start column value %d ignored", start);
start = 0;
}
if ((end == 0) || (end > cols))
{
TIFFError ("extractContigSamples16bits",
"Invalid end column value %d ignored", end);
end = cols;
}
ready_bits = 0;
maskbits = (uint16)-1 >> (16 - bps);
for (col = start; col < end; col++)
{ /* Compute src byte(s) and bits within byte(s) */
bit_offset = col * bps * spp;
for (sindex = sample; (sindex < spp) && (sindex < (sample + count)); sindex++)
{
if (sindex == 0)
{
src_byte = bit_offset / 8;
src_bit = bit_offset % 8;
}
else
{
src_byte = (bit_offset + (sindex * bps)) / 8;
src_bit = (bit_offset + (sindex * bps)) % 8;
}
src = in + src_byte;
matchbits = maskbits << (16 - src_bit - bps);
if (little_endian)
buff1 = (src[0] << 8) | src[1];
else
buff1 = (src[1] << 8) | src[0];
buff1 = (buff1 & matchbits) << (src_bit);
if (ready_bits < 8) /* add another bps bits to the buffer */
{
bytebuff = 0;
buff2 = (buff2 | (buff1 >> ready_bits));
}
else /* If we have a full buffer's worth, write it out */
{
bytebuff = (buff2 >> 8);
*dst++ = bytebuff;
ready_bits -= 8;
/* shift in new bits */
buff2 = ((buff2 << 8) | (buff1 >> ready_bits));
}
ready_bits += bps;
}
}
/* catch any trailing bits at the end of the line */
while (ready_bits > 0)
{
bytebuff = (buff2 >> 8);
*dst++ = bytebuff;
ready_bits -= 8;
}
return (0);
} /* end extractContigSamples16bits */
static int
extractContigSamples24bits (uint8 *in, uint8 *out, uint32 cols,
tsample_t sample, uint16 spp, uint16 bps,
tsample_t count, uint32 start, uint32 end)
{
int ready_bits = 0, sindex = 0;
uint32 col, src_byte, src_bit, bit_offset;
uint32 maskbits = 0, matchbits = 0;
uint32 buff1 = 0, buff2 = 0;
uint8 bytebuff1 = 0, bytebuff2 = 0;
uint8 *src = in;
uint8 *dst = out;
if ((in == NULL) || (out == NULL))
{
TIFFError("extractContigSamples24bits","Invalid input or output buffer");
return (1);
}
if ((start > end) || (start > cols))
{
TIFFError ("extractContigSamples24bits",
"Invalid start column value %d ignored", start);
start = 0;
}
if ((end == 0) || (end > cols))
{
TIFFError ("extractContigSamples24bits",
"Invalid end column value %d ignored", end);
end = cols;
}
ready_bits = 0;
maskbits = (uint32)-1 >> ( 32 - bps);
for (col = start; col < end; col++)
{
/* Compute src byte(s) and bits within byte(s) */
bit_offset = col * bps * spp;
for (sindex = sample; (sindex < spp) && (sindex < (sample + count)); sindex++)
{
if (sindex == 0)
{
src_byte = bit_offset / 8;
src_bit = bit_offset % 8;
}
else
{
src_byte = (bit_offset + (sindex * bps)) / 8;
src_bit = (bit_offset + (sindex * bps)) % 8;
}
src = in + src_byte;
matchbits = maskbits << (32 - src_bit - bps);
if (little_endian)
buff1 = (src[0] << 24) | (src[1] << 16) | (src[2] << 8) | src[3];
else
buff1 = (src[3] << 24) | (src[2] << 16) | (src[1] << 8) | src[0];
buff1 = (buff1 & matchbits) << (src_bit);
if (ready_bits < 16) /* add another bps bits to the buffer */
{
bytebuff1 = bytebuff2 = 0;
buff2 = (buff2 | (buff1 >> ready_bits));
}
else /* If we have a full buffer's worth, write it out */
{
bytebuff1 = (buff2 >> 24);
*dst++ = bytebuff1;
bytebuff2 = (buff2 >> 16);
*dst++ = bytebuff2;
ready_bits -= 16;
/* shift in new bits */
buff2 = ((buff2 << 16) | (buff1 >> ready_bits));
}
ready_bits += bps;
}
}
/* catch any trailing bits at the end of the line */
while (ready_bits > 0)
{
bytebuff1 = (buff2 >> 24);
*dst++ = bytebuff1;
buff2 = (buff2 << 8);
bytebuff2 = bytebuff1;
ready_bits -= 8;
}
return (0);
} /* end extractContigSamples24bits */
static int
extractContigSamples32bits (uint8 *in, uint8 *out, uint32 cols,
tsample_t sample, uint16 spp, uint16 bps,
tsample_t count, uint32 start, uint32 end)
{
int ready_bits = 0, sindex = 0, shift_width = 0;
uint32 col, src_byte, src_bit, bit_offset;
uint32 longbuff1 = 0, longbuff2 = 0;
uint64 maskbits = 0, matchbits = 0;
uint64 buff1 = 0, buff2 = 0, buff3 = 0;
uint8 bytebuff1 = 0, bytebuff2 = 0, bytebuff3 = 0, bytebuff4 = 0;
uint8 *src = in;
uint8 *dst = out;
if ((in == NULL) || (out == NULL))
{
TIFFError("extractContigSamples32bits","Invalid input or output buffer");
return (1);
}
if ((start > end) || (start > cols))
{
TIFFError ("extractContigSamples32bits",
"Invalid start column value %d ignored", start);
start = 0;
}
if ((end == 0) || (end > cols))
{
TIFFError ("extractContigSamples32bits",
"Invalid end column value %d ignored", end);
end = cols;
}
shift_width = ((bps + 7) / 8) + 1;
ready_bits = 0;
maskbits = (uint64)-1 >> ( 64 - bps);
for (col = start; col < end; col++)
{
/* Compute src byte(s) and bits within byte(s) */
bit_offset = col * bps * spp;
for (sindex = sample; (sindex < spp) && (sindex < (sample + count)); sindex++)
{
if (sindex == 0)
{
src_byte = bit_offset / 8;
src_bit = bit_offset % 8;
}
else
{
src_byte = (bit_offset + (sindex * bps)) / 8;
src_bit = (bit_offset + (sindex * bps)) % 8;
}
src = in + src_byte;
matchbits = maskbits << (64 - src_bit - bps);
if (little_endian)
{
longbuff1 = (src[0] << 24) | (src[1] << 16) | (src[2] << 8) | src[3];
longbuff2 = longbuff1;
}
else
{
longbuff1 = (src[3] << 24) | (src[2] << 16) | (src[1] << 8) | src[0];
longbuff2 = longbuff1;
}
buff3 = ((uint64)longbuff1 << 32) | longbuff2;
buff1 = (buff3 & matchbits) << (src_bit);
/* If we have a full buffer's worth, write it out */
if (ready_bits >= 32)
{
bytebuff1 = (buff2 >> 56);
*dst++ = bytebuff1;
bytebuff2 = (buff2 >> 48);
*dst++ = bytebuff2;
bytebuff3 = (buff2 >> 40);
*dst++ = bytebuff3;
bytebuff4 = (buff2 >> 32);
*dst++ = bytebuff4;
ready_bits -= 32;
/* shift in new bits */
buff2 = ((buff2 << 32) | (buff1 >> ready_bits));
}
else
{ /* add another bps bits to the buffer */
bytebuff1 = bytebuff2 = bytebuff3 = bytebuff4 = 0;
buff2 = (buff2 | (buff1 >> ready_bits));
}
ready_bits += bps;
}
}
while (ready_bits > 0)
{
bytebuff1 = (buff2 >> 56);
*dst++ = bytebuff1;
buff2 = (buff2 << 8);
ready_bits -= 8;
}
return (0);
} /* end extractContigSamples32bits */
static int
extractContigSamplesShifted8bits (uint8 *in, uint8 *out, uint32 cols,
tsample_t sample, uint16 spp, uint16 bps,
tsample_t count, uint32 start, uint32 end,
int shift)
{
int ready_bits = 0, sindex = 0;
uint32 col, src_byte, src_bit, bit_offset;
uint8 maskbits = 0, matchbits = 0;
uint8 buff1 = 0, buff2 = 0;
uint8 *src = in;
uint8 *dst = out;
if ((src == NULL) || (dst == NULL))
{
TIFFError("extractContigSamplesShifted8bits","Invalid input or output buffer");
return (1);
}
if ((start > end) || (start > cols))
{
TIFFError ("extractContigSamplesShifted8bits",
"Invalid start column value %d ignored", start);
start = 0;
}
if ((end == 0) || (end > cols))
{
TIFFError ("extractContigSamplesShifted8bits",
"Invalid end column value %d ignored", end);
end = cols;
}
ready_bits = shift;
maskbits = (uint8)-1 >> ( 8 - bps);
buff1 = buff2 = 0;
for (col = start; col < end; col++)
{ /* Compute src byte(s) and bits within byte(s) */
bit_offset = col * bps * spp;
for (sindex = sample; (sindex < spp) && (sindex < (sample + count)); sindex++)
{
if (sindex == 0)
{
src_byte = bit_offset / 8;
src_bit = bit_offset % 8;
}
else
{
src_byte = (bit_offset + (sindex * bps)) / 8;
src_bit = (bit_offset + (sindex * bps)) % 8;
}
src = in + src_byte;
matchbits = maskbits << (8 - src_bit - bps);
buff1 = ((*src) & matchbits) << (src_bit);
if ((col == start) && (sindex == sample))
buff2 = *src & ((uint8)-1) << (shift);
/* If we have a full buffer's worth, write it out */
if (ready_bits >= 8)
{
*dst++ |= buff2;
buff2 = buff1;
ready_bits -= 8;
}
else
buff2 = buff2 | (buff1 >> ready_bits);
ready_bits += bps;
}
}
while (ready_bits > 0)
{
buff1 = (buff2 & ((unsigned int)255 << (8 - ready_bits)));
*dst++ = buff1;
ready_bits -= 8;
}
return (0);
} /* end extractContigSamplesShifted8bits */
static int
extractContigSamplesShifted16bits (uint8 *in, uint8 *out, uint32 cols,
tsample_t sample, uint16 spp, uint16 bps,
tsample_t count, uint32 start, uint32 end,
int shift)
{
int ready_bits = 0, sindex = 0;
uint32 col, src_byte, src_bit, bit_offset;
uint16 maskbits = 0, matchbits = 0;
uint16 buff1 = 0, buff2 = 0;
uint8 bytebuff = 0;
uint8 *src = in;
uint8 *dst = out;
if ((src == NULL) || (dst == NULL))
{
TIFFError("extractContigSamplesShifted16bits","Invalid input or output buffer");
return (1);
}
if ((start > end) || (start > cols))
{
TIFFError ("extractContigSamplesShifted16bits",
"Invalid start column value %d ignored", start);
start = 0;
}
if ((end == 0) || (end > cols))
{
TIFFError ("extractContigSamplesShifted16bits",
"Invalid end column value %d ignored", end);
end = cols;
}
ready_bits = shift;
maskbits = (uint16)-1 >> (16 - bps);
for (col = start; col < end; col++)
{ /* Compute src byte(s) and bits within byte(s) */
bit_offset = col * bps * spp;
for (sindex = sample; (sindex < spp) && (sindex < (sample + count)); sindex++)
{
if (sindex == 0)
{
src_byte = bit_offset / 8;
src_bit = bit_offset % 8;
}
else
{
src_byte = (bit_offset + (sindex * bps)) / 8;
src_bit = (bit_offset + (sindex * bps)) % 8;
}
src = in + src_byte;
matchbits = maskbits << (16 - src_bit - bps);
if (little_endian)
buff1 = (src[0] << 8) | src[1];
else
buff1 = (src[1] << 8) | src[0];
if ((col == start) && (sindex == sample))
buff2 = buff1 & ((uint16)-1) << (8 - shift);
buff1 = (buff1 & matchbits) << (src_bit);
if (ready_bits < 8) /* add another bps bits to the buffer */
buff2 = buff2 | (buff1 >> ready_bits);
else /* If we have a full buffer's worth, write it out */
{
bytebuff = (buff2 >> 8);
*dst++ = bytebuff;
ready_bits -= 8;
/* shift in new bits */
buff2 = ((buff2 << 8) | (buff1 >> ready_bits));
}
ready_bits += bps;
}
}
/* catch any trailing bits at the end of the line */
while (ready_bits > 0)
{
bytebuff = (buff2 >> 8);
*dst++ = bytebuff;
ready_bits -= 8;
}
return (0);
} /* end extractContigSamplesShifted16bits */
static int
extractContigSamplesShifted24bits (uint8 *in, uint8 *out, uint32 cols,
tsample_t sample, uint16 spp, uint16 bps,
tsample_t count, uint32 start, uint32 end,
int shift)
{
int ready_bits = 0, sindex = 0;
uint32 col, src_byte, src_bit, bit_offset;
uint32 maskbits = 0, matchbits = 0;
uint32 buff1 = 0, buff2 = 0;
uint8 bytebuff1 = 0, bytebuff2 = 0;
uint8 *src = in;
uint8 *dst = out;
if ((in == NULL) || (out == NULL))
{
TIFFError("extractContigSamplesShifted24bits","Invalid input or output buffer");
return (1);
}
if ((start > end) || (start > cols))
{
TIFFError ("extractContigSamplesShifted24bits",
"Invalid start column value %d ignored", start);
start = 0;
}
if ((end == 0) || (end > cols))
{
TIFFError ("extractContigSamplesShifted24bits",
"Invalid end column value %d ignored", end);
end = cols;
}
ready_bits = shift;
maskbits = (uint32)-1 >> ( 32 - bps);
for (col = start; col < end; col++)
{
/* Compute src byte(s) and bits within byte(s) */
bit_offset = col * bps * spp;
for (sindex = sample; (sindex < spp) && (sindex < (sample + count)); sindex++)
{
if (sindex == 0)
{
src_byte = bit_offset / 8;
src_bit = bit_offset % 8;
}
else
{
src_byte = (bit_offset + (sindex * bps)) / 8;
src_bit = (bit_offset + (sindex * bps)) % 8;
}
src = in + src_byte;
matchbits = maskbits << (32 - src_bit - bps);
if (little_endian)
buff1 = (src[0] << 24) | (src[1] << 16) | (src[2] << 8) | src[3];
else
buff1 = (src[3] << 24) | (src[2] << 16) | (src[1] << 8) | src[0];
if ((col == start) && (sindex == sample))
buff2 = buff1 & ((uint32)-1) << (16 - shift);
buff1 = (buff1 & matchbits) << (src_bit);
if (ready_bits < 16) /* add another bps bits to the buffer */
{
bytebuff1 = bytebuff2 = 0;
buff2 = (buff2 | (buff1 >> ready_bits));
}
else /* If we have a full buffer's worth, write it out */
{
bytebuff1 = (buff2 >> 24);
*dst++ = bytebuff1;
bytebuff2 = (buff2 >> 16);
*dst++ = bytebuff2;
ready_bits -= 16;
/* shift in new bits */
buff2 = ((buff2 << 16) | (buff1 >> ready_bits));
}
ready_bits += bps;
}
}
/* catch any trailing bits at the end of the line */
while (ready_bits > 0)
{
bytebuff1 = (buff2 >> 24);
*dst++ = bytebuff1;
buff2 = (buff2 << 8);
bytebuff2 = bytebuff1;
ready_bits -= 8;
}
return (0);
} /* end extractContigSamplesShifted24bits */
static int
extractContigSamplesShifted32bits (uint8 *in, uint8 *out, uint32 cols,
tsample_t sample, uint16 spp, uint16 bps,
tsample_t count, uint32 start, uint32 end,
int shift)
{
int ready_bits = 0, sindex = 0, shift_width = 0;
uint32 col, src_byte, src_bit, bit_offset;
uint32 longbuff1 = 0, longbuff2 = 0;
uint64 maskbits = 0, matchbits = 0;
uint64 buff1 = 0, buff2 = 0, buff3 = 0;
uint8 bytebuff1 = 0, bytebuff2 = 0, bytebuff3 = 0, bytebuff4 = 0;
uint8 *src = in;
uint8 *dst = out;
if ((in == NULL) || (out == NULL))
{
TIFFError("extractContigSamplesShifted32bits","Invalid input or output buffer");
return (1);
}
if ((start > end) || (start > cols))
{
TIFFError ("extractContigSamplesShifted32bits",
"Invalid start column value %d ignored", start);
start = 0;
}
if ((end == 0) || (end > cols))
{
TIFFError ("extractContigSamplesShifted32bits",
"Invalid end column value %d ignored", end);
end = cols;
}
shift_width = ((bps + 7) / 8) + 1;
ready_bits = shift;
maskbits = (uint64)-1 >> ( 64 - bps);
for (col = start; col < end; col++)
{
/* Compute src byte(s) and bits within byte(s) */
bit_offset = col * bps * spp;
for (sindex = sample; (sindex < spp) && (sindex < (sample + count)); sindex++)
{
if (sindex == 0)
{
src_byte = bit_offset / 8;
src_bit = bit_offset % 8;
}
else
{
src_byte = (bit_offset + (sindex * bps)) / 8;
src_bit = (bit_offset + (sindex * bps)) % 8;
}
src = in + src_byte;
matchbits = maskbits << (64 - src_bit - bps);
if (little_endian)
{
longbuff1 = (src[0] << 24) | (src[1] << 16) | (src[2] << 8) | src[3];
longbuff2 = longbuff1;
}
else
{
longbuff1 = (src[3] << 24) | (src[2] << 16) | (src[1] << 8) | src[0];
longbuff2 = longbuff1;
}
buff3 = ((uint64)longbuff1 << 32) | longbuff2;
if ((col == start) && (sindex == sample))
buff2 = buff3 & ((uint64)-1) << (32 - shift);
buff1 = (buff3 & matchbits) << (src_bit);
if (ready_bits < 32)
{ /* add another bps bits to the buffer */
bytebuff1 = bytebuff2 = bytebuff3 = bytebuff4 = 0;
buff2 = (buff2 | (buff1 >> ready_bits));
}
else /* If we have a full buffer's worth, write it out */
{
bytebuff1 = (buff2 >> 56);
*dst++ = bytebuff1;
bytebuff2 = (buff2 >> 48);
*dst++ = bytebuff2;
bytebuff3 = (buff2 >> 40);
*dst++ = bytebuff3;
bytebuff4 = (buff2 >> 32);
*dst++ = bytebuff4;
ready_bits -= 32;
/* shift in new bits */
buff2 = ((buff2 << 32) | (buff1 >> ready_bits));
}
ready_bits += bps;
}
}
while (ready_bits > 0)
{
bytebuff1 = (buff2 >> 56);
*dst++ = bytebuff1;
buff2 = (buff2 << 8);
ready_bits -= 8;
}
return (0);
} /* end extractContigSamplesShifted32bits */
static int
extractContigSamplesToBuffer(uint8 *out, uint8 *in, uint32 rows, uint32 cols,
tsample_t sample, uint16 spp, uint16 bps,
struct dump_opts *dump)
{
int shift_width, bytes_per_sample, bytes_per_pixel;
uint32 src_rowsize, src_offset, row, first_col = 0;
uint32 dst_rowsize, dst_offset;
tsample_t count = 1;
uint8 *src, *dst;
bytes_per_sample = (bps + 7) / 8;
bytes_per_pixel = ((bps * spp) + 7) / 8;
if ((bps % 8) == 0)
shift_width = 0;
else
{
if (bytes_per_pixel < (bytes_per_sample + 1))
shift_width = bytes_per_pixel;
else
shift_width = bytes_per_sample + 1;
}
src_rowsize = ((bps * spp * cols) + 7) / 8;
dst_rowsize = ((bps * cols) + 7) / 8;
if ((dump->outfile != NULL) && (dump->level == 4))
{
dump_info (dump->outfile, dump->format, "extractContigSamplesToBuffer",
"Sample %d, %d rows", sample + 1, rows + 1);
}
for (row = 0; row < rows; row++)
{
src_offset = row * src_rowsize;
dst_offset = row * dst_rowsize;
src = in + src_offset;
dst = out + dst_offset;
/* pack the data into the scanline */
switch (shift_width)
{
case 0: if (extractContigSamplesBytes (src, dst, cols, sample,
spp, bps, count, first_col, cols))
return (1);
break;
case 1: if (bps == 1)
{
if (extractContigSamples8bits (src, dst, cols, sample,
spp, bps, count, first_col, cols))
return (1);
break;
}
else
if (extractContigSamples16bits (src, dst, cols, sample,
spp, bps, count, first_col, cols))
return (1);
break;
case 2: if (extractContigSamples24bits (src, dst, cols, sample,
spp, bps, count, first_col, cols))
return (1);
break;
case 3:
case 4:
case 5: if (extractContigSamples32bits (src, dst, cols, sample,
spp, bps, count, first_col, cols))
return (1);
break;
default: TIFFError ("extractContigSamplesToBuffer", "Unsupported bit depth: %d", bps);
return (1);
}
if ((dump->outfile != NULL) && (dump->level == 4))
dump_buffer(dump->outfile, dump->format, 1, dst_rowsize, row, dst);
}
return (0);
} /* end extractContigSamplesToBuffer */
static int
extractContigSamplesToTileBuffer(uint8 *out, uint8 *in, uint32 rows, uint32 cols,
uint32 imagewidth, uint32 tilewidth, tsample_t sample,
uint16 count, uint16 spp, uint16 bps, struct dump_opts *dump)
{
int shift_width, bytes_per_sample, bytes_per_pixel;
uint32 src_rowsize, src_offset, row;
uint32 dst_rowsize, dst_offset;
uint8 *src, *dst;
bytes_per_sample = (bps + 7) / 8;
bytes_per_pixel = ((bps * spp) + 7) / 8;
if ((bps % 8) == 0)
shift_width = 0;
else
{
if (bytes_per_pixel < (bytes_per_sample + 1))
shift_width = bytes_per_pixel;
else
shift_width = bytes_per_sample + 1;
}
if ((dump->outfile != NULL) && (dump->level == 4))
{
dump_info (dump->outfile, dump->format, "extractContigSamplesToTileBuffer",
"Sample %d, %d rows", sample + 1, rows + 1);
}
src_rowsize = ((bps * spp * imagewidth) + 7) / 8;
dst_rowsize = ((bps * tilewidth * count) + 7) / 8;
for (row = 0; row < rows; row++)
{
src_offset = row * src_rowsize;
dst_offset = row * dst_rowsize;
src = in + src_offset;
dst = out + dst_offset;
/* pack the data into the scanline */
switch (shift_width)
{
case 0: if (extractContigSamplesBytes (src, dst, cols, sample,
spp, bps, count, 0, cols))
return (1);
break;
case 1: if (bps == 1)
{
if (extractContigSamples8bits (src, dst, cols, sample,
spp, bps, count, 0, cols))
return (1);
break;
}
else
if (extractContigSamples16bits (src, dst, cols, sample,
spp, bps, count, 0, cols))
return (1);
break;
case 2: if (extractContigSamples24bits (src, dst, cols, sample,
spp, bps, count, 0, cols))
return (1);
break;
case 3:
case 4:
case 5: if (extractContigSamples32bits (src, dst, cols, sample,
spp, bps, count, 0, cols))
return (1);
break;
default: TIFFError ("extractContigSamplesToTileBuffer", "Unsupported bit depth: %d", bps);
return (1);
}
if ((dump->outfile != NULL) && (dump->level == 4))
dump_buffer(dump->outfile, dump->format, 1, dst_rowsize, row, dst);
}
return (0);
} /* end extractContigSamplesToTileBuffer */
static int readContigStripsIntoBuffer (TIFF* in, uint8* buf)
{
uint8* bufp = buf;
int32 bytes_read = 0;
uint16 strip, nstrips = TIFFNumberOfStrips(in);
uint32 stripsize = TIFFStripSize(in);
uint32 rows = 0;
uint32 rps = TIFFGetFieldDefaulted(in, TIFFTAG_ROWSPERSTRIP, &rps);
tsize_t scanline_size = TIFFScanlineSize(in);
for (strip = 0; strip < nstrips; strip++)
{
bytes_read = TIFFReadEncodedStrip (in, strip, bufp, -1);
rows = bytes_read / scanline_size;
if ((strip < (nstrips - 1)) && (bytes_read != (int32)stripsize))
TIFFError("", "Strip %d: read %lu bytes, strip size %lu",
(int)strip + 1, (unsigned long) bytes_read, (unsigned long)stripsize);
if (bytes_read < 0 && !ignore)
{
TIFFError("", "Error reading strip %lu after %lu rows",
(unsigned long) strip, (unsigned long)rows);
return 0;
}
bufp += bytes_read;
}
return 1;
} /* end readContigStripsIntoBuffer */
static int
combineSeparateSamplesBytes (unsigned char *srcbuffs[], unsigned char *out,
uint32 cols, uint32 rows, uint16 spp, uint16 bps,
FILE *dumpfile, int format, int level)
{
int i, bytes_per_sample;
uint32 row, col, col_offset, src_rowsize, dst_rowsize, row_offset;
unsigned char *src;
unsigned char *dst;
tsample_t s;
src = srcbuffs[0];
dst = out;
if ((src == NULL) || (dst == NULL))
{
TIFFError("combineSeparateSamplesBytes","Invalid buffer address");
return (1);
}
bytes_per_sample = (bps + 7) / 8;
src_rowsize = ((bps * cols) + 7) / 8;
dst_rowsize = ((bps * spp * cols) + 7) / 8;
for (row = 0; row < rows; row++)
{
if ((dumpfile != NULL) && (level == 2))
{
for (s = 0; s < spp; s++)
{
dump_info (dumpfile, format, "combineSeparateSamplesBytes","Input data, Sample %d", s);
dump_buffer(dumpfile, format, 1, cols, row, srcbuffs[s] + (row * src_rowsize));
}
}
dst = out + (row * dst_rowsize);
row_offset = row * src_rowsize;
for (col = 0; col < cols; col++)
{
col_offset = row_offset + (col * (bps / 8));
for (s = 0; (s < spp) && (s < MAX_SAMPLES); s++)
{
src = srcbuffs[s] + col_offset;
for (i = 0; i < bytes_per_sample; i++)
*(dst + i) = *(src + i);
src += bytes_per_sample;
dst += bytes_per_sample;
}
}
if ((dumpfile != NULL) && (level == 2))
{
dump_info (dumpfile, format, "combineSeparateSamplesBytes","Output data, combined samples");
dump_buffer(dumpfile, format, 1, dst_rowsize, row, out + (row * dst_rowsize));
}
}
return (0);
} /* end combineSeparateSamplesBytes */
static int
combineSeparateSamples8bits (uint8 *in[], uint8 *out, uint32 cols,
uint32 rows, uint16 spp, uint16 bps,
FILE *dumpfile, int format, int level)
{
int ready_bits = 0;
int bytes_per_sample = 0;
uint32 src_rowsize, dst_rowsize, src_offset;
uint32 bit_offset;
uint32 row, col, src_byte = 0, src_bit = 0;
uint8 maskbits = 0, matchbits = 0;
uint8 buff1 = 0, buff2 = 0;
tsample_t s;
unsigned char *src = in[0];
unsigned char *dst = out;
char action[32];
if ((src == NULL) || (dst == NULL))
{
TIFFError("combineSeparateSamples8bits","Invalid input or output buffer");
return (1);
}
bytes_per_sample = (bps + 7) / 8;
src_rowsize = ((bps * cols) + 7) / 8;
dst_rowsize = ((bps * cols * spp) + 7) / 8;
maskbits = (uint8)-1 >> ( 8 - bps);
for (row = 0; row < rows; row++)
{
ready_bits = 0;
buff1 = buff2 = 0;
dst = out + (row * dst_rowsize);
src_offset = row * src_rowsize;
for (col = 0; col < cols; col++)
{
/* Compute src byte(s) and bits within byte(s) */
bit_offset = col * bps;
src_byte = bit_offset / 8;
src_bit = bit_offset % 8;
matchbits = maskbits << (8 - src_bit - bps);
/* load up next sample from each plane */
for (s = 0; s < spp; s++)
{
src = in[s] + src_offset + src_byte;
buff1 = ((*src) & matchbits) << (src_bit);
/* If we have a full buffer's worth, write it out */
if (ready_bits >= 8)
{
*dst++ = buff2;
buff2 = buff1;
ready_bits -= 8;
strcpy (action, "Flush");
}
else
{
buff2 = (buff2 | (buff1 >> ready_bits));
strcpy (action, "Update");
}
ready_bits += bps;
if ((dumpfile != NULL) && (level == 3))
{
dump_info (dumpfile, format, "",
"Row %3d, Col %3d, Samples %d, Src byte offset %3d bit offset %2d Dst offset %3d",
row + 1, col + 1, s, src_byte, src_bit, dst - out);
dump_byte (dumpfile, format, "Match bits", matchbits);
dump_byte (dumpfile, format, "Src bits", *src);
dump_byte (dumpfile, format, "Buff1 bits", buff1);
dump_byte (dumpfile, format, "Buff2 bits", buff2);
dump_info (dumpfile, format, "","%s", action);
}
}
}
if (ready_bits > 0)
{
buff1 = (buff2 & ((unsigned int)255 << (8 - ready_bits)));
*dst++ = buff1;
if ((dumpfile != NULL) && (level == 3))
{
dump_info (dumpfile, format, "",
"Row %3d, Col %3d, Src byte offset %3d bit offset %2d Dst offset %3d",
row + 1, col + 1, src_byte, src_bit, dst - out);
dump_byte (dumpfile, format, "Final bits", buff1);
}
}
if ((dumpfile != NULL) && (level >= 2))
{
dump_info (dumpfile, format, "combineSeparateSamples8bits","Output data");
dump_buffer(dumpfile, format, 1, dst_rowsize, row, out + (row * dst_rowsize));
}
}
return (0);
} /* end combineSeparateSamples8bits */
static int
combineSeparateSamples16bits (uint8 *in[], uint8 *out, uint32 cols,
uint32 rows, uint16 spp, uint16 bps,
FILE *dumpfile, int format, int level)
{
int ready_bits = 0, bytes_per_sample = 0;
uint32 src_rowsize, dst_rowsize;
uint32 bit_offset, src_offset;
uint32 row, col, src_byte = 0, src_bit = 0;
uint16 maskbits = 0, matchbits = 0;
uint16 buff1 = 0, buff2 = 0;
uint8 bytebuff = 0;
tsample_t s;
unsigned char *src = in[0];
unsigned char *dst = out;
char action[8];
if ((src == NULL) || (dst == NULL))
{
TIFFError("combineSeparateSamples16bits","Invalid input or output buffer");
return (1);
}
bytes_per_sample = (bps + 7) / 8;
src_rowsize = ((bps * cols) + 7) / 8;
dst_rowsize = ((bps * cols * spp) + 7) / 8;
maskbits = (uint16)-1 >> (16 - bps);
for (row = 0; row < rows; row++)
{
ready_bits = 0;
buff1 = buff2 = 0;
dst = out + (row * dst_rowsize);
src_offset = row * src_rowsize;
for (col = 0; col < cols; col++)
{
/* Compute src byte(s) and bits within byte(s) */
bit_offset = col * bps;
src_byte = bit_offset / 8;
src_bit = bit_offset % 8;
matchbits = maskbits << (16 - src_bit - bps);
for (s = 0; s < spp; s++)
{
src = in[s] + src_offset + src_byte;
if (little_endian)
buff1 = (src[0] << 8) | src[1];
else
buff1 = (src[1] << 8) | src[0];
buff1 = (buff1 & matchbits) << (src_bit);
/* If we have a full buffer's worth, write it out */
if (ready_bits >= 8)
{
bytebuff = (buff2 >> 8);
*dst++ = bytebuff;
ready_bits -= 8;
/* shift in new bits */
buff2 = ((buff2 << 8) | (buff1 >> ready_bits));
strcpy (action, "Flush");
}
else
{ /* add another bps bits to the buffer */
bytebuff = 0;
buff2 = (buff2 | (buff1 >> ready_bits));
strcpy (action, "Update");
}
ready_bits += bps;
if ((dumpfile != NULL) && (level == 3))
{
dump_info (dumpfile, format, "",
"Row %3d, Col %3d, Samples %d, Src byte offset %3d bit offset %2d Dst offset %3d",
row + 1, col + 1, s, src_byte, src_bit, dst - out);
dump_short (dumpfile, format, "Match bits", matchbits);
dump_data (dumpfile, format, "Src bits", src, 2);
dump_short (dumpfile, format, "Buff1 bits", buff1);
dump_short (dumpfile, format, "Buff2 bits", buff2);
dump_byte (dumpfile, format, "Write byte", bytebuff);
dump_info (dumpfile, format, "","Ready bits: %d, %s", ready_bits, action);
}
}
}
/* catch any trailing bits at the end of the line */
if (ready_bits > 0)
{
bytebuff = (buff2 >> 8);
*dst++ = bytebuff;
if ((dumpfile != NULL) && (level == 3))
{
dump_info (dumpfile, format, "",
"Row %3d, Col %3d, Src byte offset %3d bit offset %2d Dst offset %3d",
row + 1, col + 1, src_byte, src_bit, dst - out);
dump_byte (dumpfile, format, "Final bits", bytebuff);
}
}
if ((dumpfile != NULL) && (level == 2))
{
dump_info (dumpfile, format, "combineSeparateSamples16bits","Output data");
dump_buffer(dumpfile, format, 1, dst_rowsize, row, out + (row * dst_rowsize));
}
}
return (0);
} /* end combineSeparateSamples16bits */
static int
combineSeparateSamples24bits (uint8 *in[], uint8 *out, uint32 cols,
uint32 rows, uint16 spp, uint16 bps,
FILE *dumpfile, int format, int level)
{
int ready_bits = 0, bytes_per_sample = 0;
uint32 src_rowsize, dst_rowsize;
uint32 bit_offset, src_offset;
uint32 row, col, src_byte = 0, src_bit = 0;
uint32 maskbits = 0, matchbits = 0;
uint32 buff1 = 0, buff2 = 0;
uint8 bytebuff1 = 0, bytebuff2 = 0;
tsample_t s;
unsigned char *src = in[0];
unsigned char *dst = out;
char action[8];
if ((src == NULL) || (dst == NULL))
{
TIFFError("combineSeparateSamples24bits","Invalid input or output buffer");
return (1);
}
bytes_per_sample = (bps + 7) / 8;
src_rowsize = ((bps * cols) + 7) / 8;
dst_rowsize = ((bps * cols * spp) + 7) / 8;
maskbits = (uint32)-1 >> ( 32 - bps);
for (row = 0; row < rows; row++)
{
ready_bits = 0;
buff1 = buff2 = 0;
dst = out + (row * dst_rowsize);
src_offset = row * src_rowsize;
for (col = 0; col < cols; col++)
{
/* Compute src byte(s) and bits within byte(s) */
bit_offset = col * bps;
src_byte = bit_offset / 8;
src_bit = bit_offset % 8;
matchbits = maskbits << (32 - src_bit - bps);
for (s = 0; s < spp; s++)
{
src = in[s] + src_offset + src_byte;
if (little_endian)
buff1 = (src[0] << 24) | (src[1] << 16) | (src[2] << 8) | src[3];
else
buff1 = (src[3] << 24) | (src[2] << 16) | (src[1] << 8) | src[0];
buff1 = (buff1 & matchbits) << (src_bit);
/* If we have a full buffer's worth, write it out */
if (ready_bits >= 16)
{
bytebuff1 = (buff2 >> 24);
*dst++ = bytebuff1;
bytebuff2 = (buff2 >> 16);
*dst++ = bytebuff2;
ready_bits -= 16;
/* shift in new bits */
buff2 = ((buff2 << 16) | (buff1 >> ready_bits));
strcpy (action, "Flush");
}
else
{ /* add another bps bits to the buffer */
bytebuff1 = bytebuff2 = 0;
buff2 = (buff2 | (buff1 >> ready_bits));
strcpy (action, "Update");
}
ready_bits += bps;
if ((dumpfile != NULL) && (level == 3))
{
dump_info (dumpfile, format, "",
"Row %3d, Col %3d, Samples %d, Src byte offset %3d bit offset %2d Dst offset %3d",
row + 1, col + 1, s, src_byte, src_bit, dst - out);
dump_long (dumpfile, format, "Match bits ", matchbits);
dump_data (dumpfile, format, "Src bits ", src, 4);
dump_long (dumpfile, format, "Buff1 bits ", buff1);
dump_long (dumpfile, format, "Buff2 bits ", buff2);
dump_byte (dumpfile, format, "Write bits1", bytebuff1);
dump_byte (dumpfile, format, "Write bits2", bytebuff2);
dump_info (dumpfile, format, "","Ready bits: %d, %s", ready_bits, action);
}
}
}
/* catch any trailing bits at the end of the line */
while (ready_bits > 0)
{
bytebuff1 = (buff2 >> 24);
*dst++ = bytebuff1;
buff2 = (buff2 << 8);
bytebuff2 = bytebuff1;
ready_bits -= 8;
}
if ((dumpfile != NULL) && (level == 3))
{
dump_info (dumpfile, format, "",
"Row %3d, Col %3d, Src byte offset %3d bit offset %2d Dst offset %3d",
row + 1, col + 1, src_byte, src_bit, dst - out);
dump_long (dumpfile, format, "Match bits ", matchbits);
dump_data (dumpfile, format, "Src bits ", src, 4);
dump_long (dumpfile, format, "Buff1 bits ", buff1);
dump_long (dumpfile, format, "Buff2 bits ", buff2);
dump_byte (dumpfile, format, "Write bits1", bytebuff1);
dump_byte (dumpfile, format, "Write bits2", bytebuff2);
dump_info (dumpfile, format, "", "Ready bits: %2d", ready_bits);
}
if ((dumpfile != NULL) && (level == 2))
{
dump_info (dumpfile, format, "combineSeparateSamples24bits","Output data");
dump_buffer(dumpfile, format, 1, dst_rowsize, row, out + (row * dst_rowsize));
}
}
return (0);
} /* end combineSeparateSamples24bits */
static int
combineSeparateSamples32bits (uint8 *in[], uint8 *out, uint32 cols,
uint32 rows, uint16 spp, uint16 bps,
FILE *dumpfile, int format, int level)
{
int ready_bits = 0, bytes_per_sample = 0, shift_width = 0;
uint32 src_rowsize, dst_rowsize, bit_offset, src_offset;
uint32 src_byte = 0, src_bit = 0;
uint32 row, col;
uint32 longbuff1 = 0, longbuff2 = 0;
uint64 maskbits = 0, matchbits = 0;
uint64 buff1 = 0, buff2 = 0, buff3 = 0;
uint8 bytebuff1 = 0, bytebuff2 = 0, bytebuff3 = 0, bytebuff4 = 0;
tsample_t s;
unsigned char *src = in[0];
unsigned char *dst = out;
char action[8];
if ((src == NULL) || (dst == NULL))
{
TIFFError("combineSeparateSamples32bits","Invalid input or output buffer");
return (1);
}
bytes_per_sample = (bps + 7) / 8;
src_rowsize = ((bps * cols) + 7) / 8;
dst_rowsize = ((bps * cols * spp) + 7) / 8;
maskbits = (uint64)-1 >> ( 64 - bps);
shift_width = ((bps + 7) / 8) + 1;
for (row = 0; row < rows; row++)
{
ready_bits = 0;
buff1 = buff2 = 0;
dst = out + (row * dst_rowsize);
src_offset = row * src_rowsize;
for (col = 0; col < cols; col++)
{
/* Compute src byte(s) and bits within byte(s) */
bit_offset = col * bps;
src_byte = bit_offset / 8;
src_bit = bit_offset % 8;
matchbits = maskbits << (64 - src_bit - bps);
for (s = 0; s < spp; s++)
{
src = in[s] + src_offset + src_byte;
if (little_endian)
{
longbuff1 = (src[0] << 24) | (src[1] << 16) | (src[2] << 8) | src[3];
longbuff2 = longbuff1;
}
else
{
longbuff1 = (src[3] << 24) | (src[2] << 16) | (src[1] << 8) | src[0];
longbuff2 = longbuff1;
}
buff3 = ((uint64)longbuff1 << 32) | longbuff2;
buff1 = (buff3 & matchbits) << (src_bit);
/* If we have a full buffer's worth, write it out */
if (ready_bits >= 32)
{
bytebuff1 = (buff2 >> 56);
*dst++ = bytebuff1;
bytebuff2 = (buff2 >> 48);
*dst++ = bytebuff2;
bytebuff3 = (buff2 >> 40);
*dst++ = bytebuff3;
bytebuff4 = (buff2 >> 32);
*dst++ = bytebuff4;
ready_bits -= 32;
/* shift in new bits */
buff2 = ((buff2 << 32) | (buff1 >> ready_bits));
strcpy (action, "Flush");
}
else
{ /* add another bps bits to the buffer */
bytebuff1 = bytebuff2 = bytebuff3 = bytebuff4 = 0;
buff2 = (buff2 | (buff1 >> ready_bits));
strcpy (action, "Update");
}
ready_bits += bps;
if ((dumpfile != NULL) && (level == 3))
{
dump_info (dumpfile, format, "",
"Row %3d, Col %3d, Sample %d, Src byte offset %3d bit offset %2d Dst offset %3d",
row + 1, col + 1, s, src_byte, src_bit, dst - out);
dump_wide (dumpfile, format, "Match bits ", matchbits);
dump_data (dumpfile, format, "Src bits ", src, 8);
dump_wide (dumpfile, format, "Buff1 bits ", buff1);
dump_wide (dumpfile, format, "Buff2 bits ", buff2);
dump_info (dumpfile, format, "", "Ready bits: %d, %s", ready_bits, action);
}
}
}
while (ready_bits > 0)
{
bytebuff1 = (buff2 >> 56);
*dst++ = bytebuff1;
buff2 = (buff2 << 8);
ready_bits -= 8;
}
if ((dumpfile != NULL) && (level == 3))
{
dump_info (dumpfile, format, "",
"Row %3d, Col %3d, Src byte offset %3d bit offset %2d Dst offset %3d",
row + 1, col + 1, src_byte, src_bit, dst - out);
dump_long (dumpfile, format, "Match bits ", matchbits);
dump_data (dumpfile, format, "Src bits ", src, 4);
dump_long (dumpfile, format, "Buff1 bits ", buff1);
dump_long (dumpfile, format, "Buff2 bits ", buff2);
dump_byte (dumpfile, format, "Write bits1", bytebuff1);
dump_byte (dumpfile, format, "Write bits2", bytebuff2);
dump_info (dumpfile, format, "", "Ready bits: %2d", ready_bits);
}
if ((dumpfile != NULL) && (level == 2))
{
dump_info (dumpfile, format, "combineSeparateSamples32bits","Output data");
dump_buffer(dumpfile, format, 1, dst_rowsize, row, out);
}
}
return (0);
} /* end combineSeparateSamples32bits */
static int
combineSeparateTileSamplesBytes (unsigned char *srcbuffs[], unsigned char *out,
uint32 cols, uint32 rows, uint32 imagewidth,
uint32 tw, uint16 spp, uint16 bps,
FILE *dumpfile, int format, int level)
{
int i, bytes_per_sample;
uint32 row, col, col_offset, src_rowsize, dst_rowsize, src_offset;
unsigned char *src;
unsigned char *dst;
tsample_t s;
src = srcbuffs[0];
dst = out;
if ((src == NULL) || (dst == NULL))
{
TIFFError("combineSeparateTileSamplesBytes","Invalid buffer address");
return (1);
}
bytes_per_sample = (bps + 7) / 8;
src_rowsize = ((bps * tw) + 7) / 8;
dst_rowsize = imagewidth * bytes_per_sample * spp;
for (row = 0; row < rows; row++)
{
if ((dumpfile != NULL) && (level == 2))
{
for (s = 0; s < spp; s++)
{
dump_info (dumpfile, format, "combineSeparateTileSamplesBytes","Input data, Sample %d", s);
dump_buffer(dumpfile, format, 1, cols, row, srcbuffs[s] + (row * src_rowsize));
}
}
dst = out + (row * dst_rowsize);
src_offset = row * src_rowsize;
#ifdef DEVELMODE
TIFFError("","Tile row %4d, Src offset %6d Dst offset %6d",
row, src_offset, dst - out);
#endif
for (col = 0; col < cols; col++)
{
col_offset = src_offset + (col * (bps / 8));
for (s = 0; (s < spp) && (s < MAX_SAMPLES); s++)
{
src = srcbuffs[s] + col_offset;
for (i = 0; i < bytes_per_sample; i++)
*(dst + i) = *(src + i);
dst += bytes_per_sample;
}
}
if ((dumpfile != NULL) && (level == 2))
{
dump_info (dumpfile, format, "combineSeparateTileSamplesBytes","Output data, combined samples");
dump_buffer(dumpfile, format, 1, dst_rowsize, row, out + (row * dst_rowsize));
}
}
return (0);
} /* end combineSeparateTileSamplesBytes */
static int
combineSeparateTileSamples8bits (uint8 *in[], uint8 *out, uint32 cols,
uint32 rows, uint32 imagewidth,
uint32 tw, uint16 spp, uint16 bps,
FILE *dumpfile, int format, int level)
{
int ready_bits = 0;
uint32 src_rowsize, dst_rowsize, src_offset;
uint32 bit_offset;
uint32 row, col, src_byte = 0, src_bit = 0;
uint8 maskbits = 0, matchbits = 0;
uint8 buff1 = 0, buff2 = 0;
tsample_t s;
unsigned char *src = in[0];
unsigned char *dst = out;
char action[32];
if ((src == NULL) || (dst == NULL))
{
TIFFError("combineSeparateTileSamples8bits","Invalid input or output buffer");
return (1);
}
src_rowsize = ((bps * tw) + 7) / 8;
dst_rowsize = ((imagewidth * bps * spp) + 7) / 8;
maskbits = (uint8)-1 >> ( 8 - bps);
for (row = 0; row < rows; row++)
{
ready_bits = 0;
buff1 = buff2 = 0;
dst = out + (row * dst_rowsize);
src_offset = row * src_rowsize;
for (col = 0; col < cols; col++)
{
/* Compute src byte(s) and bits within byte(s) */
bit_offset = col * bps;
src_byte = bit_offset / 8;
src_bit = bit_offset % 8;
matchbits = maskbits << (8 - src_bit - bps);
/* load up next sample from each plane */
for (s = 0; s < spp; s++)
{
src = in[s] + src_offset + src_byte;
buff1 = ((*src) & matchbits) << (src_bit);
/* If we have a full buffer's worth, write it out */
if (ready_bits >= 8)
{
*dst++ = buff2;
buff2 = buff1;
ready_bits -= 8;
strcpy (action, "Flush");
}
else
{
buff2 = (buff2 | (buff1 >> ready_bits));
strcpy (action, "Update");
}
ready_bits += bps;
if ((dumpfile != NULL) && (level == 3))
{
dump_info (dumpfile, format, "",
"Row %3d, Col %3d, Samples %d, Src byte offset %3d bit offset %2d Dst offset %3d",
row + 1, col + 1, s, src_byte, src_bit, dst - out);
dump_byte (dumpfile, format, "Match bits", matchbits);
dump_byte (dumpfile, format, "Src bits", *src);
dump_byte (dumpfile, format, "Buff1 bits", buff1);
dump_byte (dumpfile, format, "Buff2 bits", buff2);
dump_info (dumpfile, format, "","%s", action);
}
}
}
if (ready_bits > 0)
{
buff1 = (buff2 & ((unsigned int)255 << (8 - ready_bits)));
*dst++ = buff1;
if ((dumpfile != NULL) && (level == 3))
{
dump_info (dumpfile, format, "",
"Row %3d, Col %3d, Src byte offset %3d bit offset %2d Dst offset %3d",
row + 1, col + 1, src_byte, src_bit, dst - out);
dump_byte (dumpfile, format, "Final bits", buff1);
}
}
if ((dumpfile != NULL) && (level >= 2))
{
dump_info (dumpfile, format, "combineSeparateTileSamples8bits","Output data");
dump_buffer(dumpfile, format, 1, dst_rowsize, row, out + (row * dst_rowsize));
}
}
return (0);
} /* end combineSeparateTileSamples8bits */
static int
combineSeparateTileSamples16bits (uint8 *in[], uint8 *out, uint32 cols,
uint32 rows, uint32 imagewidth,
uint32 tw, uint16 spp, uint16 bps,
FILE *dumpfile, int format, int level)
{
int ready_bits = 0;
uint32 src_rowsize, dst_rowsize;
uint32 bit_offset, src_offset;
uint32 row, col, src_byte = 0, src_bit = 0;
uint16 maskbits = 0, matchbits = 0;
uint16 buff1 = 0, buff2 = 0;
uint8 bytebuff = 0;
tsample_t s;
unsigned char *src = in[0];
unsigned char *dst = out;
char action[8];
if ((src == NULL) || (dst == NULL))
{
TIFFError("combineSeparateTileSamples16bits","Invalid input or output buffer");
return (1);
}
src_rowsize = ((bps * tw) + 7) / 8;
dst_rowsize = ((imagewidth * bps * spp) + 7) / 8;
maskbits = (uint16)-1 >> (16 - bps);
for (row = 0; row < rows; row++)
{
ready_bits = 0;
buff1 = buff2 = 0;
dst = out + (row * dst_rowsize);
src_offset = row * src_rowsize;
for (col = 0; col < cols; col++)
{
/* Compute src byte(s) and bits within byte(s) */
bit_offset = col * bps;
src_byte = bit_offset / 8;
src_bit = bit_offset % 8;
matchbits = maskbits << (16 - src_bit - bps);
for (s = 0; s < spp; s++)
{
src = in[s] + src_offset + src_byte;
if (little_endian)
buff1 = (src[0] << 8) | src[1];
else
buff1 = (src[1] << 8) | src[0];
buff1 = (buff1 & matchbits) << (src_bit);
/* If we have a full buffer's worth, write it out */
if (ready_bits >= 8)
{
bytebuff = (buff2 >> 8);
*dst++ = bytebuff;
ready_bits -= 8;
/* shift in new bits */
buff2 = ((buff2 << 8) | (buff1 >> ready_bits));
strcpy (action, "Flush");
}
else
{ /* add another bps bits to the buffer */
bytebuff = 0;
buff2 = (buff2 | (buff1 >> ready_bits));
strcpy (action, "Update");
}
ready_bits += bps;
if ((dumpfile != NULL) && (level == 3))
{
dump_info (dumpfile, format, "",
"Row %3d, Col %3d, Samples %d, Src byte offset %3d bit offset %2d Dst offset %3d",
row + 1, col + 1, s, src_byte, src_bit, dst - out);
dump_short (dumpfile, format, "Match bits", matchbits);
dump_data (dumpfile, format, "Src bits", src, 2);
dump_short (dumpfile, format, "Buff1 bits", buff1);
dump_short (dumpfile, format, "Buff2 bits", buff2);
dump_byte (dumpfile, format, "Write byte", bytebuff);
dump_info (dumpfile, format, "","Ready bits: %d, %s", ready_bits, action);
}
}
}
/* catch any trailing bits at the end of the line */
if (ready_bits > 0)
{
bytebuff = (buff2 >> 8);
*dst++ = bytebuff;
if ((dumpfile != NULL) && (level == 3))
{
dump_info (dumpfile, format, "",
"Row %3d, Col %3d, Src byte offset %3d bit offset %2d Dst offset %3d",
row + 1, col + 1, src_byte, src_bit, dst - out);
dump_byte (dumpfile, format, "Final bits", bytebuff);
}
}
if ((dumpfile != NULL) && (level == 2))
{
dump_info (dumpfile, format, "combineSeparateTileSamples16bits","Output data");
dump_buffer(dumpfile, format, 1, dst_rowsize, row, out + (row * dst_rowsize));
}
}
return (0);
} /* end combineSeparateTileSamples16bits */
static int
combineSeparateTileSamples24bits (uint8 *in[], uint8 *out, uint32 cols,
uint32 rows, uint32 imagewidth,
uint32 tw, uint16 spp, uint16 bps,
FILE *dumpfile, int format, int level)
{
int ready_bits = 0;
uint32 src_rowsize, dst_rowsize;
uint32 bit_offset, src_offset;
uint32 row, col, src_byte = 0, src_bit = 0;
uint32 maskbits = 0, matchbits = 0;
uint32 buff1 = 0, buff2 = 0;
uint8 bytebuff1 = 0, bytebuff2 = 0;
tsample_t s;
unsigned char *src = in[0];
unsigned char *dst = out;
char action[8];
if ((src == NULL) || (dst == NULL))
{
TIFFError("combineSeparateTileSamples24bits","Invalid input or output buffer");
return (1);
}
src_rowsize = ((bps * tw) + 7) / 8;
dst_rowsize = ((imagewidth * bps * spp) + 7) / 8;
maskbits = (uint32)-1 >> ( 32 - bps);
for (row = 0; row < rows; row++)
{
ready_bits = 0;
buff1 = buff2 = 0;
dst = out + (row * dst_rowsize);
src_offset = row * src_rowsize;
for (col = 0; col < cols; col++)
{
/* Compute src byte(s) and bits within byte(s) */
bit_offset = col * bps;
src_byte = bit_offset / 8;
src_bit = bit_offset % 8;
matchbits = maskbits << (32 - src_bit - bps);
for (s = 0; s < spp; s++)
{
src = in[s] + src_offset + src_byte;
if (little_endian)
buff1 = (src[0] << 24) | (src[1] << 16) | (src[2] << 8) | src[3];
else
buff1 = (src[3] << 24) | (src[2] << 16) | (src[1] << 8) | src[0];
buff1 = (buff1 & matchbits) << (src_bit);
/* If we have a full buffer's worth, write it out */
if (ready_bits >= 16)
{
bytebuff1 = (buff2 >> 24);
*dst++ = bytebuff1;
bytebuff2 = (buff2 >> 16);
*dst++ = bytebuff2;
ready_bits -= 16;
/* shift in new bits */
buff2 = ((buff2 << 16) | (buff1 >> ready_bits));
strcpy (action, "Flush");
}
else
{ /* add another bps bits to the buffer */
bytebuff1 = bytebuff2 = 0;
buff2 = (buff2 | (buff1 >> ready_bits));
strcpy (action, "Update");
}
ready_bits += bps;
if ((dumpfile != NULL) && (level == 3))
{
dump_info (dumpfile, format, "",
"Row %3d, Col %3d, Samples %d, Src byte offset %3d bit offset %2d Dst offset %3d",
row + 1, col + 1, s, src_byte, src_bit, dst - out);
dump_long (dumpfile, format, "Match bits ", matchbits);
dump_data (dumpfile, format, "Src bits ", src, 4);
dump_long (dumpfile, format, "Buff1 bits ", buff1);
dump_long (dumpfile, format, "Buff2 bits ", buff2);
dump_byte (dumpfile, format, "Write bits1", bytebuff1);
dump_byte (dumpfile, format, "Write bits2", bytebuff2);
dump_info (dumpfile, format, "","Ready bits: %d, %s", ready_bits, action);
}
}
}
/* catch any trailing bits at the end of the line */
while (ready_bits > 0)
{
bytebuff1 = (buff2 >> 24);
*dst++ = bytebuff1;
buff2 = (buff2 << 8);
bytebuff2 = bytebuff1;
ready_bits -= 8;
}
if ((dumpfile != NULL) && (level == 3))
{
dump_info (dumpfile, format, "",
"Row %3d, Col %3d, Src byte offset %3d bit offset %2d Dst offset %3d",
row + 1, col + 1, src_byte, src_bit, dst - out);
dump_long (dumpfile, format, "Match bits ", matchbits);
dump_data (dumpfile, format, "Src bits ", src, 4);
dump_long (dumpfile, format, "Buff1 bits ", buff1);
dump_long (dumpfile, format, "Buff2 bits ", buff2);
dump_byte (dumpfile, format, "Write bits1", bytebuff1);
dump_byte (dumpfile, format, "Write bits2", bytebuff2);
dump_info (dumpfile, format, "", "Ready bits: %2d", ready_bits);
}
if ((dumpfile != NULL) && (level == 2))
{
dump_info (dumpfile, format, "combineSeparateTileSamples24bits","Output data");
dump_buffer(dumpfile, format, 1, dst_rowsize, row, out + (row * dst_rowsize));
}
}
return (0);
} /* end combineSeparateTileSamples24bits */
static int
combineSeparateTileSamples32bits (uint8 *in[], uint8 *out, uint32 cols,
uint32 rows, uint32 imagewidth,
uint32 tw, uint16 spp, uint16 bps,
FILE *dumpfile, int format, int level)
{
int ready_bits = 0, shift_width = 0;
uint32 src_rowsize, dst_rowsize, bit_offset, src_offset;
uint32 src_byte = 0, src_bit = 0;
uint32 row, col;
uint32 longbuff1 = 0, longbuff2 = 0;
uint64 maskbits = 0, matchbits = 0;
uint64 buff1 = 0, buff2 = 0, buff3 = 0;
uint8 bytebuff1 = 0, bytebuff2 = 0, bytebuff3 = 0, bytebuff4 = 0;
tsample_t s;
unsigned char *src = in[0];
unsigned char *dst = out;
char action[8];
if ((src == NULL) || (dst == NULL))
{
TIFFError("combineSeparateTileSamples32bits","Invalid input or output buffer");
return (1);
}
src_rowsize = ((bps * tw) + 7) / 8;
dst_rowsize = ((imagewidth * bps * spp) + 7) / 8;
maskbits = (uint64)-1 >> ( 64 - bps);
shift_width = ((bps + 7) / 8) + 1;
for (row = 0; row < rows; row++)
{
ready_bits = 0;
buff1 = buff2 = 0;
dst = out + (row * dst_rowsize);
src_offset = row * src_rowsize;
for (col = 0; col < cols; col++)
{
/* Compute src byte(s) and bits within byte(s) */
bit_offset = col * bps;
src_byte = bit_offset / 8;
src_bit = bit_offset % 8;
matchbits = maskbits << (64 - src_bit - bps);
for (s = 0; s < spp; s++)
{
src = in[s] + src_offset + src_byte;
if (little_endian)
{
longbuff1 = (src[0] << 24) | (src[1] << 16) | (src[2] << 8) | src[3];
longbuff2 = longbuff1;
}
else
{
longbuff1 = (src[3] << 24) | (src[2] << 16) | (src[1] << 8) | src[0];
longbuff2 = longbuff1;
}
buff3 = ((uint64)longbuff1 << 32) | longbuff2;
buff1 = (buff3 & matchbits) << (src_bit);
/* If we have a full buffer's worth, write it out */
if (ready_bits >= 32)
{
bytebuff1 = (buff2 >> 56);
*dst++ = bytebuff1;
bytebuff2 = (buff2 >> 48);
*dst++ = bytebuff2;
bytebuff3 = (buff2 >> 40);
*dst++ = bytebuff3;
bytebuff4 = (buff2 >> 32);
*dst++ = bytebuff4;
ready_bits -= 32;
/* shift in new bits */
buff2 = ((buff2 << 32) | (buff1 >> ready_bits));
strcpy (action, "Flush");
}
else
{ /* add another bps bits to the buffer */
bytebuff1 = bytebuff2 = bytebuff3 = bytebuff4 = 0;
buff2 = (buff2 | (buff1 >> ready_bits));
strcpy (action, "Update");
}
ready_bits += bps;
if ((dumpfile != NULL) && (level == 3))
{
dump_info (dumpfile, format, "",
"Row %3d, Col %3d, Sample %d, Src byte offset %3d bit offset %2d Dst offset %3d",
row + 1, col + 1, s, src_byte, src_bit, dst - out);
dump_wide (dumpfile, format, "Match bits ", matchbits);
dump_data (dumpfile, format, "Src bits ", src, 8);
dump_wide (dumpfile, format, "Buff1 bits ", buff1);
dump_wide (dumpfile, format, "Buff2 bits ", buff2);
dump_info (dumpfile, format, "", "Ready bits: %d, %s", ready_bits, action);
}
}
}
while (ready_bits > 0)
{
bytebuff1 = (buff2 >> 56);
*dst++ = bytebuff1;
buff2 = (buff2 << 8);
ready_bits -= 8;
}
if ((dumpfile != NULL) && (level == 3))
{
dump_info (dumpfile, format, "",
"Row %3d, Col %3d, Src byte offset %3d bit offset %2d Dst offset %3d",
row + 1, col + 1, src_byte, src_bit, dst - out);
dump_long (dumpfile, format, "Match bits ", matchbits);
dump_data (dumpfile, format, "Src bits ", src, 4);
dump_long (dumpfile, format, "Buff1 bits ", buff1);
dump_long (dumpfile, format, "Buff2 bits ", buff2);
dump_byte (dumpfile, format, "Write bits1", bytebuff1);
dump_byte (dumpfile, format, "Write bits2", bytebuff2);
dump_info (dumpfile, format, "", "Ready bits: %2d", ready_bits);
}
if ((dumpfile != NULL) && (level == 2))
{
dump_info (dumpfile, format, "combineSeparateTileSamples32bits","Output data");
dump_buffer(dumpfile, format, 1, dst_rowsize, row, out);
}
}
return (0);
} /* end combineSeparateTileSamples32bits */
static int readSeparateStripsIntoBuffer (TIFF *in, uint8 *obuf, uint32 length,
uint32 width, uint16 spp,
struct dump_opts *dump)
{
int i, j, bytes_per_sample, bytes_per_pixel, shift_width, result = 1;
int32 bytes_read = 0;
uint16 bps, nstrips, planar, strips_per_sample;
uint32 src_rowsize, dst_rowsize, rows_processed, rps;
uint32 rows_this_strip = 0;
tsample_t s;
tstrip_t strip;
tsize_t scanlinesize = TIFFScanlineSize(in);
tsize_t stripsize = TIFFStripSize(in);
unsigned char *srcbuffs[MAX_SAMPLES];
unsigned char *buff = NULL;
unsigned char *dst = NULL;
if (obuf == NULL)
{
TIFFError("readSeparateStripsIntoBuffer","Invalid buffer argument");
return (0);
}
memset (srcbuffs, '\0', sizeof(srcbuffs));
TIFFGetField(in, TIFFTAG_BITSPERSAMPLE, &bps);
TIFFGetFieldDefaulted(in, TIFFTAG_PLANARCONFIG, &planar);
TIFFGetFieldDefaulted(in, TIFFTAG_ROWSPERSTRIP, &rps);
if (rps > length)
rps = length;
bytes_per_sample = (bps + 7) / 8;
bytes_per_pixel = ((bps * spp) + 7) / 8;
if (bytes_per_pixel < (bytes_per_sample + 1))
shift_width = bytes_per_pixel;
else
shift_width = bytes_per_sample + 1;
src_rowsize = ((bps * width) + 7) / 8;
dst_rowsize = ((bps * width * spp) + 7) / 8;
dst = obuf;
if ((dump->infile != NULL) && (dump->level == 3))
{
dump_info (dump->infile, dump->format, "",
"Image width %d, length %d, Scanline size, %4d bytes",
width, length, scanlinesize);
dump_info (dump->infile, dump->format, "",
"Bits per sample %d, Samples per pixel %d, Shift width %d",
bps, spp, shift_width);
}
/* Libtiff seems to assume/require that data for separate planes are
* written one complete plane after another and not interleaved in any way.
* Multiple scanlines and possibly strips of the same plane must be
* written before data for any other plane.
*/
nstrips = TIFFNumberOfStrips(in);
strips_per_sample = nstrips /spp;
for (s = 0; (s < spp) && (s < MAX_SAMPLES); s++)
{
srcbuffs[s] = NULL;
buff = _TIFFmalloc(stripsize);
if (!buff)
{
TIFFError ("readSeparateStripsIntoBuffer",
"Unable to allocate strip read buffer for sample %d", s);
for (i = 0; i < s; i++)
_TIFFfree (srcbuffs[i]);
return 0;
}
srcbuffs[s] = buff;
}
rows_processed = 0;
for (j = 0; (j < strips_per_sample) && (result == 1); j++)
{
for (s = 0; (s < spp) && (s < MAX_SAMPLES); s++)
{
buff = srcbuffs[s];
strip = (s * strips_per_sample) + j;
bytes_read = TIFFReadEncodedStrip (in, strip, buff, stripsize);
rows_this_strip = bytes_read / src_rowsize;
if (bytes_read < 0 && !ignore)
{
TIFFError(TIFFFileName(in),
"Error, can't read strip %lu for sample %d",
(unsigned long) strip, s + 1);
result = 0;
break;
}
#ifdef DEVELMODE
TIFFError("", "Strip %2d, read %5d bytes for %4d scanlines, shift width %d",
strip, bytes_read, rows_this_strip, shift_width);
#endif
}
if (rps > rows_this_strip)
rps = rows_this_strip;
dst = obuf + (dst_rowsize * rows_processed);
if ((bps % 8) == 0)
{
if (combineSeparateSamplesBytes (srcbuffs, dst, width, rps,
spp, bps, dump->infile,
dump->format, dump->level))
{
result = 0;
break;
}
}
else
{
switch (shift_width)
{
case 1: if (combineSeparateSamples8bits (srcbuffs, dst, width, rps,
spp, bps, dump->infile,
dump->format, dump->level))
{
result = 0;
break;
}
break;
case 2: if (combineSeparateSamples16bits (srcbuffs, dst, width, rps,
spp, bps, dump->infile,
dump->format, dump->level))
{
result = 0;
break;
}
break;
case 3: if (combineSeparateSamples24bits (srcbuffs, dst, width, rps,
spp, bps, dump->infile,
dump->format, dump->level))
{
result = 0;
break;
}
break;
case 4:
case 5:
case 6:
case 7:
case 8: if (combineSeparateSamples32bits (srcbuffs, dst, width, rps,
spp, bps, dump->infile,
dump->format, dump->level))
{
result = 0;
break;
}
break;
default: TIFFError ("readSeparateStripsIntoBuffer", "Unsupported bit depth: %d", bps);
result = 0;
break;
}
}
if ((rows_processed + rps) > length)
{
rows_processed = length;
rps = length - rows_processed;
}
else
rows_processed += rps;
}
/* free any buffers allocated for each plane or scanline and
* any temporary buffers
*/
for (s = 0; (s < spp) && (s < MAX_SAMPLES); s++)
{
buff = srcbuffs[s];
if (buff != NULL)
_TIFFfree(buff);
}
return (result);
} /* end readSeparateStripsIntoBuffer */
static int
get_page_geometry (char *name, struct pagedef *page)
{
char *ptr;
int n;
for (ptr = name; *ptr; ptr++)
*ptr = (char)tolower((int)*ptr);
for (n = 0; n < MAX_PAPERNAMES; n++)
{
if (strcmp(name, PaperTable[n].name) == 0)
{
page->width = PaperTable[n].width;
page->length = PaperTable[n].length;
strncpy (page->name, PaperTable[n].name, 15);
page->name[15] = '\0';
return (0);
}
}
return (1);
}
static void
initPageSetup (struct pagedef *page, struct pageseg *pagelist,
struct buffinfo seg_buffs[])
{
int i;
strcpy (page->name, "");
page->mode = PAGE_MODE_NONE;
page->res_unit = RESUNIT_NONE;
page->hres = 0.0;
page->vres = 0.0;
page->width = 0.0;
page->length = 0.0;
page->hmargin = 0.0;
page->vmargin = 0.0;
page->rows = 0;
page->cols = 0;
page->orient = ORIENTATION_NONE;
for (i = 0; i < MAX_SECTIONS; i++)
{
pagelist[i].x1 = (uint32)0;
pagelist[i].x2 = (uint32)0;
pagelist[i].y1 = (uint32)0;
pagelist[i].y2 = (uint32)0;
pagelist[i].buffsize = (uint32)0;
pagelist[i].position = 0;
pagelist[i].total = 0;
}
for (i = 0; i < MAX_OUTBUFFS; i++)
{
seg_buffs[i].size = 0;
seg_buffs[i].buffer = NULL;
}
}
static void
initImageData (struct image_data *image)
{
image->xres = 0.0;
image->yres = 0.0;
image->width = 0;
image->length = 0;
image->res_unit = RESUNIT_NONE;
image->bps = 0;
image->spp = 0;
image->planar = 0;
image->photometric = 0;
image->orientation = 0;
image->adjustments = 0;
}
static void
initCropMasks (struct crop_mask *cps)
{
int i;
cps->crop_mode = CROP_NONE;
cps->res_unit = RESUNIT_NONE;
cps->edge_ref = EDGE_TOP;
cps->width = 0;
cps->length = 0;
for (i = 0; i < 4; i++)
cps->margins[i] = 0.0;
cps->bufftotal = (uint32)0;
cps->combined_width = (uint32)0;
cps->combined_length = (uint32)0;
cps->rotation = (uint16)0;
cps->photometric = INVERT_DATA_AND_TAG;
cps->mirror = (uint16)0;
cps->invert = (uint16)0;
cps->zones = (uint32)0;
cps->regions = (uint32)0;
for (i = 0; i < MAX_REGIONS; i++)
{
cps->corners[i].X1 = 0.0;
cps->corners[i].X2 = 0.0;
cps->corners[i].Y1 = 0.0;
cps->corners[i].Y2 = 0.0;
cps->regionlist[i].x1 = 0;
cps->regionlist[i].x2 = 0;
cps->regionlist[i].y1 = 0;
cps->regionlist[i].y2 = 0;
cps->regionlist[i].width = 0;
cps->regionlist[i].length = 0;
cps->regionlist[i].buffsize = 0;
cps->regionlist[i].buffptr = NULL;
cps->zonelist[i].position = 0;
cps->zonelist[i].total = 0;
}
cps->exp_mode = ONE_FILE_COMPOSITE;
cps->img_mode = COMPOSITE_IMAGES;
}
static void initDumpOptions(struct dump_opts *dump)
{
dump->debug = 0;
dump->format = DUMP_NONE;
dump->level = 1;
sprintf (dump->mode, "w");
memset (dump->infilename, '\0', PATH_MAX + 1);
memset (dump->outfilename, '\0',PATH_MAX + 1);
dump->infile = NULL;
dump->outfile = NULL;
}
/* Compute pixel offsets into the image for margins and fixed regions */
static int
computeInputPixelOffsets(struct crop_mask *crop, struct image_data *image,
struct offset *off)
{
double scale;
float xres, yres;
/* Values for these offsets are in pixels from start of image, not bytes,
* and are indexed from zero to width - 1 or length - 1 */
uint32 tmargin, bmargin, lmargin, rmargin;
uint32 startx, endx; /* offsets of first and last columns to extract */
uint32 starty, endy; /* offsets of first and last row to extract */
uint32 width, length, crop_width, crop_length;
uint32 i, max_width, max_length, zwidth, zlength, buffsize;
uint32 x1, x2, y1, y2;
if (image->res_unit != RESUNIT_INCH && image->res_unit != RESUNIT_CENTIMETER)
{
xres = 1.0;
yres = 1.0;
}
else
{
if (((image->xres == 0) || (image->yres == 0)) &&
(crop->res_unit != RESUNIT_NONE) &&
((crop->crop_mode & CROP_REGIONS) || (crop->crop_mode & CROP_MARGINS) ||
(crop->crop_mode & CROP_LENGTH) || (crop->crop_mode & CROP_WIDTH)))
{
TIFFError("computeInputPixelOffsets", "Cannot compute margins or fixed size sections without image resolution");
TIFFError("computeInputPixelOffsets", "Specify units in pixels and try again");
return (-1);
}
xres = image->xres;
yres = image->yres;
}
/* Translate user units to image units */
scale = 1.0;
switch (crop->res_unit) {
case RESUNIT_CENTIMETER:
if (image->res_unit == RESUNIT_INCH)
scale = 1.0/2.54;
break;
case RESUNIT_INCH:
if (image->res_unit == RESUNIT_CENTIMETER)
scale = 2.54;
break;
case RESUNIT_NONE: /* Dimensions in pixels */
default:
break;
}
if (crop->crop_mode & CROP_REGIONS)
{
max_width = max_length = 0;
for (i = 0; i < crop->regions; i++)
{
if ((crop->res_unit == RESUNIT_INCH) || (crop->res_unit == RESUNIT_CENTIMETER))
{
x1 = (uint32) (crop->corners[i].X1 * scale * xres);
x2 = (uint32) (crop->corners[i].X2 * scale * xres);
y1 = (uint32) (crop->corners[i].Y1 * scale * yres);
y2 = (uint32) (crop->corners[i].Y2 * scale * yres);
}
else
{
x1 = (uint32) (crop->corners[i].X1);
x2 = (uint32) (crop->corners[i].X2);
y1 = (uint32) (crop->corners[i].Y1);
y2 = (uint32) (crop->corners[i].Y2);
}
if (x1 < 1)
crop->regionlist[i].x1 = 0;
else
crop->regionlist[i].x1 = (uint32) (x1 - 1);
if (x2 > image->width - 1)
crop->regionlist[i].x2 = image->width - 1;
else
crop->regionlist[i].x2 = (uint32) (x2 - 1);
zwidth = crop->regionlist[i].x2 - crop->regionlist[i].x1 + 1;
if (y1 < 1)
crop->regionlist[i].y1 = 0;
else
crop->regionlist[i].y1 = (uint32) (y1 - 1);
if (y2 > image->length - 1)
crop->regionlist[i].y2 = image->length - 1;
else
crop->regionlist[i].y2 = (uint32) (y2 - 1);
zlength = crop->regionlist[i].y2 - crop->regionlist[i].y1 + 1;
if (zwidth > max_width)
max_width = zwidth;
if (zlength > max_length)
max_length = zlength;
buffsize = (uint32)
(((zwidth * image->bps * image->spp + 7 ) / 8) * (zlength + 1));
crop->regionlist[i].buffsize = buffsize;
crop->bufftotal += buffsize;
if (crop->img_mode == COMPOSITE_IMAGES)
{
switch (crop->edge_ref)
{
case EDGE_LEFT:
case EDGE_RIGHT:
crop->combined_length = zlength;
crop->combined_width += zwidth;
break;
case EDGE_BOTTOM:
case EDGE_TOP: /* width from left, length from top */
default:
crop->combined_width = zwidth;
crop->combined_length += zlength;
break;
}
}
}
return (0);
}
/* Convert crop margins into offsets into image
* Margins are expressed as pixel rows and columns, not bytes
*/
if (crop->crop_mode & CROP_MARGINS)
{
if (crop->res_unit != RESUNIT_INCH && crop->res_unit != RESUNIT_CENTIMETER)
{ /* User has specified pixels as reference unit */
tmargin = (uint32)(crop->margins[0]);
lmargin = (uint32)(crop->margins[1]);
bmargin = (uint32)(crop->margins[2]);
rmargin = (uint32)(crop->margins[3]);
}
else
{ /* inches or centimeters specified */
tmargin = (uint32)(crop->margins[0] * scale * yres);
lmargin = (uint32)(crop->margins[1] * scale * xres);
bmargin = (uint32)(crop->margins[2] * scale * yres);
rmargin = (uint32)(crop->margins[3] * scale * xres);
}
if ((lmargin + rmargin) > image->width)
{
TIFFError("computeInputPixelOffsets", "Combined left and right margins exceed image width");
lmargin = (uint32) 0;
rmargin = (uint32) 0;
return (-1);
}
if ((tmargin + bmargin) > image->length)
{
TIFFError("computeInputPixelOffsets", "Combined top and bottom margins exceed image length");
tmargin = (uint32) 0;
bmargin = (uint32) 0;
return (-1);
}
}
else
{ /* no margins requested */
tmargin = (uint32) 0;
lmargin = (uint32) 0;
bmargin = (uint32) 0;
rmargin = (uint32) 0;
}
/* Width, height, and margins are expressed as pixel offsets into image */
if (crop->res_unit != RESUNIT_INCH && crop->res_unit != RESUNIT_CENTIMETER)
{
if (crop->crop_mode & CROP_WIDTH)
width = (uint32)crop->width;
else
width = image->width - lmargin - rmargin;
if (crop->crop_mode & CROP_LENGTH)
length = (uint32)crop->length;
else
length = image->length - tmargin - bmargin;
}
else
{
if (crop->crop_mode & CROP_WIDTH)
width = (uint32)(crop->width * scale * image->xres);
else
width = image->width - lmargin - rmargin;
if (crop->crop_mode & CROP_LENGTH)
length = (uint32)(crop->length * scale * image->yres);
else
length = image->length - tmargin - bmargin;
}
off->tmargin = tmargin;
off->bmargin = bmargin;
off->lmargin = lmargin;
off->rmargin = rmargin;
/* Calculate regions defined by margins, width, and length.
* Coordinates expressed as 0 to imagewidth - 1, imagelength - 1,
* since they are used to compute offsets into buffers */
switch (crop->edge_ref) {
case EDGE_BOTTOM:
startx = lmargin;
if ((startx + width) >= (image->width - rmargin))
endx = image->width - rmargin - 1;
else
endx = startx + width - 1;
endy = image->length - bmargin - 1;
if ((endy - length) <= tmargin)
starty = tmargin;
else
starty = endy - length + 1;
break;
case EDGE_RIGHT:
endx = image->width - rmargin - 1;
if ((endx - width) <= lmargin)
startx = lmargin;
else
startx = endx - width + 1;
starty = tmargin;
if ((starty + length) >= (image->length - bmargin))
endy = image->length - bmargin - 1;
else
endy = starty + length - 1;
break;
case EDGE_TOP: /* width from left, length from top */
case EDGE_LEFT:
default:
startx = lmargin;
if ((startx + width) >= (image->width - rmargin))
endx = image->width - rmargin - 1;
else
endx = startx + width - 1;
starty = tmargin;
if ((starty + length) >= (image->length - bmargin))
endy = image->length - bmargin - 1;
else
endy = starty + length - 1;
break;
}
off->startx = startx;
off->starty = starty;
off->endx = endx;
off->endy = endy;
crop_width = endx - startx + 1;
crop_length = endy - starty + 1;
if (crop_width <= 0)
{
TIFFError("computeInputPixelOffsets",
"Invalid left/right margins and /or image crop width requested");
return (-1);
}
if (crop_width > image->width)
crop_width = image->width;
if (crop_length <= 0)
{
TIFFError("computeInputPixelOffsets",
"Invalid top/bottom margins and /or image crop length requested");
return (-1);
}
if (crop_length > image->length)
crop_length = image->length;
off->crop_width = crop_width;
off->crop_length = crop_length;
return (0);
} /* end computeInputPixelOffsets */
/*
* Translate crop options into pixel offsets for one or more regions of the image.
* Options are applied in this order: margins, specific width and length, zones,
* but all are optional. Margins are relative to each edge. Width, length and
* zones are relative to the specified reference edge. Zones are expressed as
* X:Y where X is the ordinal value in a set of Y equal sized portions. eg.
* 2:3 would indicate the middle third of the region qualified by margins and
* any explicit width and length specified. Regions are specified by coordinates
* of the top left and lower right corners with range 1 to width or height.
*/
static int
getCropOffsets(struct image_data *image, struct crop_mask *crop, struct dump_opts *dump)
{
struct offset offsets;
int i;
int32 test2;
uint32 test, seg, total, need_buff = 0;
uint32 buffsize;
uint32 zwidth, zlength;
memset(&offsets, '\0', sizeof(struct offset));
crop->bufftotal = 0;
crop->combined_width = (uint32)0;
crop->combined_length = (uint32)0;
crop->selections = 0;
/* Compute pixel offsets if margins or fixed width or length specified */
if ((crop->crop_mode & CROP_MARGINS) ||
(crop->crop_mode & CROP_REGIONS) ||
(crop->crop_mode & CROP_LENGTH) ||
(crop->crop_mode & CROP_WIDTH))
{
if (computeInputPixelOffsets(crop, image, &offsets))
{
TIFFError ("getCropOffsets", "Unable to compute crop margins");
return (-1);
}
need_buff = TRUE;
crop->selections = crop->regions;
/* Regions are only calculated from top and left edges with no margins */
if (crop->crop_mode & CROP_REGIONS)
return (0);
}
else
{ /* cropped area is the full image */
offsets.tmargin = 0;
offsets.lmargin = 0;
offsets.bmargin = 0;
offsets.rmargin = 0;
offsets.crop_width = image->width;
offsets.crop_length = image->length;
offsets.startx = 0;
offsets.endx = image->width - 1;
offsets.starty = 0;
offsets.endy = image->length - 1;
need_buff = FALSE;
}
if (dump->outfile != NULL)
{
dump_info (dump->outfile, dump->format, "", "Margins: Top: %d Left: %d Bottom: %d Right: %d",
offsets.tmargin, offsets.lmargin, offsets.bmargin, offsets.rmargin);
dump_info (dump->outfile, dump->format, "", "Crop region within margins: Adjusted Width: %6d Length: %6d",
offsets.crop_width, offsets.crop_length);
}
if (!(crop->crop_mode & CROP_ZONES)) /* no crop zones requested */
{
if (need_buff == FALSE) /* No margins or fixed width or length areas */
{
crop->selections = 0;
crop->combined_width = image->width;
crop->combined_length = image->length;
return (0);
}
else
{
/* Use one region for margins and fixed width or length areas
* even though it was not formally declared as a region.
*/
crop->selections = 1;
crop->zones = 1;
crop->zonelist[0].total = 1;
crop->zonelist[0].position = 1;
}
}
else
crop->selections = crop->zones;
for (i = 0; i < crop->zones; i++)
{
seg = crop->zonelist[i].position;
total = crop->zonelist[i].total;
switch (crop->edge_ref)
{
case EDGE_LEFT: /* zones from left to right, length from top */
zlength = offsets.crop_length;
crop->regionlist[i].y1 = offsets.starty;
crop->regionlist[i].y2 = offsets.endy;
crop->regionlist[i].x1 = offsets.startx +
(uint32)(offsets.crop_width * 1.0 * (seg - 1) / total);
test = offsets.startx +
(uint32)(offsets.crop_width * 1.0 * seg / total);
if (test > image->width - 1)
crop->regionlist[i].x2 = image->width - 1;
else
crop->regionlist[i].x2 = test - 1;
zwidth = crop->regionlist[i].x2 - crop->regionlist[i].x1 + 1;
/* This is passed to extractCropZone or extractCompositeZones */
crop->combined_length = (uint32)zlength;
if (crop->exp_mode == COMPOSITE_IMAGES)
crop->combined_width += (uint32)zwidth;
else
crop->combined_width = (uint32)zwidth;
break;
case EDGE_BOTTOM: /* width from left, zones from bottom to top */
zwidth = offsets.crop_width;
crop->regionlist[i].x1 = offsets.startx;
crop->regionlist[i].x2 = offsets.endx;
test2 = offsets.endy - (uint32)(offsets.crop_length * 1.0 * seg / total);
if (test2 < 1 )
crop->regionlist[i].y1 = 0;
else
crop->regionlist[i].y1 = test2 + 1;
test = offsets.endy - (uint32)(offsets.crop_length * 1.0 * (seg - 1) / total);
if (test > (image->length - 1))
crop->regionlist[i].y2 = image->length - 1;
else
crop->regionlist[i].y2 = test;
zlength = crop->regionlist[i].y2 - crop->regionlist[i].y1 + 1;
/* This is passed to extractCropZone or extractCompositeZones */
if (crop->exp_mode == COMPOSITE_IMAGES)
crop->combined_length += (uint32)zlength;
else
crop->combined_length = (uint32)zlength;
crop->combined_width = (uint32)zwidth;
break;
case EDGE_RIGHT: /* zones from right to left, length from top */
zlength = offsets.crop_length;
crop->regionlist[i].y1 = offsets.starty;
crop->regionlist[i].y2 = offsets.endy;
crop->regionlist[i].x1 = offsets.startx +
(uint32)(offsets.crop_width * (total - seg) * 1.0 / total);
test = offsets.startx +
(uint32)(offsets.crop_width * (total - seg + 1) * 1.0 / total);
if (test > image->width - 1)
crop->regionlist[i].x2 = image->width - 1;
else
crop->regionlist[i].x2 = test - 1;
zwidth = crop->regionlist[i].x2 - crop->regionlist[i].x1 + 1;
/* This is passed to extractCropZone or extractCompositeZones */
crop->combined_length = (uint32)zlength;
if (crop->exp_mode == COMPOSITE_IMAGES)
crop->combined_width += (uint32)zwidth;
else
crop->combined_width = (uint32)zwidth;
break;
case EDGE_TOP: /* width from left, zones from top to bottom */
default:
zwidth = offsets.crop_width;
crop->regionlist[i].x1 = offsets.startx;
crop->regionlist[i].x2 = offsets.endx;
crop->regionlist[i].y1 = offsets.starty + (uint32)(offsets.crop_length * 1.0 * (seg - 1) / total);
test = offsets.starty + (uint32)(offsets.crop_length * 1.0 * seg / total);
if (test > image->length - 1)
crop->regionlist[i].y2 = image->length - 1;
else
crop->regionlist[i].y2 = test - 1;
zlength = crop->regionlist[i].y2 - crop->regionlist[i].y1 + 1;
/* This is passed to extractCropZone or extractCompositeZones */
if (crop->exp_mode == COMPOSITE_IMAGES)
crop->combined_length += (uint32)zlength;
else
crop->combined_length = (uint32)zlength;
crop->combined_width = (uint32)zwidth;
break;
} /* end switch statement */
buffsize = (uint32)
((((zwidth * image->bps * image->spp) + 7 ) / 8) * (zlength + 1));
crop->regionlist[i].width = (uint32) zwidth;
crop->regionlist[i].length = (uint32) zlength;
crop->regionlist[i].buffsize = buffsize;
crop->bufftotal += buffsize;
if (dump->outfile != NULL)
dump_info (dump->outfile, dump->format, "", "Zone %d, width: %4d, length: %4d, x1: %4d x2: %4d y1: %4d y2: %4d",
i + 1, (uint32)zwidth, (uint32)zlength,
crop->regionlist[i].x1, crop->regionlist[i].x2,
crop->regionlist[i].y1, crop->regionlist[i].y2);
}
return (0);
} /* end getCropOffsets */
static int
computeOutputPixelOffsets (struct crop_mask *crop, struct image_data *image,
struct pagedef *page, struct pageseg *sections,
struct dump_opts* dump)
{
double scale;
double pwidth, plength; /* Output page width and length in user units*/
uint32 iwidth, ilength; /* Input image width and length in pixels*/
uint32 owidth, olength; /* Output image width and length in pixels*/
uint32 orows, ocols; /* rows and cols for output */
uint32 hmargin, vmargin; /* Horizontal and vertical margins */
uint32 x1, x2, y1, y2, line_bytes;
unsigned int orientation;
uint32 i, j, k;
scale = 1.0;
if (page->res_unit == RESUNIT_NONE)
page->res_unit = image->res_unit;
switch (image->res_unit) {
case RESUNIT_CENTIMETER:
if (page->res_unit == RESUNIT_INCH)
scale = 1.0/2.54;
break;
case RESUNIT_INCH:
if (page->res_unit == RESUNIT_CENTIMETER)
scale = 2.54;
break;
case RESUNIT_NONE: /* Dimensions in pixels */
default:
break;
}
/* get width, height, resolutions of input image selection */
if (crop->combined_width > 0)
iwidth = crop->combined_width;
else
iwidth = image->width;
if (crop->combined_length > 0)
ilength = crop->combined_length;
else
ilength = image->length;
if (page->hres <= 1.0)
page->hres = image->xres;
if (page->vres <= 1.0)
page->vres = image->yres;
if ((page->hres < 1.0) || (page->vres < 1.0))
{
TIFFError("computeOutputPixelOffsets",
"Invalid horizontal or vertical resolution specified or read from input image");
return (1);
}
/* If no page sizes are being specified, we just use the input image size to
* calculate maximum margins that can be taken from image.
*/
if (page->width <= 0)
pwidth = iwidth;
else
pwidth = page->width;
if (page->length <= 0)
plength = ilength;
else
plength = page->length;
if (dump->debug)
{
TIFFError("", "Page size: %s, Vres: %3.2f, Hres: %3.2f, "
"Hmargin: %3.2f, Vmargin: %3.2f\n",
page->name, page->vres, page->hres,
page->hmargin, page->vmargin);
TIFFError("", "Res_unit: %d, Scale: %3.2f, Page width: %3.2f, length: %3.2f\n",
page->res_unit, scale, pwidth, plength);
}
/* compute margins at specified unit and resolution */
if (page->mode & PAGE_MODE_MARGINS)
{
if (page->res_unit == RESUNIT_INCH || page->res_unit == RESUNIT_CENTIMETER)
{ /* inches or centimeters specified */
hmargin = (uint32)(page->hmargin * scale * page->hres * ((image->bps + 7)/ 8));
vmargin = (uint32)(page->vmargin * scale * page->vres * ((image->bps + 7)/ 8));
}
else
{ /* Otherwise user has specified pixels as reference unit */
hmargin = (uint32)(page->hmargin * scale * ((image->bps + 7)/ 8));
vmargin = (uint32)(page->vmargin * scale * ((image->bps + 7)/ 8));
}
if ((hmargin * 2.0) > (pwidth * page->hres))
{
TIFFError("computeOutputPixelOffsets",
"Combined left and right margins exceed page width");
hmargin = (uint32) 0;
return (-1);
}
if ((vmargin * 2.0) > (plength * page->vres))
{
TIFFError("computeOutputPixelOffsets",
"Combined top and bottom margins exceed page length");
vmargin = (uint32) 0;
return (-1);
}
}
else
{
hmargin = 0;
vmargin = 0;
}
if (page->mode & PAGE_MODE_ROWSCOLS )
{
/* Maybe someday but not for now */
if (page->mode & PAGE_MODE_MARGINS)
TIFFError("computeOutputPixelOffsets",
"Output margins cannot be specified with rows and columns");
owidth = TIFFhowmany(iwidth, page->cols);
olength = TIFFhowmany(ilength, page->rows);
}
else
{
if (page->mode & PAGE_MODE_PAPERSIZE )
{
owidth = (uint32)((pwidth * page->hres) - (hmargin * 2));
olength = (uint32)((plength * page->vres) - (vmargin * 2));
}
else
{
owidth = (uint32)(iwidth - (hmargin * 2 * page->hres));
olength = (uint32)(ilength - (vmargin * 2 * page->vres));
}
}
if (owidth > iwidth)
owidth = iwidth;
if (olength > ilength)
olength = ilength;
/* Compute the number of pages required for Portrait or Landscape */
switch (page->orient)
{
case ORIENTATION_NONE:
case ORIENTATION_PORTRAIT:
ocols = TIFFhowmany(iwidth, owidth);
orows = TIFFhowmany(ilength, olength);
orientation = ORIENTATION_PORTRAIT;
break;
case ORIENTATION_LANDSCAPE:
ocols = TIFFhowmany(iwidth, olength);
orows = TIFFhowmany(ilength, owidth);
x1 = olength;
olength = owidth;
owidth = x1;
orientation = ORIENTATION_LANDSCAPE;
break;
case ORIENTATION_AUTO:
default:
x1 = TIFFhowmany(iwidth, owidth);
x2 = TIFFhowmany(ilength, olength);
y1 = TIFFhowmany(iwidth, olength);
y2 = TIFFhowmany(ilength, owidth);
if ( (x1 * x2) < (y1 * y2))
{ /* Portrait */
ocols = x1;
orows = x2;
orientation = ORIENTATION_PORTRAIT;
}
else
{ /* Landscape */
ocols = y1;
orows = y2;
x1 = olength;
olength = owidth;
owidth = x1;
orientation = ORIENTATION_LANDSCAPE;
}
}
if (ocols < 1)
ocols = 1;
if (orows < 1)
orows = 1;
/* If user did not specify rows and cols, set them from calcuation */
if (page->rows < 1)
page->rows = orows;
if (page->cols < 1)
page->cols = ocols;
line_bytes = TIFFhowmany8(owidth * image->bps) * image->spp;
if ((page->rows * page->cols) > MAX_SECTIONS)
{
TIFFError("computeOutputPixelOffsets",
"Rows and Columns exceed maximum sections\nIncrease resolution or reduce sections");
return (-1);
}
/* build the list of offsets for each output section */
for (k = 0, i = 0 && k <= MAX_SECTIONS; i < orows; i++)
{
y1 = (uint32)(olength * i);
y2 = (uint32)(olength * (i + 1) - 1);
if (y2 >= ilength)
y2 = ilength - 1;
for (j = 0; j < ocols; j++, k++)
{
x1 = (uint32)(owidth * j);
x2 = (uint32)(owidth * (j + 1) - 1);
if (x2 >= iwidth)
x2 = iwidth - 1;
sections[k].x1 = x1;
sections[k].x2 = x2;
sections[k].y1 = y1;
sections[k].y2 = y2;
sections[k].buffsize = line_bytes * olength;
sections[k].position = k + 1;
sections[k].total = orows * ocols;
}
}
return (0);
} /* end computeOutputPixelOffsets */
static int
loadImage(TIFF* in, struct image_data *image, struct dump_opts *dump, unsigned char **read_ptr)
{
uint32 i;
float xres = 0.0, yres = 0.0;
uint16 nstrips = 0, ntiles = 0, planar = 0;
uint16 bps = 0, spp = 0, res_unit = 0;
uint16 photometric = 0, orientation = 0, input_compression = 0;
uint32 width = 0, length = 0;
uint32 stsize = 0, tlsize = 0, buffsize = 0, scanlinesize = 0;
uint32 tw = 0, tl = 0; /* Tile width and length */
uint32 tile_rowsize = 0;
unsigned char *read_buff = NULL;
unsigned char *new_buff = NULL;
int readunit = 0;
static uint32 prev_readsize = 0;
TIFFGetFieldDefaulted(in, TIFFTAG_BITSPERSAMPLE, &bps);
TIFFGetFieldDefaulted(in, TIFFTAG_SAMPLESPERPIXEL, &spp);
TIFFGetFieldDefaulted(in, TIFFTAG_PLANARCONFIG, &planar);
TIFFGetFieldDefaulted(in, TIFFTAG_ORIENTATION, &orientation);
if (! TIFFGetFieldDefaulted(in, TIFFTAG_PHOTOMETRIC, &photometric))
TIFFError("loadImage","Image lacks Photometric interpreation tag");
if (! TIFFGetField(in, TIFFTAG_IMAGEWIDTH, &width))
TIFFError("loadimage","Image lacks image width tag");
if(! TIFFGetField(in, TIFFTAG_IMAGELENGTH, &length))
TIFFError("loadimage","Image lacks image length tag");
TIFFGetFieldDefaulted(in, TIFFTAG_XRESOLUTION, &xres);
TIFFGetFieldDefaulted(in, TIFFTAG_YRESOLUTION, &yres);
if (!TIFFGetFieldDefaulted(in, TIFFTAG_RESOLUTIONUNIT, &res_unit))
res_unit = RESUNIT_INCH;
if (!TIFFGetField(in, TIFFTAG_COMPRESSION, &input_compression))
input_compression = COMPRESSION_NONE;
#ifdef DEBUG2
char compressionid[16];
switch (compression)
{
case COMPRESSION_NONE: /* 1 dump mode */
stcrcpy ("None/dump", compressionid);
break;
case COMPRESSION_CCITTRLE: /* 2 CCITT modified Huffman RLE */
stcrcpy ("Huffman RLE", compressionid);
break;
case COMPRESSION_CCITTFAX3: /* 3 CCITT Group 3 fax encoding */
case COMPRESSION_CCITT_T4: /* 3 CCITT T.4 (TIFF 6 name) */
stcrcpy ("Group3 Fax", compressionid);
break;
case COMPRESSION_CCITTFAX4: /* 4 CCITT Group 4 fax encoding */
case COMPRESSION_CCITT_T6: /* 4 CCITT T.6 (TIFF 6 name) */
stcrcpy ("Group4 Fax", compressionid);
break;
case COMPRESSION_LZW: /* 5 Lempel-Ziv & Welch */
stcrcpy ("LZW", compressionid);
break;
case COMPRESSION_OJPEG: /* 6 !6.0 JPEG */
stcrcpy ("Old Jpeg", compressionid);
break;
case COMPRESSION_JPEG: /* 7 %JPEG DCT compression */
stcrcpy ("New Jpeg", compressionid);
break;
case COMPRESSION_NEXT: /* 32766 NeXT 2-bit RLE */
stcrcpy ("Next RLE", compressionid);
break;
case COMPRESSION_CCITTRLEW: /* 32771 #1 w/ word alignment */
stcrcpy ("CITTRLEW", compressionid);
break;
case COMPRESSION_PACKBITS: /* 32773 Macintosh RLE */
stcrcpy ("Mac Packbits", compressionid);
break;
case COMPRESSION_THUNDERSCAN: /* 32809 ThunderScan RLE */
stcrcpy ("Thunderscan", compressionid);
break;
case COMPRESSION_IT8CTPAD: /* 32895 IT8 CT w/padding */
stcrcpy ("IT8 padded", compressionid);
break;
case COMPRESSION_IT8LW: /* 32896 IT8 Linework RLE */
stcrcpy ("IT8 RLE", compressionid);
break;
case COMPRESSION_IT8MP: /* 32897 IT8 Monochrome picture */
stcrcpy ("IT8 mono", compressionid);
break;
case COMPRESSION_IT8BL: /* 32898 IT8 Binary line art */
stcrcpy ("IT8 lineart", compressionid);
break;
case COMPRESSION_PIXARFILM: /* 32908 Pixar companded 10bit LZW */
stcrcpy ("Pixar 10 bit", compressionid);
break;
case COMPRESSION_PIXARLOG: /* 32909 Pixar companded 11bit ZIP */
stcrcpy ("Pixar 11bit", compressionid);
break;
case COMPRESSION_DEFLATE: /* 32946 Deflate compression */
stcrcpy ("Deflate", compressionid);
break;
case COMPRESSION_ADOBE_DEFLATE: /* 8 Deflate compression */
stcrcpy ("Adobe deflate", compressionid);
break;
default:
stcrcpy ("None/unknown", compressionid);
break;
}
#endif
scanlinesize = TIFFScanlineSize(in);
image->bps = bps;
image->spp = spp;
image->planar = planar;
image->width = width;
image->length = length;
image->xres = xres;
image->yres = yres;
image->res_unit = res_unit;
image->photometric = photometric;
#ifdef DEBUG2
char photmetricid[12];
switch (photometric)
{
case PHOTOMETRIC_MINISWHITE:
strcpy (photometricid, "MinIsWhite");
break;
case PHOTOMETRIC_MINISBLACK:
strcpy (photometricid, "MinIsBlack");
break;
case PHOTOMETRIC_RGB:
strcpy (photometricid, "RGB");
break;
case PHOTOMETRIC_PALETTE:
strcpy (photometricid, "Palette");
break;
case PHOTOMETRIC_MASK:
strcpy (photometricid, "Mask");
break;
case PHOTOMETRIC_SEPARATED:
strcpy (photometricid, "Separated");
break;
case PHOTOMETRIC_YCBCR:
strcpy (photometricid, "YCBCR");
break;
case PHOTOMETRIC_CIELAB:
strcpy (photometricid, "CIELab");
break;
case PHOTOMETRIC_ICCLAB:
strcpy (photometricid, "ICCLab");
break;
case PHOTOMETRIC_ITULAB:
strcpy (photometricid, "ITULab");
break;
case PHOTOMETRIC_LOGL:
strcpy (photometricid, "LogL");
break;
case PHOTOMETRIC_LOGLUV:
strcpy (photometricid, "LOGLuv");
break;
default:
strcpy (photometricid, "Unknown");
break;
}
TIFFError("loadImage", "Input photometric interpretation %s", photometricid);
#endif
image->orientation = orientation;
switch (orientation)
{
case 0:
case ORIENTATION_TOPLEFT:
image->adjustments = 0;
break;
case ORIENTATION_TOPRIGHT:
image->adjustments = MIRROR_HORIZ;
break;
case ORIENTATION_BOTRIGHT:
image->adjustments = ROTATECW_180;
break;
case ORIENTATION_BOTLEFT:
image->adjustments = MIRROR_VERT;
break;
case ORIENTATION_LEFTTOP:
image->adjustments = MIRROR_VERT | ROTATECW_90;
break;
case ORIENTATION_RIGHTTOP:
image->adjustments = ROTATECW_90;
break;
case ORIENTATION_RIGHTBOT:
image->adjustments = MIRROR_VERT | ROTATECW_270;
break;
case ORIENTATION_LEFTBOT:
image->adjustments = ROTATECW_270;
break;
default:
image->adjustments = 0;
image->orientation = ORIENTATION_TOPLEFT;
}
if ((bps == 0) || (spp == 0))
{
TIFFError("loadImage", "Invalid samples per pixel (%d) or bits per sample (%d)",
spp, bps);
return (-1);
}
if (TIFFIsTiled(in))
{
readunit = TILE;
tlsize = TIFFTileSize(in);
ntiles = TIFFNumberOfTiles(in);
TIFFGetField(in, TIFFTAG_TILEWIDTH, &tw);
TIFFGetField(in, TIFFTAG_TILELENGTH, &tl);
tile_rowsize = TIFFTileRowSize(in);
buffsize = tlsize * ntiles;
if (buffsize < (uint32)(ntiles * tl * tile_rowsize))
{
buffsize = ntiles * tl * tile_rowsize;
#ifdef DEBUG2
TIFFError("loadImage",
"Tilesize %u is too small, using ntiles * tilelength * tilerowsize %lu",
tlsize, (unsigned long)buffsize);
#endif
}
if (dump->infile != NULL)
dump_info (dump->infile, dump->format, "",
"Tilesize: %u, Number of Tiles: %u, Tile row size: %u",
tlsize, ntiles, tile_rowsize);
}
else
{
readunit = STRIP;
TIFFGetFieldDefaulted(in, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
stsize = TIFFStripSize(in);
nstrips = TIFFNumberOfStrips(in);
buffsize = stsize * nstrips;
if (buffsize < (uint32) (((length * width * spp * bps) + 7) / 8))
{
buffsize = ((length * width * spp * bps) + 7) / 8;
#ifdef DEBUG2
TIFFError("loadImage",
"Stripsize %u is too small, using imagelength * width * spp * bps / 8 = %lu",
stsize, (unsigned long)buffsize);
#endif
}
if (dump->infile != NULL)
dump_info (dump->infile, dump->format, "",
"Stripsize: %u, Number of Strips: %u, Rows per Strip: %u, Scanline size: %u",
stsize, nstrips, rowsperstrip, scanlinesize);
}
if (input_compression == COMPRESSION_JPEG)
{
jpegcolormode = JPEGCOLORMODE_RGB;
TIFFSetField(in, TIFFTAG_JPEGCOLORMODE, JPEGCOLORMODE_RGB);
}
read_buff = *read_ptr;
if (!read_buff)
read_buff = (unsigned char *)_TIFFmalloc(buffsize);
else
{
if (prev_readsize < buffsize)
{
new_buff = _TIFFrealloc(read_buff, buffsize);
if (!new_buff)
{
free (read_buff);
read_buff = (unsigned char *)_TIFFmalloc(buffsize);
}
else
read_buff = new_buff;
}
}
if (!read_buff)
{
TIFFError("loadImage", "Unable to allocate/reallocate read buffer");
return (-1);
}
prev_readsize = buffsize;
*read_ptr = read_buff;
/* N.B. The read functions used copy separate plane data into a buffer as interleaved
* samples rather than separate planes so the same logic works to extract regions
* regardless of the way the data are organized in the input file.
*/
switch (readunit) {
case STRIP:
if (planar == PLANARCONFIG_CONTIG)
{
if (!(readContigStripsIntoBuffer(in, read_buff)))
{
TIFFError("loadImage", "Unable to read contiguous strips into buffer");
return (-1);
}
}
else
{
if (!(readSeparateStripsIntoBuffer(in, read_buff, length, width, spp, dump)))
{
TIFFError("loadImage", "Unable to read separate strips into buffer");
return (-1);
}
}
break;
case TILE:
if (planar == PLANARCONFIG_CONTIG)
{
if (!(readContigTilesIntoBuffer(in, read_buff, length, width, tw, tl, spp, bps)))
{
TIFFError("loadImage", "Unable to read contiguous tiles into buffer");
return (-1);
}
}
else
{
if (!(readSeparateTilesIntoBuffer(in, read_buff, length, width, tw, tl, spp, bps)))
{
TIFFError("loadImage", "Unable to read separate tiles into buffer");
return (-1);
}
}
break;
default: TIFFError("loadImage", "Unsupported image file format");
return (-1);
break;
}
if ((dump->infile != NULL) && (dump->level == 2))
{
dump_info (dump->infile, dump->format, "loadImage",
"Image width %d, length %d, Raw image data, %4d bytes",
width, length, buffsize);
dump_info (dump->infile, dump->format, "",
"Bits per sample %d, Samples per pixel %d", bps, spp);
for (i = 0; i < length; i++)
dump_buffer(dump->infile, dump->format, 1, scanlinesize,
i, read_buff + (i * scanlinesize));
}
return (0);
} /* end loadImage */
static int correct_orientation(struct image_data *image, unsigned char **work_buff_ptr)
{
uint16 mirror, rotation;
unsigned char *work_buff;
work_buff = *work_buff_ptr;
if ((image == NULL) || (work_buff == NULL))
{
TIFFError ("correct_orientatin", "Invalid image or buffer pointer");
return (-1);
}
if ((image->adjustments & MIRROR_HORIZ) || (image->adjustments & MIRROR_VERT))
{
mirror = (uint16)(image->adjustments & MIRROR_BOTH);
if (mirrorImage(image->spp, image->bps, mirror,
image->width, image->length, work_buff))
{
TIFFError ("correct_orientation", "Unable to mirror image");
return (-1);
}
}
if (image->adjustments & ROTATE_ANY)
{
if (image->adjustments & ROTATECW_90)
rotation = (uint16) 90;
else
if (image->adjustments & ROTATECW_180)
rotation = (uint16) 180;
else
if (image->adjustments & ROTATECW_270)
rotation = (uint16) 270;
else
{
TIFFError ("correct_orientation", "Invalid rotation value: %d",
image->adjustments & ROTATE_ANY);
return (-1);
}
if (rotateImage(rotation, image, &image->width, &image->length, work_buff_ptr))
{
TIFFError ("correct_orientation", "Unable to rotate image");
return (-1);
}
image->orientation = ORIENTATION_TOPLEFT;
}
return (0);
} /* end correct_orientation */
/* Extract multiple zones from an image and combine into a single composite image */
static int
extractCompositeRegions(struct image_data *image, struct crop_mask *crop,
unsigned char *read_buff, unsigned char *crop_buff)
{
int shift_width, bytes_per_sample, bytes_per_pixel;
uint32 i, trailing_bits, prev_trailing_bits;
uint32 row, first_row, last_row, first_col, last_col;
uint32 src_rowsize, dst_rowsize, src_offset, dst_offset;
uint32 crop_width, crop_length, img_width, img_length;
uint32 prev_length, prev_width, composite_width;
uint16 bps, spp;
uint8 *src, *dst;
tsample_t count, sample = 0; /* Update to extract one or more samples */
img_width = image->width;
img_length = image->length;
bps = image->bps;
spp = image->spp;
count = spp;
bytes_per_sample = (bps + 7) / 8;
bytes_per_pixel = ((bps * spp) + 7) / 8;
if ((bps % 8) == 0)
shift_width = 0;
else
{
if (bytes_per_pixel < (bytes_per_sample + 1))
shift_width = bytes_per_pixel;
else
shift_width = bytes_per_sample + 1;
}
src = read_buff;
dst = crop_buff;
/* These are setup for adding additional sections */
prev_width = prev_length = 0;
prev_trailing_bits = trailing_bits = 0;
composite_width = crop->combined_width;
crop->combined_width = 0;
crop->combined_length = 0;
for (i = 0; i < crop->selections; i++)
{
/* rows, columns, width, length are expressed in pixels */
first_row = crop->regionlist[i].y1;
last_row = crop->regionlist[i].y2;
first_col = crop->regionlist[i].x1;
last_col = crop->regionlist[i].x2;
crop_width = last_col - first_col + 1;
crop_length = last_row - first_row + 1;
/* These should not be needed for composite images */
crop->regionlist[i].width = crop_width;
crop->regionlist[i].length = crop_length;
crop->regionlist[i].buffptr = crop_buff;
src_rowsize = ((img_width * bps * spp) + 7) / 8;
dst_rowsize = (((crop_width * bps * count) + 7) / 8);
switch (crop->edge_ref)
{
default:
case EDGE_TOP:
case EDGE_BOTTOM:
if ((i > 0) && (crop_width != crop->regionlist[i - 1].width))
{
TIFFError ("extractCompositeRegions",
"Only equal width regions can be combined for -E top or bottom");
return (1);
}
crop->combined_width = crop_width;
crop->combined_length += crop_length;
for (row = first_row; row <= last_row; row++)
{
src_offset = row * src_rowsize;
dst_offset = (row - first_row) * dst_rowsize;
src = read_buff + src_offset;
dst = crop_buff + dst_offset + (prev_length * dst_rowsize);
switch (shift_width)
{
case 0: if (extractContigSamplesBytes (src, dst, img_width, sample,
spp, bps, count, first_col,
last_col + 1))
{
TIFFError("extractCompositeRegions",
"Unable to extract row %d", row);
return (1);
}
break;
case 1: if (bps == 1)
{
if (extractContigSamplesShifted8bits (src, dst, img_width,
sample, spp, bps, count,
first_col, last_col + 1,
prev_trailing_bits))
{
TIFFError("extractCompositeRegions",
"Unable to extract row %d", row);
return (1);
}
break;
}
else
if (extractContigSamplesShifted16bits (src, dst, img_width,
sample, spp, bps, count,
first_col, last_col + 1,
prev_trailing_bits))
{
TIFFError("extractCompositeRegions",
"Unable to extract row %d", row);
return (1);
}
break;
case 2: if (extractContigSamplesShifted24bits (src, dst, img_width,
sample, spp, bps, count,
first_col, last_col + 1,
prev_trailing_bits))
{
TIFFError("extractCompositeRegions",
"Unable to extract row %d", row);
return (1);
}
break;
case 3:
case 4:
case 5: if (extractContigSamplesShifted32bits (src, dst, img_width,
sample, spp, bps, count,
first_col, last_col + 1,
prev_trailing_bits))
{
TIFFError("extractCompositeRegions",
"Unable to extract row %d", row);
return (1);
}
break;
default: TIFFError("extractCompositeRegions", "Unsupported bit depth %d", bps);
return (1);
}
}
prev_length += crop_length;
break;
case EDGE_LEFT: /* splice the pieces of each row together, side by side */
case EDGE_RIGHT:
if ((i > 0) && (crop_length != crop->regionlist[i - 1].length))
{
TIFFError ("extractCompositeRegions",
"Only equal length regions can be combined for -E left or right");
return (1);
}
crop->combined_width += crop_width;
crop->combined_length = crop_length;
dst_rowsize = (((composite_width * bps * count) + 7) / 8);
trailing_bits = (crop_width * bps * count) % 8;
for (row = first_row; row <= last_row; row++)
{
src_offset = row * src_rowsize;
dst_offset = (row - first_row) * dst_rowsize;
src = read_buff + src_offset;
dst = crop_buff + dst_offset + prev_width;
switch (shift_width)
{
case 0: if (extractContigSamplesBytes (src, dst, img_width,
sample, spp, bps, count,
first_col, last_col + 1))
{
TIFFError("extractCompositeRegions",
"Unable to extract row %d", row);
return (1);
}
break;
case 1: if (bps == 1)
{
if (extractContigSamplesShifted8bits (src, dst, img_width,
sample, spp, bps, count,
first_col, last_col + 1,
prev_trailing_bits))
{
TIFFError("extractCompositeRegions",
"Unable to extract row %d", row);
return (1);
}
break;
}
else
if (extractContigSamplesShifted16bits (src, dst, img_width,
sample, spp, bps, count,
first_col, last_col + 1,
prev_trailing_bits))
{
TIFFError("extractCompositeRegions",
"Unable to extract row %d", row);
return (1);
}
break;
case 2: if (extractContigSamplesShifted24bits (src, dst, img_width,
sample, spp, bps, count,
first_col, last_col + 1,
prev_trailing_bits))
{
TIFFError("extractCompositeRegions",
"Unable to extract row %d", row);
return (1);
}
break;
case 3:
case 4:
case 5: if (extractContigSamplesShifted32bits (src, dst, img_width,
sample, spp, bps, count,
first_col, last_col + 1,
prev_trailing_bits))
{
TIFFError("extractCompositeRegions",
"Unable to extract row %d", row);
return (1);
}
break;
default: TIFFError("extractCompositeRegions", "Unsupported bit depth %d", bps);
return (1);
}
}
prev_width += (crop_width * bps * count) / 8;
prev_trailing_bits += trailing_bits;
if (prev_trailing_bits > 7)
prev_trailing_bits-= 8;
break;
}
}
if (crop->combined_width != composite_width)
TIFFError("combineSeparateRegions","Combined width does not match composite width");
return (0);
} /* end extractCompositeRegions */
/* Copy a single region of input buffer to an output buffer.
* The read functions used copy separate plane data into a buffer
* as interleaved samples rather than separate planes so the same
* logic works to extract regions regardless of the way the data
* are organized in the input file. This function can be used to
* extract one or more samples from the input image by updating the
* parameters for starting sample and number of samples to copy in the
* fifth and eighth arguments of the call to extractContigSamples.
* They would be passed as new elements of the crop_mask struct.
*/
static int
extractSeparateRegion(struct image_data *image, struct crop_mask *crop,
unsigned char *read_buff, unsigned char *crop_buff,
int region)
{
int shift_width, prev_trailing_bits = 0;
uint32 bytes_per_sample, bytes_per_pixel;
uint32 src_rowsize, dst_rowsize;
uint32 row, first_row, last_row, first_col, last_col;
uint32 src_offset, dst_offset;
uint32 crop_width, crop_length, img_width, img_length;
uint16 bps, spp;
uint8 *src, *dst;
tsample_t count, sample = 0; /* Update to extract more or more samples */
img_width = image->width;
img_length = image->length;
bps = image->bps;
spp = image->spp;
count = spp;
bytes_per_sample = (bps + 7) / 8;
bytes_per_pixel = ((bps * spp) + 7) / 8;
if ((bps % 8) == 0)
shift_width = 0; /* Byte aligned data only */
else
{
if (bytes_per_pixel < (bytes_per_sample + 1))
shift_width = bytes_per_pixel;
else
shift_width = bytes_per_sample + 1;
}
/* rows, columns, width, length are expressed in pixels */
first_row = crop->regionlist[region].y1;
last_row = crop->regionlist[region].y2;
first_col = crop->regionlist[region].x1;
last_col = crop->regionlist[region].x2;
crop_width = last_col - first_col + 1;
crop_length = last_row - first_row + 1;
crop->regionlist[region].width = crop_width;
crop->regionlist[region].length = crop_length;
crop->regionlist[region].buffptr = crop_buff;
src = read_buff;
dst = crop_buff;
src_rowsize = ((img_width * bps * spp) + 7) / 8;
dst_rowsize = (((crop_width * bps * spp) + 7) / 8);
for (row = first_row; row <= last_row; row++)
{
src_offset = row * src_rowsize;
dst_offset = (row - first_row) * dst_rowsize;
src = read_buff + src_offset;
dst = crop_buff + dst_offset;
switch (shift_width)
{
case 0: if (extractContigSamplesBytes (src, dst, img_width, sample,
spp, bps, count, first_col,
last_col + 1))
{
TIFFError("extractSeparateRegion",
"Unable to extract row %d", row);
return (1);
}
break;
case 1: if (bps == 1)
{
if (extractContigSamplesShifted8bits (src, dst, img_width,
sample, spp, bps, count,
first_col, last_col + 1,
prev_trailing_bits))
{
TIFFError("extractSeparateRegion",
"Unable to extract row %d", row);
return (1);
}
break;
}
else
if (extractContigSamplesShifted16bits (src, dst, img_width,
sample, spp, bps, count,
first_col, last_col + 1,
prev_trailing_bits))
{
TIFFError("extractSeparateRegion",
"Unable to extract row %d", row);
return (1);
}
break;
case 2: if (extractContigSamplesShifted24bits (src, dst, img_width,
sample, spp, bps, count,
first_col, last_col + 1,
prev_trailing_bits))
{
TIFFError("extractSeparateRegion",
"Unable to extract row %d", row);
return (1);
}
break;
case 3:
case 4:
case 5: if (extractContigSamplesShifted32bits (src, dst, img_width,
sample, spp, bps, count,
first_col, last_col + 1,
prev_trailing_bits))
{
TIFFError("extractSeparateRegion",
"Unable to extract row %d", row);
return (1);
}
break;
default: TIFFError("extractSeparateRegion", "Unsupported bit depth %d", bps);
return (1);
}
}
return (0);
} /* end extractSeparateRegion */
static int
extractImageSection(struct image_data *image, struct pageseg *section,
unsigned char *src_buff, unsigned char *sect_buff)
{
unsigned char bytebuff1, bytebuff2;
unsigned char *src, *dst;
uint32 img_width, img_length, img_rowsize;
uint32 j, shift1, shift2, trailing_bits;
uint32 row, first_row, last_row, first_col, last_col;
uint32 src_offset, dst_offset, row_offset, col_offset;
uint32 offset1, offset2, full_bytes;
uint32 sect_width, sect_length;
uint16 bps, spp;
#ifdef DEVELMODE
int k;
unsigned char bitset;
static char *bitarray = NULL;
#endif
img_width = image->width;
img_length = image->length;
bps = image->bps;
spp = image->spp;
src = src_buff;
dst = sect_buff;
src_offset = 0;
dst_offset = 0;
#ifdef DEVELMODE
if (bitarray == NULL)
{
if ((bitarray = (char *)malloc(img_width)) == NULL)
{
TIFFError ("", "DEBUG: Unable to allocate debugging bitarray\n");
return (-1);
}
}
#endif
/* rows, columns, width, length are expressed in pixels */
first_row = section->y1;
last_row = section->y2;
first_col = section->x1;
last_col = section->x2;
sect_width = last_col - first_col + 1;
sect_length = last_row - first_row + 1;
img_rowsize = ((img_width * bps + 7) / 8) * spp;
full_bytes = (sect_width * spp * bps) / 8; /* number of COMPLETE bytes per row in section */
trailing_bits = (sect_width * bps) % 8;
#ifdef DEVELMODE
TIFFError ("", "First row: %d, last row: %d, First col: %d, last col: %d\n",
first_row, last_row, first_col, last_col);
TIFFError ("", "Image width: %d, Image length: %d, bps: %d, spp: %d\n",
img_width, img_length, bps, spp);
TIFFError ("", "Sect width: %d, Sect length: %d, full bytes: %d trailing bits %d\n",
sect_width, sect_length, full_bytes, trailing_bits);
#endif
if ((bps % 8) == 0)
{
col_offset = first_col * spp * bps / 8;
for (row = first_row; row <= last_row; row++)
{
/* row_offset = row * img_width * spp * bps / 8; */
row_offset = row * img_rowsize;
src_offset = row_offset + col_offset;
#ifdef DEVELMODE
TIFFError ("", "Src offset: %8d, Dst offset: %8d\n", src_offset, dst_offset);
#endif
_TIFFmemcpy (sect_buff + dst_offset, src_buff + src_offset, full_bytes);
dst_offset += full_bytes;
}
}
else
{ /* bps != 8 */
shift1 = spp * ((first_col * bps) % 8);
shift2 = spp * ((last_col * bps) % 8);
for (row = first_row; row <= last_row; row++)
{
/* pull out the first byte */
row_offset = row * img_rowsize;
offset1 = row_offset + (first_col * bps / 8);
offset2 = row_offset + (last_col * bps / 8);
#ifdef DEVELMODE
for (j = 0, k = 7; j < 8; j++, k--)
{
bitset = *(src_buff + offset1) & (((unsigned char)1 << k)) ? 1 : 0;
sprintf(&bitarray[j], (bitset) ? "1" : "0");
}
sprintf(&bitarray[8], " ");
sprintf(&bitarray[9], " ");
for (j = 10, k = 7; j < 18; j++, k--)
{
bitset = *(src_buff + offset2) & (((unsigned char)1 << k)) ? 1 : 0;
sprintf(&bitarray[j], (bitset) ? "1" : "0");
}
bitarray[18] = '\0';
TIFFError ("", "Row: %3d Offset1: %d, Shift1: %d, Offset2: %d, Shift2: %d\n",
row, offset1, shift1, offset2, shift2);
#endif
bytebuff1 = bytebuff2 = 0;
if (shift1 == 0) /* the region is byte and sample alligned */
{
_TIFFmemcpy (sect_buff + dst_offset, src_buff + offset1, full_bytes);
#ifdef DEVELMODE
TIFFError ("", " Alligned data src offset1: %8d, Dst offset: %8d\n", offset1, dst_offset);
sprintf(&bitarray[18], "\n");
sprintf(&bitarray[19], "\t");
for (j = 20, k = 7; j < 28; j++, k--)
{
bitset = *(sect_buff + dst_offset) & (((unsigned char)1 << k)) ? 1 : 0;
sprintf(&bitarray[j], (bitset) ? "1" : "0");
}
bitarray[28] = ' ';
bitarray[29] = ' ';
#endif
dst_offset += full_bytes;
if (trailing_bits != 0)
{
bytebuff2 = src_buff[offset2] & ((unsigned char)255 << (7 - shift2));
sect_buff[dst_offset] = bytebuff2;
#ifdef DEVELMODE
TIFFError ("", " Trailing bits src offset: %8d, Dst offset: %8d\n",
offset2, dst_offset);
for (j = 30, k = 7; j < 38; j++, k--)
{
bitset = *(sect_buff + dst_offset) & (((unsigned char)1 << k)) ? 1 : 0;
sprintf(&bitarray[j], (bitset) ? "1" : "0");
}
bitarray[38] = '\0';
TIFFError ("", "\tFirst and last bytes before and after masking:\n\t%s\n\n", bitarray);
#endif
dst_offset++;
}
}
else /* each destination byte will have to be built from two source bytes*/
{
#ifdef DEVELMODE
TIFFError ("", " Unalligned data src offset: %8d, Dst offset: %8d\n", offset1 , dst_offset);
#endif
for (j = 0; j <= full_bytes; j++)
{
bytebuff1 = src_buff[offset1 + j] & ((unsigned char)255 >> shift1);
bytebuff2 = src_buff[offset1 + j + 1] & ((unsigned char)255 << (7 - shift1));
sect_buff[dst_offset + j] = (bytebuff1 << shift1) | (bytebuff2 >> (8 - shift1));
}
#ifdef DEVELMODE
sprintf(&bitarray[18], "\n");
sprintf(&bitarray[19], "\t");
for (j = 20, k = 7; j < 28; j++, k--)
{
bitset = *(sect_buff + dst_offset) & (((unsigned char)1 << k)) ? 1 : 0;
sprintf(&bitarray[j], (bitset) ? "1" : "0");
}
bitarray[28] = ' ';
bitarray[29] = ' ';
#endif
dst_offset += full_bytes;
if (trailing_bits != 0)
{
#ifdef DEVELMODE
TIFFError ("", " Trailing bits src offset: %8d, Dst offset: %8d\n", offset1 + full_bytes, dst_offset);
#endif
if (shift2 > shift1)
{
bytebuff1 = src_buff[offset1 + full_bytes] & ((unsigned char)255 << (7 - shift2));
bytebuff2 = bytebuff1 & ((unsigned char)255 << shift1);
sect_buff[dst_offset] = bytebuff2;
#ifdef DEVELMODE
TIFFError ("", " Shift2 > Shift1\n");
#endif
}
else
{
if (shift2 < shift1)
{
bytebuff2 = ((unsigned char)255 << (shift1 - shift2 - 1));
sect_buff[dst_offset] &= bytebuff2;
#ifdef DEVELMODE
TIFFError ("", " Shift2 < Shift1\n");
#endif
}
#ifdef DEVELMODE
else
TIFFError ("", " Shift2 == Shift1\n");
#endif
}
}
#ifdef DEVELMODE
sprintf(&bitarray[28], " ");
sprintf(&bitarray[29], " ");
for (j = 30, k = 7; j < 38; j++, k--)
{
bitset = *(sect_buff + dst_offset) & (((unsigned char)1 << k)) ? 1 : 0;
sprintf(&bitarray[j], (bitset) ? "1" : "0");
}
bitarray[38] = '\0';
TIFFError ("", "\tFirst and last bytes before and after masking:\n\t%s\n\n", bitarray);
#endif
dst_offset++;
}
}
}
return (0);
} /* end extractImageSection */
static int
writeSelections(TIFF *in, TIFF **out, struct crop_mask *crop,
struct image_data *image, struct dump_opts *dump,
struct buffinfo seg_buffs[], char *mp, char *filename,
unsigned int *page, unsigned int total_pages)
{
int i, page_count;
int autoindex = 0;
unsigned char *crop_buff = NULL;
/* Where we open a new file depends on the export mode */
switch (crop->exp_mode)
{
case ONE_FILE_COMPOSITE: /* Regions combined into single image */
autoindex = 0;
crop_buff = seg_buffs[0].buffer;
if (update_output_file (out, mp, autoindex, filename, page))
return (1);
page_count = total_pages;
if (writeCroppedImage(in, *out, image, dump,
crop->combined_width,
crop->combined_length,
crop_buff, *page, total_pages))
{
TIFFError("writeRegions", "Unable to write new image");
return (-1);
}
break;
case ONE_FILE_SEPARATED: /* Regions as separated images */
autoindex = 0;
if (update_output_file (out, mp, autoindex, filename, page))
return (1);
page_count = crop->selections * total_pages;
for (i = 0; i < crop->selections; i++)
{
crop_buff = seg_buffs[i].buffer;
if (writeCroppedImage(in, *out, image, dump,
crop->regionlist[i].width,
crop->regionlist[i].length,
crop_buff, *page, page_count))
{
TIFFError("writeRegions", "Unable to write new image");
return (-1);
}
}
break;
case FILE_PER_IMAGE_COMPOSITE: /* Regions as composite image */
autoindex = 1;
if (update_output_file (out, mp, autoindex, filename, page))
return (1);
crop_buff = seg_buffs[0].buffer;
if (writeCroppedImage(in, *out, image, dump,
crop->combined_width,
crop->combined_length,
crop_buff, *page, total_pages))
{
TIFFError("writeRegions", "Unable to write new image");
return (-1);
}
break;
case FILE_PER_IMAGE_SEPARATED: /* Regions as separated images */
autoindex = 1;
page_count = crop->selections;
if (update_output_file (out, mp, autoindex, filename, page))
return (1);
for (i = 0; i < crop->selections; i++)
{
crop_buff = seg_buffs[i].buffer;
/* Write the current region to the current file */
if (writeCroppedImage(in, *out, image, dump,
crop->regionlist[i].width,
crop->regionlist[i].length,
crop_buff, *page, page_count))
{
TIFFError("writeRegions", "Unable to write new image");
return (-1);
}
}
break;
case FILE_PER_SELECTION:
autoindex = 1;
page_count = 1;
for (i = 0; i < crop->selections; i++)
{
if (update_output_file (out, mp, autoindex, filename, page))
return (1);
crop_buff = seg_buffs[i].buffer;
/* Write the current region to the current file */
if (writeCroppedImage(in, *out, image, dump,
crop->regionlist[i].width,
crop->regionlist[i].length,
crop_buff, *page, page_count))
{
TIFFError("writeRegions", "Unable to write new image");
return (-1);
}
}
break;
default: return (1);
}
return (0);
} /* end writeRegions */
static int
writeImageSections(TIFF *in, TIFF *out, struct image_data *image,
struct pagedef *page, struct pageseg *sections,
struct dump_opts * dump, unsigned char *src_buff,
unsigned char **sect_buff_ptr)
{
double hres, vres;
uint32 i, k, width, length, sectsize;
unsigned char *sect_buff = *sect_buff_ptr;
hres = page->hres;
vres = page->vres;
k = page->cols * page->rows;
if ((k < 1) || (k > MAX_SECTIONS))
{
TIFFError("writeImageSections",
"%d Rows and Columns exceed maximum sections\nIncrease resolution or reduce sections", k);
return (-1);
}
for (i = 0; i < k; i++)
{
width = sections[i].x2 - sections[i].x1 + 1;
length = sections[i].y2 - sections[i].y1 + 1;
sectsize = (uint32)
ceil((width * image->bps + 7) / (double)8) * image->spp * length;
/* allocate a buffer if we don't have one already */
if (createImageSection(sectsize, sect_buff_ptr))
{
TIFFError("writeImageSections", "Unable to allocate section buffer");
exit (-1);
}
sect_buff = *sect_buff_ptr;
if (extractImageSection (image, §ions[i], src_buff, sect_buff))
{
TIFFError("writeImageSections", "Unable to extract image sections");
exit (-1);
}
/* call the write routine here instead of outside the loop */
if (writeSingleSection(in, out, image, dump, width, length, hres, vres, sect_buff))
{
TIFFError("writeImageSections", "Unable to write image section");
exit (-1);
}
}
return (0);
} /* end writeImageSections */
/* Code in this function is heavily indebted to code in tiffcp
* with modifications by Richard Nolde to handle orientation correctly.
* It will have to be updated significantly if support is added to
* extract one or more samples from original image since the
* original code assumes we are always copying all samples.
*/
static int
writeSingleSection(TIFF *in, TIFF *out, struct image_data *image,
struct dump_opts *dump, uint32 width, uint32 length,
double hres, double vres,
unsigned char *sect_buff)
{
uint16 bps, spp;
uint16 input_compression, input_photometric;
uint16 input_jpeg_colormode, input_planar;
struct cpTag* p;
TIFFGetField(in, TIFFTAG_PHOTOMETRIC, &input_photometric);
TIFFGetField(in, TIFFTAG_PHOTOMETRIC, &spp);
TIFFGetField(in, TIFFTAG_PHOTOMETRIC, &bps);
TIFFSetField(out, TIFFTAG_IMAGEWIDTH, width);
TIFFSetField(out, TIFFTAG_IMAGELENGTH, length);
CopyField(TIFFTAG_BITSPERSAMPLE, bps);
CopyField(TIFFTAG_SAMPLESPERPIXEL, spp);
TIFFGetField(in, TIFFTAG_COMPRESSION, &input_compression);
/* This is the global variable compression which is set
* if the user has specified a command line option for
* a compression option. Should be passed around in one
* of the parameters instead of as a global. If no user
* option specified it will still be (uint16) -1. */
if (compression != (uint16)-1)
TIFFSetField(out, TIFFTAG_COMPRESSION, compression);
else
{ /* OJPEG is no longer supported for writing so upgrade to JPEG */
if (input_compression == COMPRESSION_OJPEG)
{
TIFFSetField(out, TIFFTAG_COMPRESSION, COMPRESSION_JPEG);
compression = COMPRESSION_JPEG;
}
else /* Use the compression from the input file */
CopyField(TIFFTAG_COMPRESSION, compression);
}
TIFFGetField(in, TIFFTAG_JPEGCOLORMODE, &input_jpeg_colormode);
#ifdef DEBUG2
TIFFError("writeSingleSection", "Input compression: %s",
(input_compression == COMPRESSION_OJPEG) ? "Old Jpeg" :
((input_compression == COMPRESSION_JPEG) ? "New Jpeg" : "Non Jpeg"));
#endif
if (compression == COMPRESSION_JPEG)
{
if ((input_photometric == PHOTOMETRIC_PALETTE) || /* color map indexed */
(input_photometric == PHOTOMETRIC_MASK)) /* $holdout mask */
{
TIFFError ("writeSingleSection",
"JPEG compression cannot be used with %s image data",
(input_photometric == PHOTOMETRIC_PALETTE) ?
"palette" : "mask");
return (-1);
}
if (input_photometric == PHOTOMETRIC_RGB)
{
if (jpegcolormode == JPEGCOLORMODE_RGB)
TIFFSetField(out, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_YCBCR);
else
TIFFSetField(out, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_RGB);
}
else
TIFFSetField(out, TIFFTAG_PHOTOMETRIC, input_photometric);
}
else
{
if (compression == COMPRESSION_SGILOG || compression == COMPRESSION_SGILOG24)
TIFFSetField(out, TIFFTAG_PHOTOMETRIC, spp == 1 ?
PHOTOMETRIC_LOGL : PHOTOMETRIC_LOGLUV);
else
TIFFSetField(out, TIFFTAG_PHOTOMETRIC, image->photometric);
}
#ifdef DEBUG2
TIFFError("writeSingleSection", "Input photometric: %s",
(input_photmetric == PHOTMETRIC_RGB) ? "RGB" :
((input_photometric == PHOTOMETRIC_YCBCR) ? "YCbCr" : "Not RGB or YCrCr"));
#endif
if (((input_photometric == PHOTOMETRIC_LOGL) ||
(input_photometric == PHOTOMETRIC_LOGLUV)) &&
((compression != COMPRESSION_SGILOG) &&
(compression != COMPRESSION_SGILOG24)))
{
TIFFError("writeCroppedImage",
"LogL and LogLuv source data require SGI_LOG or SGI_LOG24 compression");
return (-1);
}
if (fillorder != 0)
TIFFSetField(out, TIFFTAG_FILLORDER, fillorder);
else
CopyTag(TIFFTAG_FILLORDER, 1, TIFF_SHORT);
/* The loadimage function reads input orientation and sets
* image->orientation. The correct_image_orientation function
* applies the required rotation and mirror operations to
* present the data in TOPLEFT orientation and updates
* image->orientation if any transforms are performed,
* as per EXIF standard.
*/
TIFFSetField(out, TIFFTAG_ORIENTATION, image->orientation);
/*
* Choose tiles/strip for the output image according to
* the command line arguments (-tiles, -strips) and the
* structure of the input image.
*/
if (outtiled == -1)
outtiled = TIFFIsTiled(in);
if (outtiled) {
/*
* Setup output file's tile width&height. If either
* is not specified, use either the value from the
* input image or, if nothing is defined, use the
* library default.
*/
if (tilewidth == (uint32) 0)
TIFFGetField(in, TIFFTAG_TILEWIDTH, &tilewidth);
if (tilelength == (uint32) 0)
TIFFGetField(in, TIFFTAG_TILELENGTH, &tilelength);
if (tilewidth == 0 || tilelength == 0)
TIFFDefaultTileSize(out, &tilewidth, &tilelength);
TIFFDefaultTileSize(out, &tilewidth, &tilelength);
TIFFSetField(out, TIFFTAG_TILEWIDTH, tilewidth);
TIFFSetField(out, TIFFTAG_TILELENGTH, tilelength);
} else {
/*
* RowsPerStrip is left unspecified: use either the
* value from the input image or, if nothing is defined,
* use the library default.
*/
if (rowsperstrip == (uint32) 0)
{
if (!TIFFGetField(in, TIFFTAG_ROWSPERSTRIP, &rowsperstrip))
rowsperstrip = TIFFDefaultStripSize(out, rowsperstrip);
if (compression != COMPRESSION_JPEG)
{
if (rowsperstrip > length)
rowsperstrip = length;
}
}
else
if (rowsperstrip == (uint32) -1)
rowsperstrip = length;
TIFFSetField(out, TIFFTAG_ROWSPERSTRIP, rowsperstrip);
}
TIFFGetFieldDefaulted(in, TIFFTAG_PLANARCONFIG, &input_planar);
if (config != (uint16) -1)
TIFFSetField(out, TIFFTAG_PLANARCONFIG, config);
else
CopyField(TIFFTAG_PLANARCONFIG, config);
if (spp <= 4)
CopyTag(TIFFTAG_TRANSFERFUNCTION, 4, TIFF_SHORT);
CopyTag(TIFFTAG_COLORMAP, 4, TIFF_SHORT);
/* SMinSampleValue & SMaxSampleValue */
switch (compression) {
/* These are references to GLOBAL variables set by defaults
* and /or the compression flag
*/
case COMPRESSION_JPEG:
if (((bps % 8) == 0) || ((bps % 12) == 0))
{
TIFFSetField(out, TIFFTAG_JPEGQUALITY, quality);
TIFFSetField(out, TIFFTAG_JPEGCOLORMODE, JPEGCOLORMODE_RGB);
}
else
{
TIFFError("writeCroppedImage",
"JPEG compression requires 8 or 12 bits per sample");
return (-1);
}
break;
case COMPRESSION_LZW:
case COMPRESSION_ADOBE_DEFLATE:
case COMPRESSION_DEFLATE:
if (predictor != (uint16)-1)
TIFFSetField(out, TIFFTAG_PREDICTOR, predictor);
else
CopyField(TIFFTAG_PREDICTOR, predictor);
break;
case COMPRESSION_CCITTFAX3:
case COMPRESSION_CCITTFAX4:
if (compression == COMPRESSION_CCITTFAX3) {
if (g3opts != (uint32) -1)
TIFFSetField(out, TIFFTAG_GROUP3OPTIONS, g3opts);
else
CopyField(TIFFTAG_GROUP3OPTIONS, g3opts);
} else
CopyTag(TIFFTAG_GROUP4OPTIONS, 1, TIFF_LONG);
CopyTag(TIFFTAG_BADFAXLINES, 1, TIFF_LONG);
CopyTag(TIFFTAG_CLEANFAXDATA, 1, TIFF_LONG);
CopyTag(TIFFTAG_CONSECUTIVEBADFAXLINES, 1, TIFF_LONG);
CopyTag(TIFFTAG_FAXRECVPARAMS, 1, TIFF_LONG);
CopyTag(TIFFTAG_FAXRECVTIME, 1, TIFF_LONG);
CopyTag(TIFFTAG_FAXSUBADDRESS, 1, TIFF_ASCII);
break;
}
{ uint32 len32;
void** data;
if (TIFFGetField(in, TIFFTAG_ICCPROFILE, &len32, &data))
TIFFSetField(out, TIFFTAG_ICCPROFILE, len32, data);
}
{ uint16 ninks;
const char* inknames;
if (TIFFGetField(in, TIFFTAG_NUMBEROFINKS, &ninks)) {
TIFFSetField(out, TIFFTAG_NUMBEROFINKS, ninks);
if (TIFFGetField(in, TIFFTAG_INKNAMES, &inknames)) {
int inknameslen = strlen(inknames) + 1;
const char* cp = inknames;
while (ninks > 1) {
cp = strchr(cp, '\0');
if (cp) {
cp++;
inknameslen += (strlen(cp) + 1);
}
ninks--;
}
TIFFSetField(out, TIFFTAG_INKNAMES, inknameslen, inknames);
}
}
}
{
unsigned short pg0, pg1;
if (TIFFGetField(in, TIFFTAG_PAGENUMBER, &pg0, &pg1)) {
if (pageNum < 0) /* only one input file */
TIFFSetField(out, TIFFTAG_PAGENUMBER, pg0, pg1);
else
TIFFSetField(out, TIFFTAG_PAGENUMBER, pageNum++, 0);
}
}
for (p = tags; p < &tags[NTAGS]; p++)
CopyTag(p->tag, p->count, p->type);
/* Update these since they are overwritten from input res by loop above */
TIFFSetField(out, TIFFTAG_XRESOLUTION, (float)hres);
TIFFSetField(out, TIFFTAG_YRESOLUTION, (float)vres);
/* Compute the tile or strip dimensions and write to disk */
if (outtiled)
{
if (config == PLANARCONFIG_CONTIG)
writeBufferToContigTiles (out, sect_buff, length, width, spp, dump);
else
writeBufferToSeparateTiles (out, sect_buff, length, width, spp, dump);
}
else
{
if (config == PLANARCONFIG_CONTIG)
writeBufferToContigStrips (out, sect_buff, length);
else
writeBufferToSeparateStrips(out, sect_buff, length, width, spp, dump);
}
if (!TIFFWriteDirectory(out))
{
TIFFClose(out);
return (-1);
}
return (0);
} /* end writeSingleSection */
/* Create a buffer to write one section at a time */
static int
createImageSection(uint32 sectsize, unsigned char **sect_buff_ptr)
{
unsigned char *sect_buff = NULL;
unsigned char *new_buff = NULL;
static uint32 prev_sectsize = 0;
sect_buff = *sect_buff_ptr;
if (!sect_buff)
{
sect_buff = (unsigned char *)_TIFFmalloc(sectsize);
*sect_buff_ptr = sect_buff;
_TIFFmemset(sect_buff, 0, sectsize);
}
else
{
if (prev_sectsize < sectsize)
{
new_buff = _TIFFrealloc(sect_buff, sectsize);
if (!new_buff)
{
free (sect_buff);
sect_buff = (unsigned char *)_TIFFmalloc(sectsize);
}
else
sect_buff = new_buff;
_TIFFmemset(sect_buff, 0, sectsize);
}
}
if (!sect_buff)
{
TIFFError("createImageSection", "Unable to allocate/reallocate section buffer");
return (-1);
}
prev_sectsize = sectsize;
*sect_buff_ptr = sect_buff;
return (0);
} /* end createImageSection */
/* Process selections defined by regions, zones, margins, or fixed sized areas */
static int
processCropSelections(struct image_data *image, struct crop_mask *crop,
unsigned char **read_buff_ptr, struct buffinfo seg_buffs[])
{
int i;
uint32 width, length, total_width, total_length;
tsize_t cropsize;
unsigned char *crop_buff = NULL;
unsigned char *read_buff = NULL;
unsigned char *next_buff = NULL;
tsize_t prev_cropsize = 0;
read_buff = *read_buff_ptr;
if (crop->img_mode == COMPOSITE_IMAGES)
{
cropsize = crop->bufftotal;
crop_buff = seg_buffs[0].buffer;
if (!crop_buff)
crop_buff = (unsigned char *)_TIFFmalloc(cropsize);
else
{
prev_cropsize = seg_buffs[0].size;
if (prev_cropsize < cropsize)
{
next_buff = _TIFFrealloc(crop_buff, cropsize);
if (! next_buff)
{
_TIFFfree (crop_buff);
crop_buff = (unsigned char *)_TIFFmalloc(cropsize);
}
else
crop_buff = next_buff;
}
}
if (!crop_buff)
{
TIFFError("processCropSelections", "Unable to allocate/reallocate crop buffer");
return (-1);
}
_TIFFmemset(crop_buff, 0, cropsize);
seg_buffs[0].buffer = crop_buff;
seg_buffs[0].size = cropsize;
/* Checks for matching width or length as required */
if (extractCompositeRegions(image, crop, read_buff, crop_buff) != 0)
return (1);
if (crop->crop_mode & CROP_INVERT)
{
switch (crop->photometric)
{
/* Just change the interpretation */
case PHOTOMETRIC_MINISWHITE:
case PHOTOMETRIC_MINISBLACK:
image->photometric = crop->photometric;
break;
case INVERT_DATA_ONLY:
case INVERT_DATA_AND_TAG:
if (invertImage(image->photometric, image->spp, image->bps,
crop->combined_width, crop->combined_length, crop_buff))
{
TIFFError("processCropSelections",
"Failed to invert colorspace for composite regions");
return (-1);
}
if (crop->photometric == INVERT_DATA_AND_TAG)
{
switch (image->photometric)
{
case PHOTOMETRIC_MINISWHITE:
image->photometric = PHOTOMETRIC_MINISBLACK;
break;
case PHOTOMETRIC_MINISBLACK:
image->photometric = PHOTOMETRIC_MINISWHITE;
break;
default:
break;
}
}
break;
default: break;
}
}
/* Mirror and Rotate will not work with multiple regions unless they are the same width */
if (crop->crop_mode & CROP_MIRROR)
{
if (mirrorImage(image->spp, image->bps, crop->mirror,
crop->combined_width, crop->combined_length, crop_buff))
{
TIFFError("processCropSelections", "Failed to mirror composite regions %s",
(crop->rotation == MIRROR_HORIZ) ? "horizontally" : "vertically");
return (-1);
}
}
if (crop->crop_mode & CROP_ROTATE) /* rotate should be last as it can reallocate the buffer */
{
if (rotateImage(crop->rotation, image, &crop->combined_width,
&crop->combined_length, &crop_buff))
{
TIFFError("processCropSelections",
"Failed to rotate composite regions by %d degrees", crop->rotation);
return (-1);
}
seg_buffs[0].buffer = crop_buff;
seg_buffs[0].size = (((crop->combined_width * image->bps + 7 ) / 8)
* image->spp) * crop->combined_length;
}
}
else /* Separated Images */
{
total_width = total_length = 0;
for (i = 0; i < crop->selections; i++)
{
cropsize = crop->bufftotal;
crop_buff = seg_buffs[i].buffer;
if (!crop_buff)
crop_buff = (unsigned char *)_TIFFmalloc(cropsize);
else
{
prev_cropsize = seg_buffs[0].size;
if (prev_cropsize < cropsize)
{
next_buff = _TIFFrealloc(crop_buff, cropsize);
if (! next_buff)
{
_TIFFfree (crop_buff);
crop_buff = (unsigned char *)_TIFFmalloc(cropsize);
}
else
crop_buff = next_buff;
}
}
if (!crop_buff)
{
TIFFError("processCropSelections", "Unable to allocate/reallocate crop buffer");
return (-1);
}
_TIFFmemset(crop_buff, 0, cropsize);
seg_buffs[i].buffer = crop_buff;
seg_buffs[i].size = cropsize;
if (extractSeparateRegion(image, crop, read_buff, crop_buff, i))
{
TIFFError("processCropSelections", "Unable to extract cropped region %d from image", i);
return (-1);
}
width = crop->regionlist[i].width;
length = crop->regionlist[i].length;
if (crop->crop_mode & CROP_INVERT)
{
switch (crop->photometric)
{
/* Just change the interpretation */
case PHOTOMETRIC_MINISWHITE:
case PHOTOMETRIC_MINISBLACK:
image->photometric = crop->photometric;
break;
case INVERT_DATA_ONLY:
case INVERT_DATA_AND_TAG:
if (invertImage(image->photometric, image->spp, image->bps,
width, length, crop_buff))
{
TIFFError("processCropSelections",
"Failed to invert colorspace for region");
return (-1);
}
if (crop->photometric == INVERT_DATA_AND_TAG)
{
switch (image->photometric)
{
case PHOTOMETRIC_MINISWHITE:
image->photometric = PHOTOMETRIC_MINISBLACK;
break;
case PHOTOMETRIC_MINISBLACK:
image->photometric = PHOTOMETRIC_MINISWHITE;
break;
default:
break;
}
}
break;
default: break;
}
}
if (crop->crop_mode & CROP_MIRROR)
{
if (mirrorImage(image->spp, image->bps, crop->mirror,
width, length, crop_buff))
{
TIFFError("processCropSelections", "Failed to mirror crop region %s",
(crop->rotation == MIRROR_HORIZ) ? "horizontally" : "vertically");
return (-1);
}
}
if (crop->crop_mode & CROP_ROTATE) /* rotate should be last as it can reallocate the buffer */
{
if (rotateImage(crop->rotation, image, &crop->regionlist[i].width,
&crop->regionlist[i].length, &crop_buff))
{
TIFFError("processCropSelections",
"Failed to rotate crop region by %d degrees", crop->rotation);
return (-1);
}
total_width += crop->regionlist[i].width;
total_length += crop->regionlist[i].length;
crop->combined_width = total_width;
crop->combined_length = total_length;
seg_buffs[i].buffer = crop_buff;
seg_buffs[i].size = (((crop->regionlist[i].width * image->bps + 7 ) / 8)
* image->spp) * crop->regionlist[i].length;
}
}
}
return (0);
} /* end processCropSelections */
/* Copy the crop section of the data from the current image into a buffer
* and adjust the IFD values to reflect the new size. If no cropping is
* required, use the origial read buffer as the crop buffer.
*
* There is quite a bit of redundancy between this routine and the more
* specialized processCropSelections, but this provides
* the most optimized path when no Zones or Regions are required.
*/
static int
createCroppedImage(struct image_data *image, struct crop_mask *crop,
unsigned char **read_buff_ptr, unsigned char **crop_buff_ptr)
{
tsize_t cropsize;
unsigned char *read_buff = NULL;
unsigned char *crop_buff = NULL;
unsigned char *new_buff = NULL;
static tsize_t prev_cropsize = 0;
read_buff = *read_buff_ptr;
/* process full image, no crop buffer needed */
crop_buff = read_buff;
*crop_buff_ptr = read_buff;
crop->combined_width = image->width;
crop->combined_length = image->length;
cropsize = crop->bufftotal;
crop_buff = *crop_buff_ptr;
if (!crop_buff)
{
crop_buff = (unsigned char *)_TIFFmalloc(cropsize);
*crop_buff_ptr = crop_buff;
_TIFFmemset(crop_buff, 0, cropsize);
prev_cropsize = cropsize;
}
else
{
if (prev_cropsize < cropsize)
{
new_buff = _TIFFrealloc(crop_buff, cropsize);
if (!new_buff)
{
free (crop_buff);
crop_buff = (unsigned char *)_TIFFmalloc(cropsize);
}
else
crop_buff = new_buff;
_TIFFmemset(crop_buff, 0, cropsize);
}
}
if (!crop_buff)
{
TIFFError("createCroppedImage", "Unable to allocate/reallocate crop buffer");
return (-1);
}
*crop_buff_ptr = crop_buff;
if (crop->crop_mode & CROP_INVERT)
{
switch (crop->photometric)
{
/* Just change the interpretation */
case PHOTOMETRIC_MINISWHITE:
case PHOTOMETRIC_MINISBLACK:
image->photometric = crop->photometric;
break;
case INVERT_DATA_ONLY:
case INVERT_DATA_AND_TAG:
if (invertImage(image->photometric, image->spp, image->bps,
crop->combined_width, crop->combined_length, crop_buff))
{
TIFFError("createCroppedImage",
"Failed to invert colorspace for image or cropped selection");
return (-1);
}
if (crop->photometric == INVERT_DATA_AND_TAG)
{
switch (image->photometric)
{
case PHOTOMETRIC_MINISWHITE:
image->photometric = PHOTOMETRIC_MINISBLACK;
break;
case PHOTOMETRIC_MINISBLACK:
image->photometric = PHOTOMETRIC_MINISWHITE;
break;
default:
break;
}
}
break;
default: break;
}
}
if (crop->crop_mode & CROP_MIRROR)
{
if (mirrorImage(image->spp, image->bps, crop->mirror,
crop->combined_width, crop->combined_length, crop_buff))
{
TIFFError("createCroppedImage", "Failed to mirror image or cropped selection %s",
(crop->rotation == MIRROR_HORIZ) ? "horizontally" : "vertically");
return (-1);
}
}
if (crop->crop_mode & CROP_ROTATE) /* rotate should be last as it can reallocate the buffer */
{
if (rotateImage(crop->rotation, image, &crop->combined_width,
&crop->combined_length, crop_buff_ptr))
{
TIFFError("createCroppedImage",
"Failed to rotate image or cropped selection by %d degrees", crop->rotation);
return (-1);
}
}
if (crop_buff == read_buff) /* we used the read buffer for the crop buffer */
*read_buff_ptr = NULL; /* so we don't try to free it later */
return (0);
} /* end createCroppedImage */
/* Code in this function is heavily indebted to code in tiffcp
* with modifications by Richard Nolde to handle orientation correctly.
* It will have to be updated significantly if support is added to
* extract one or more samples from original image since the
* original code assumes we are always copying all samples.
* Use of global variables for config, compression and others
* should be replaced by addition to the crop_mask struct (which
* will be renamed to proc_opts indicating that is controlls
* user supplied processing options, not just cropping) and
* then passed in as an argument.
*/
static int
writeCroppedImage(TIFF *in, TIFF *out, struct image_data *image,
struct dump_opts *dump, uint32 width, uint32 length,
unsigned char *crop_buff, int pagenum, int total_pages)
{
uint16 bps, spp;
uint16 input_compression, input_photometric;
uint16 input_jpeg_colormode, input_planar;
struct cpTag* p;
TIFFGetField(in, TIFFTAG_PHOTOMETRIC, &input_photometric);
TIFFGetField(in, TIFFTAG_PHOTOMETRIC, &spp);
TIFFGetField(in, TIFFTAG_PHOTOMETRIC, &bps);
TIFFSetField(out, TIFFTAG_IMAGEWIDTH, width);
TIFFSetField(out, TIFFTAG_IMAGELENGTH, length);
CopyField(TIFFTAG_BITSPERSAMPLE, bps);
CopyField(TIFFTAG_SAMPLESPERPIXEL, spp);
TIFFGetField(in, TIFFTAG_COMPRESSION, &input_compression);
if (compression != (uint16)-1)
TIFFSetField(out, TIFFTAG_COMPRESSION, compression);
else
{
if (input_compression == COMPRESSION_OJPEG)
{
TIFFSetField(out, TIFFTAG_COMPRESSION, COMPRESSION_JPEG);
compression = COMPRESSION_JPEG;
}
else
CopyField(TIFFTAG_COMPRESSION, compression);
}
TIFFGetField(in, TIFFTAG_JPEGCOLORMODE, &input_jpeg_colormode);
#ifdef DEBUG2
TIFFError("writeCroppedImage", "Input compression: %s",
(input_compression == COMPRESSION_OJPEG) ? "Old Jpeg" :
((input_compression == COMPRESSION_JPEG) ? "New Jpeg" : "Non Jpeg"));
#endif
if (compression == COMPRESSION_JPEG)
{
if ((input_photometric == PHOTOMETRIC_PALETTE) || /* color map indexed */
(input_photometric == PHOTOMETRIC_MASK)) /* $holdout mask */
{
TIFFError ("writeCroppedImage",
"JPEG compression cannot be used with %s image data",
(input_photometric == PHOTOMETRIC_PALETTE) ?
"palette" : "mask");
return (-1);
}
if (input_photometric == PHOTOMETRIC_RGB)
{
if (jpegcolormode == JPEGCOLORMODE_RGB)
TIFFSetField(out, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_YCBCR);
else
TIFFSetField(out, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_RGB);
}
else
TIFFSetField(out, TIFFTAG_PHOTOMETRIC, input_photometric);
}
else
{
if (compression == COMPRESSION_SGILOG || compression == COMPRESSION_SGILOG24)
{
TIFFSetField(out, TIFFTAG_PHOTOMETRIC, spp == 1 ?
PHOTOMETRIC_LOGL : PHOTOMETRIC_LOGLUV);
}
else
{
if (input_compression == COMPRESSION_SGILOG ||
input_compression == COMPRESSION_SGILOG24)
{
TIFFSetField(out, TIFFTAG_PHOTOMETRIC, spp == 1 ?
PHOTOMETRIC_LOGL : PHOTOMETRIC_LOGLUV);
}
else
TIFFSetField(out, TIFFTAG_PHOTOMETRIC, image->photometric);
}
}
if (((input_photometric == PHOTOMETRIC_LOGL) ||
(input_photometric == PHOTOMETRIC_LOGLUV)) &&
((compression != COMPRESSION_SGILOG) &&
(compression != COMPRESSION_SGILOG24)))
{
TIFFError("writeCroppedImage",
"LogL and LogLuv source data require SGI_LOG or SGI_LOG24 compression");
return (-1);
}
if (fillorder != 0)
TIFFSetField(out, TIFFTAG_FILLORDER, fillorder);
else
CopyTag(TIFFTAG_FILLORDER, 1, TIFF_SHORT);
/* The loadimage function reads input orientation and sets
* image->orientation. The correct_image_orientation function
* applies the required rotation and mirror operations to
* present the data in TOPLEFT orientation and updates
* image->orientation if any transforms are performed,
* as per EXIF standard.
*/
TIFFSetField(out, TIFFTAG_ORIENTATION, image->orientation);
/*
* Choose tiles/strip for the output image according to
* the command line arguments (-tiles, -strips) and the
* structure of the input image.
*/
if (outtiled == -1)
outtiled = TIFFIsTiled(in);
if (outtiled) {
/*
* Setup output file's tile width&height. If either
* is not specified, use either the value from the
* input image or, if nothing is defined, use the
* library default.
*/
if (tilewidth == (uint32) 0)
TIFFGetField(in, TIFFTAG_TILEWIDTH, &tilewidth);
if (tilelength == (uint32) 0)
TIFFGetField(in, TIFFTAG_TILELENGTH, &tilelength);
if (tilewidth == 0 || tilelength == 0)
TIFFDefaultTileSize(out, &tilewidth, &tilelength);
TIFFSetField(out, TIFFTAG_TILEWIDTH, tilewidth);
TIFFSetField(out, TIFFTAG_TILELENGTH, tilelength);
} else {
/*
* RowsPerStrip is left unspecified: use either the
* value from the input image or, if nothing is defined,
* use the library default.
*/
if (rowsperstrip == (uint32) 0)
{
if (!TIFFGetField(in, TIFFTAG_ROWSPERSTRIP, &rowsperstrip))
rowsperstrip = TIFFDefaultStripSize(out, rowsperstrip);
if (compression != COMPRESSION_JPEG)
{
if (rowsperstrip > length)
rowsperstrip = length;
}
}
else
if (rowsperstrip == (uint32) -1)
rowsperstrip = length;
TIFFSetField(out, TIFFTAG_ROWSPERSTRIP, rowsperstrip);
}
TIFFGetFieldDefaulted(in, TIFFTAG_PLANARCONFIG, &input_planar);
if (config != (uint16) -1)
TIFFSetField(out, TIFFTAG_PLANARCONFIG, config);
else
CopyField(TIFFTAG_PLANARCONFIG, config);
if (spp <= 4)
CopyTag(TIFFTAG_TRANSFERFUNCTION, 4, TIFF_SHORT);
CopyTag(TIFFTAG_COLORMAP, 4, TIFF_SHORT);
/* SMinSampleValue & SMaxSampleValue */
switch (compression) {
case COMPRESSION_JPEG:
if (((bps % 8) == 0) || ((bps % 12) == 0))
{
TIFFSetField(out, TIFFTAG_JPEGQUALITY, quality);
TIFFSetField(out, TIFFTAG_JPEGCOLORMODE, JPEGCOLORMODE_RGB);
}
else
{
TIFFError("writeCroppedImage",
"JPEG compression requires 8 or 12 bits per sample");
return (-1);
}
break;
case COMPRESSION_LZW:
case COMPRESSION_ADOBE_DEFLATE:
case COMPRESSION_DEFLATE:
if (predictor != (uint16)-1)
TIFFSetField(out, TIFFTAG_PREDICTOR, predictor);
else
CopyField(TIFFTAG_PREDICTOR, predictor);
break;
case COMPRESSION_CCITTFAX3:
case COMPRESSION_CCITTFAX4:
if (bps != 1)
{
TIFFError("writeCroppedImage",
"Group 3/4 compression is not usable with bps > 1");
return (-1);
}
if (compression == COMPRESSION_CCITTFAX3) {
if (g3opts != (uint32) -1)
TIFFSetField(out, TIFFTAG_GROUP3OPTIONS, g3opts);
else
CopyField(TIFFTAG_GROUP3OPTIONS, g3opts);
} else
CopyTag(TIFFTAG_GROUP4OPTIONS, 1, TIFF_LONG);
CopyTag(TIFFTAG_BADFAXLINES, 1, TIFF_LONG);
CopyTag(TIFFTAG_CLEANFAXDATA, 1, TIFF_LONG);
CopyTag(TIFFTAG_CONSECUTIVEBADFAXLINES, 1, TIFF_LONG);
CopyTag(TIFFTAG_FAXRECVPARAMS, 1, TIFF_LONG);
CopyTag(TIFFTAG_FAXRECVTIME, 1, TIFF_LONG);
CopyTag(TIFFTAG_FAXSUBADDRESS, 1, TIFF_ASCII);
break;
case COMPRESSION_NONE:
break;
default: break;
}
{ uint32 len32;
void** data;
if (TIFFGetField(in, TIFFTAG_ICCPROFILE, &len32, &data))
TIFFSetField(out, TIFFTAG_ICCPROFILE, len32, data);
}
{ uint16 ninks;
const char* inknames;
if (TIFFGetField(in, TIFFTAG_NUMBEROFINKS, &ninks)) {
TIFFSetField(out, TIFFTAG_NUMBEROFINKS, ninks);
if (TIFFGetField(in, TIFFTAG_INKNAMES, &inknames)) {
int inknameslen = strlen(inknames) + 1;
const char* cp = inknames;
while (ninks > 1) {
cp = strchr(cp, '\0');
if (cp) {
cp++;
inknameslen += (strlen(cp) + 1);
}
ninks--;
}
TIFFSetField(out, TIFFTAG_INKNAMES, inknameslen, inknames);
}
}
}
{
unsigned short pg0, pg1;
if (TIFFGetField(in, TIFFTAG_PAGENUMBER, &pg0, &pg1)) {
TIFFSetField(out, TIFFTAG_PAGENUMBER, pagenum, total_pages);
}
}
for (p = tags; p < &tags[NTAGS]; p++)
CopyTag(p->tag, p->count, p->type);
/* Compute the tile or strip dimensions and write to disk */
if (outtiled)
{
if (config == PLANARCONFIG_CONTIG)
{
if (writeBufferToContigTiles (out, crop_buff, length, width, spp, dump))
TIFFError("","Unable to write contiguous tile data for page %d", pagenum);
}
else
{
if (writeBufferToSeparateTiles (out, crop_buff, length, width, spp, dump))
TIFFError("","Unable to write separate tile data for page %d", pagenum);
}
}
else
{
if (config == PLANARCONFIG_CONTIG)
{
if (writeBufferToContigStrips (out, crop_buff, length))
TIFFError("","Unable to write contiguous strip data for page %d", pagenum);
}
else
{
if (writeBufferToSeparateStrips(out, crop_buff, length, width, spp, dump))
TIFFError("","Unable to write separate strip data for page %d", pagenum);
}
}
if (!TIFFWriteDirectory(out))
{
TIFFError("","Failed to write IFD for page number %d", pagenum);
TIFFClose(out);
return (-1);
}
return (0);
} /* end writeCroppedImage */
static int
rotateContigSamples8bits(uint16 rotation, uint16 spp, uint16 bps, uint32 width,
uint32 length, uint32 col, uint8 *src, uint8 *dst)
{
int ready_bits = 0;
uint32 src_byte = 0, src_bit = 0;
uint32 row, rowsize = 0, bit_offset = 0;
uint8 matchbits = 0, maskbits = 0;
uint8 buff1 = 0, buff2 = 0;
uint8 *next;
tsample_t sample;
if ((src == NULL) || (dst == NULL))
{
TIFFError("rotateContigSamples8bits","Invalid src or destination buffer");
return (1);
}
rowsize = ((bps * spp * width) + 7) / 8;
ready_bits = 0;
maskbits = (uint8)-1 >> ( 8 - bps);
buff1 = buff2 = 0;
for (row = 0; row < length ; row++)
{
bit_offset = col * bps * spp;
for (sample = 0; sample < spp; sample++)
{
if (sample == 0)
{
src_byte = bit_offset / 8;
src_bit = bit_offset % 8;
}
else
{
src_byte = (bit_offset + (sample * bps)) / 8;
src_bit = (bit_offset + (sample * bps)) % 8;
}
switch (rotation)
{
case 90: next = src + src_byte - (row * rowsize);
break;
case 270: next = src + src_byte + (row * rowsize);
break;
default: TIFFError("rotateContigSamples8bits", "Invalid rotation %d", rotation);
return (1);
}
matchbits = maskbits << (8 - src_bit - bps);
buff1 = ((*next) & matchbits) << (src_bit);
/* If we have a full buffer's worth, write it out */
if (ready_bits >= 8)
{
*dst++ = buff2;
buff2 = buff1;
ready_bits -= 8;
}
else
{
buff2 = (buff2 | (buff1 >> ready_bits));
}
ready_bits += bps;
}
}
if (ready_bits > 0)
{
buff1 = (buff2 & ((unsigned int)255 << (8 - ready_bits)));
*dst++ = buff1;
}
return (0);
} /* end rotateContigSamples8bits */
static int
rotateContigSamples16bits(uint16 rotation, uint16 spp, uint16 bps, uint32 width,
uint32 length, uint32 col, uint8 *src, uint8 *dst)
{
int ready_bits = 0;
uint32 row, rowsize, bit_offset;
uint32 src_byte = 0, src_bit = 0;
uint16 matchbits = 0, maskbits = 0;
uint16 buff1 = 0, buff2 = 0;
uint8 bytebuff = 0;
uint8 *next;
tsample_t sample;
if ((src == NULL) || (dst == NULL))
{
TIFFError("rotateContigSamples16bits","Invalid src or destination buffer");
return (1);
}
rowsize = ((bps * spp * width) + 7) / 8;
ready_bits = 0;
maskbits = (uint16)-1 >> (16 - bps);
buff1 = buff2 = 0;
for (row = 0; row < length; row++)
{
bit_offset = col * bps * spp;
for (sample = 0; sample < spp; sample++)
{
if (sample == 0)
{
src_byte = bit_offset / 8;
src_bit = bit_offset % 8;
}
else
{
src_byte = (bit_offset + (sample * bps)) / 8;
src_bit = (bit_offset + (sample * bps)) % 8;
}
switch (rotation)
{
case 90: next = src + src_byte - (row * rowsize);
break;
case 270: next = src + src_byte + (row * rowsize);
break;
default: TIFFError("rotateContigSamples8bits", "Invalid rotation %d", rotation);
return (1);
}
matchbits = maskbits << (16 - src_bit - bps);
if (little_endian)
buff1 = (next[0] << 8) | next[1];
else
buff1 = (next[1] << 8) | next[0];
buff1 = (buff1 & matchbits) << (src_bit);
/* If we have a full buffer's worth, write it out */
if (ready_bits >= 8)
{
bytebuff = (buff2 >> 8);
*dst++ = bytebuff;
ready_bits -= 8;
/* shift in new bits */
buff2 = ((buff2 << 8) | (buff1 >> ready_bits));
}
else
{ /* add another bps bits to the buffer */
bytebuff = 0;
buff2 = (buff2 | (buff1 >> ready_bits));
}
ready_bits += bps;
}
}
if (ready_bits > 0)
{
bytebuff = (buff2 >> 8);
*dst++ = bytebuff;
}
return (0);
} /* end rotateContigSamples16bits */
static int
rotateContigSamples24bits(uint16 rotation, uint16 spp, uint16 bps, uint32 width,
uint32 length, uint32 col, uint8 *src, uint8 *dst)
{
int ready_bits = 0;
uint32 row, rowsize, bit_offset;
uint32 src_byte = 0, src_bit = 0;
uint32 matchbits = 0, maskbits = 0;
uint32 buff1 = 0, buff2 = 0;
uint8 bytebuff1 = 0, bytebuff2 = 0;
uint8 *next;
tsample_t sample;
if ((src == NULL) || (dst == NULL))
{
TIFFError("rotateContigSamples24bits","Invalid src or destination buffer");
return (1);
}
rowsize = ((bps * spp * width) + 7) / 8;
ready_bits = 0;
maskbits = (uint32)-1 >> (32 - bps);
buff1 = buff2 = 0;
for (row = 0; row < length; row++)
{
bit_offset = col * bps * spp;
for (sample = 0; sample < spp; sample++)
{
if (sample == 0)
{
src_byte = bit_offset / 8;
src_bit = bit_offset % 8;
}
else
{
src_byte = (bit_offset + (sample * bps)) / 8;
src_bit = (bit_offset + (sample * bps)) % 8;
}
switch (rotation)
{
case 90: next = src + src_byte - (row * rowsize);
break;
case 270: next = src + src_byte + (row * rowsize);
break;
default: TIFFError("rotateContigSamples8bits", "Invalid rotation %d", rotation);
return (1);
}
matchbits = maskbits << (32 - src_bit - bps);
if (little_endian)
buff1 = (next[0] << 24) | (next[1] << 16) | (next[2] << 8) | next[3];
else
buff1 = (next[3] << 24) | (next[2] << 16) | (next[1] << 8) | next[0];
buff1 = (buff1 & matchbits) << (src_bit);
/* If we have a full buffer's worth, write it out */
if (ready_bits >= 16)
{
bytebuff1 = (buff2 >> 24);
*dst++ = bytebuff1;
bytebuff2 = (buff2 >> 16);
*dst++ = bytebuff2;
ready_bits -= 16;
/* shift in new bits */
buff2 = ((buff2 << 16) | (buff1 >> ready_bits));
}
else
{ /* add another bps bits to the buffer */
bytebuff1 = bytebuff2 = 0;
buff2 = (buff2 | (buff1 >> ready_bits));
}
ready_bits += bps;
}
}
/* catch any trailing bits at the end of the line */
while (ready_bits > 0)
{
bytebuff1 = (buff2 >> 24);
*dst++ = bytebuff1;
buff2 = (buff2 << 8);
bytebuff2 = bytebuff1;
ready_bits -= 8;
}
return (0);
} /* end rotateContigSamples24bits */
static int
rotateContigSamples32bits(uint16 rotation, uint16 spp, uint16 bps, uint32 width,
uint32 length, uint32 col, uint8 *src, uint8 *dst)
{
int ready_bits = 0, shift_width = 0;
int bytes_per_sample, bytes_per_pixel;
uint32 row, rowsize, bit_offset;
uint32 src_byte, src_bit;
uint32 longbuff1 = 0, longbuff2 = 0;
uint64 maskbits = 0, matchbits = 0;
uint64 buff1 = 0, buff2 = 0, buff3 = 0;
uint8 bytebuff1 = 0, bytebuff2 = 0, bytebuff3 = 0, bytebuff4 = 0;
uint8 *next;
tsample_t sample;
if ((src == NULL) || (dst == NULL))
{
TIFFError("rotateContigSamples24bits","Invalid src or destination buffer");
return (1);
}
bytes_per_sample = (bps + 7) / 8;
bytes_per_pixel = ((bps * spp) + 7) / 8;
if (bytes_per_pixel < (bytes_per_sample + 1))
shift_width = bytes_per_pixel;
else
shift_width = bytes_per_sample + 1;
rowsize = ((bps * spp * width) + 7) / 8;
ready_bits = 0;
maskbits = (uint64)-1 >> (64 - bps);
buff1 = buff2 = 0;
for (row = 0; row < length; row++)
{
bit_offset = col * bps * spp;
for (sample = 0; sample < spp; sample++)
{
if (sample == 0)
{
src_byte = bit_offset / 8;
src_bit = bit_offset % 8;
}
else
{
src_byte = (bit_offset + (sample * bps)) / 8;
src_bit = (bit_offset + (sample * bps)) % 8;
}
switch (rotation)
{
case 90: next = src + src_byte - (row * rowsize);
break;
case 270: next = src + src_byte + (row * rowsize);
break;
default: TIFFError("rotateContigSamples8bits", "Invalid rotation %d", rotation);
return (1);
}
matchbits = maskbits << (64 - src_bit - bps);
if (little_endian)
{
longbuff1 = (next[0] << 24) | (next[1] << 16) | (next[2] << 8) | next[3];
longbuff2 = longbuff1;
}
else
{
longbuff1 = (next[3] << 24) | (next[2] << 16) | (next[1] << 8) | next[0];
longbuff2 = longbuff1;
}
buff3 = ((uint64)longbuff1 << 32) | longbuff2;
buff1 = (buff3 & matchbits) << (src_bit);
if (ready_bits < 32)
{ /* add another bps bits to the buffer */
bytebuff1 = bytebuff2 = bytebuff3 = bytebuff4 = 0;
buff2 = (buff2 | (buff1 >> ready_bits));
}
else /* If we have a full buffer's worth, write it out */
{
bytebuff1 = (buff2 >> 56);
*dst++ = bytebuff1;
bytebuff2 = (buff2 >> 48);
*dst++ = bytebuff2;
bytebuff3 = (buff2 >> 40);
*dst++ = bytebuff3;
bytebuff4 = (buff2 >> 32);
*dst++ = bytebuff4;
ready_bits -= 32;
/* shift in new bits */
buff2 = ((buff2 << 32) | (buff1 >> ready_bits));
}
ready_bits += bps;
}
}
while (ready_bits > 0)
{
bytebuff1 = (buff2 >> 56);
*dst++ = bytebuff1;
buff2 = (buff2 << 8);
ready_bits -= 8;
}
return (0);
} /* end rotateContigSamples32bits */
/* Rotate an image by a multiple of 90 degrees clockwise */
static int
rotateImage(uint16 rotation, struct image_data *image, uint32 *img_width,
uint32 *img_length, unsigned char **ibuff_ptr)
{
int shift_width;
uint32 bytes_per_pixel, bytes_per_sample;
uint32 row, rowsize, src_offset, dst_offset;
uint32 i, col, width, length;
uint32 colsize, buffsize, col_offset, pix_offset;
unsigned char *ibuff;
unsigned char *src;
unsigned char *dst;
uint16 spp, bps;
float res_temp;
unsigned char *rbuff = NULL;
width = *img_width;
length = *img_length;
spp = image->spp;
bps = image->bps;
rowsize = ((bps * spp * width) + 7) / 8;
colsize = ((bps * spp * length) + 7) / 8;
if ((colsize * width) > (rowsize * length))
buffsize = (colsize + 1) * width;
else
buffsize = (rowsize + 1) * length;
bytes_per_sample = (bps + 7) / 8;
bytes_per_pixel = ((bps * spp) + 7) / 8;
if (bytes_per_pixel < (bytes_per_sample + 1))
shift_width = bytes_per_pixel;
else
shift_width = bytes_per_sample + 1;
switch (rotation)
{
case 0:
case 360: return (0);
case 90:
case 180:
case 270: break;
default: TIFFError("rotateImage", "Invalid rotation angle %d", rotation);
return (-1);
}
if (!(rbuff = (unsigned char *)_TIFFmalloc(buffsize)))
{
TIFFError("rotateImage", "Unable to allocate rotation buffer of %1u bytes", buffsize);
return (-1);
}
_TIFFmemset(rbuff, '\0', buffsize);
ibuff = *ibuff_ptr;
switch (rotation)
{
case 180: if ((bps % 8) == 0) /* byte alligned data */
{
src = ibuff;
pix_offset = (spp * bps) / 8;
for (row = 0; row < length; row++)
{
dst_offset = (length - row - 1) * rowsize;
for (col = 0; col < width; col++)
{
col_offset = (width - col - 1) * pix_offset;
dst = rbuff + dst_offset + col_offset;
for (i = 0; i < bytes_per_pixel; i++)
*dst++ = *src++;
}
}
}
else
{ /* non 8 bit per sample data */
for (row = 0; row < length; row++)
{
src_offset = row * rowsize;
dst_offset = (length - row - 1) * rowsize;
src = ibuff + src_offset;
dst = rbuff + dst_offset;
switch (shift_width)
{
case 1: if (bps == 1)
{
if (reverseSamples8bits(spp, bps, width, src, dst))
{
_TIFFfree(rbuff);
return (-1);
}
break;
}
if (reverseSamples16bits(spp, bps, width, src, dst))
{
_TIFFfree(rbuff);
return (-1);
}
break;
case 2: if (reverseSamples24bits(spp, bps, width, src, dst))
{
_TIFFfree(rbuff);
return (-1);
}
break;
case 3:
case 4:
case 5: if (reverseSamples32bits(spp, bps, width, src, dst))
{
_TIFFfree(rbuff);
return (-1);
}
break;
default: TIFFError("rotateImage","Unsupported bit depth %d", bps);
_TIFFfree(rbuff);
return (-1);
}
}
}
_TIFFfree(ibuff);
*(ibuff_ptr) = rbuff;
break;
case 90: if ((bps % 8) == 0) /* byte aligned data */
{
for (col = 0; col < width; col++)
{
src_offset = ((length - 1) * rowsize) + (col * bytes_per_pixel);
dst_offset = col * colsize;
src = ibuff + src_offset;
dst = rbuff + dst_offset;
for (row = length; row > 0; row--)
{
for (i = 0; i < bytes_per_pixel; i++)
*dst++ = *(src + i);
src -= rowsize;
}
}
}
else
{ /* non 8 bit per sample data */
for (col = 0; col < width; col++)
{
src_offset = (length - 1) * rowsize;
dst_offset = col * colsize;
src = ibuff + src_offset;
dst = rbuff + dst_offset;
switch (shift_width)
{
case 1: if (bps == 1)
{
if (rotateContigSamples8bits(rotation, spp, bps, width,
length, col, src, dst))
{
_TIFFfree(rbuff);
return (-1);
}
break;
}
if (rotateContigSamples16bits(rotation, spp, bps, width,
length, col, src, dst))
{
_TIFFfree(rbuff);
return (-1);
}
break;
case 2: if (rotateContigSamples24bits(rotation, spp, bps, width,
length, col, src, dst))
{
_TIFFfree(rbuff);
return (-1);
}
break;
case 3:
case 4:
case 5: if (rotateContigSamples32bits(rotation, spp, bps, width,
length, col, src, dst))
{
_TIFFfree(rbuff);
return (-1);
}
break;
default: TIFFError("rotateImage","Unsupported bit depth %d", bps);
_TIFFfree(rbuff);
return (-1);
}
}
}
_TIFFfree(ibuff);
*(ibuff_ptr) = rbuff;
*img_width = length;
*img_length = width;
image->width = length;
image->length = width;
res_temp = image->xres;
image->xres = image->yres;
image->yres = res_temp;
break;
case 270: if ((bps % 8) == 0) /* byte aligned data */
{
for (col = 0; col < width; col++)
{
src_offset = col * bytes_per_pixel;
dst_offset = (width - col - 1) * colsize;
src = ibuff + src_offset;
dst = rbuff + dst_offset;
for (row = length; row > 0; row--)
{
for (i = 0; i < bytes_per_pixel; i++)
*dst++ = *(src + i);
src += rowsize;
}
}
}
else
{ /* non 8 bit per sample data */
for (col = 0; col < width; col++)
{
src_offset = 0;
dst_offset = (width - col - 1) * colsize;
src = ibuff + src_offset;
dst = rbuff + dst_offset;
switch (shift_width)
{
case 1: if (bps == 1)
{
if (rotateContigSamples8bits(rotation, spp, bps, width,
length, col, src, dst))
{
_TIFFfree(rbuff);
return (-1);
}
break;
}
if (rotateContigSamples16bits(rotation, spp, bps, width,
length, col, src, dst))
{
_TIFFfree(rbuff);
return (-1);
}
break;
case 2: if (rotateContigSamples24bits(rotation, spp, bps, width,
length, col, src, dst))
{
_TIFFfree(rbuff);
return (-1);
}
break;
case 3:
case 4:
case 5: if (rotateContigSamples32bits(rotation, spp, bps, width,
length, col, src, dst))
{
_TIFFfree(rbuff);
return (-1);
}
break;
default: TIFFError("rotateImage","Unsupported bit depth %d", bps);
_TIFFfree(rbuff);
return (-1);
}
}
}
_TIFFfree(ibuff);
*(ibuff_ptr) = rbuff;
*img_width = length;
*img_length = width;
image->width = length;
image->length = width;
res_temp = image->xres;
image->xres = image->yres;
image->yres = res_temp;
break;
default:
break;
}
return (0);
} /* end rotateImage */
static int
reverseSamples8bits (uint16 spp, uint16 bps, uint32 width,
uint8 *ibuff, uint8 *obuff)
{
int ready_bits = 0;
uint32 col;
uint32 src_byte, src_bit;
uint32 bit_offset = 0;
uint8 match_bits = 0, mask_bits = 0;
uint8 buff1 = 0, buff2 = 0;
unsigned char *src;
unsigned char *dst;
tsample_t sample;
if ((ibuff == NULL) || (obuff == NULL))
{
TIFFError("reverseSamples8bits","Invalid image or work buffer");
return (1);
}
ready_bits = 0;
mask_bits = (uint8)-1 >> ( 8 - bps);
dst = obuff;
for (col = width; col > 0; col--)
{
/* Compute src byte(s) and bits within byte(s) */
bit_offset = (col - 1) * bps * spp;
for (sample = 0; sample < spp; sample++)
{
if (sample == 0)
{
src_byte = bit_offset / 8;
src_bit = bit_offset % 8;
}
else
{
src_byte = (bit_offset + (sample * bps)) / 8;
src_bit = (bit_offset + (sample * bps)) % 8;
}
src = ibuff + src_byte;
match_bits = mask_bits << (8 - src_bit - bps);
buff1 = ((*src) & match_bits) << (src_bit);
if (ready_bits < 8)
buff2 = (buff2 | (buff1 >> ready_bits));
else /* If we have a full buffer's worth, write it out */
{
*dst++ = buff2;
buff2 = buff1;
ready_bits -= 8;
}
ready_bits += bps;
}
}
if (ready_bits > 0)
{
buff1 = (buff2 & ((unsigned int)255 << (8 - ready_bits)));
*dst++ = buff1;
}
return (0);
} /* end reverseSamples8bits */
static int
reverseSamples16bits (uint16 spp, uint16 bps, uint32 width,
uint8 *ibuff, uint8 *obuff)
{
int ready_bits = 0;
uint32 col;
uint32 src_byte = 0, high_bit = 0;
uint32 bit_offset = 0;
uint16 match_bits = 0, mask_bits = 0;
uint16 buff1 = 0, buff2 = 0;
uint8 bytebuff = 0;
unsigned char *src;
unsigned char *dst;
tsample_t sample;
if ((ibuff == NULL) || (obuff == NULL))
{
TIFFError("reverseSample16bits","Invalid image or work buffer");
return (1);
}
ready_bits = 0;
mask_bits = (uint16)-1 >> (16 - bps);
dst = obuff;
for (col = width; col > 0; col--)
{
/* Compute src byte(s) and bits within byte(s) */
bit_offset = (col - 1) * bps * spp;
for (sample = 0; sample < spp; sample++)
{
if (sample == 0)
{
src_byte = bit_offset / 8;
high_bit = bit_offset % 8;
}
else
{
src_byte = (bit_offset + (sample * bps)) / 8;
high_bit = (bit_offset + (sample * bps)) % 8;
}
src = ibuff + src_byte;
match_bits = mask_bits << (16 - high_bit - bps);
if (little_endian)
buff1 = (src[0] << 8) | src[1];
else
buff1 = (src[1] << 8) | src[0];
buff1 = (buff1 & match_bits) << (high_bit);
if (ready_bits < 8)
{ /* add another bps bits to the buffer */
bytebuff = 0;
buff2 = (buff2 | (buff1 >> ready_bits));
}
else /* If we have a full buffer's worth, write it out */
{
bytebuff = (buff2 >> 8);
*dst++ = bytebuff;
ready_bits -= 8;
/* shift in new bits */
buff2 = ((buff2 << 8) | (buff1 >> ready_bits));
}
ready_bits += bps;
}
}
if (ready_bits > 0)
{
bytebuff = (buff2 >> 8);
*dst++ = bytebuff;
}
return (0);
} /* end reverseSamples16bits */
static int
reverseSamples24bits (uint16 spp, uint16 bps, uint32 width,
uint8 *ibuff, uint8 *obuff)
{
int ready_bits = 0;
uint32 col;
uint32 src_byte = 0, high_bit = 0;
uint32 bit_offset = 0;
uint32 match_bits = 0, mask_bits = 0;
uint32 buff1 = 0, buff2 = 0;
uint8 bytebuff1 = 0, bytebuff2 = 0;
unsigned char *src;
unsigned char *dst;
tsample_t sample;
if ((ibuff == NULL) || (obuff == NULL))
{
TIFFError("reverseSamples24bits","Invalid image or work buffer");
return (1);
}
ready_bits = 0;
mask_bits = (uint32)-1 >> (32 - bps);
dst = obuff;
for (col = width; col > 0; col--)
{
/* Compute src byte(s) and bits within byte(s) */
bit_offset = (col - 1) * bps * spp;
for (sample = 0; sample < spp; sample++)
{
if (sample == 0)
{
src_byte = bit_offset / 8;
high_bit = bit_offset % 8;
}
else
{
src_byte = (bit_offset + (sample * bps)) / 8;
high_bit = (bit_offset + (sample * bps)) % 8;
}
src = ibuff + src_byte;
match_bits = mask_bits << (32 - high_bit - bps);
if (little_endian)
buff1 = (src[0] << 24) | (src[1] << 16) | (src[2] << 8) | src[3];
else
buff1 = (src[3] << 24) | (src[2] << 16) | (src[1] << 8) | src[0];
buff1 = (buff1 & match_bits) << (high_bit);
if (ready_bits < 16)
{ /* add another bps bits to the buffer */
bytebuff1 = bytebuff2 = 0;
buff2 = (buff2 | (buff1 >> ready_bits));
}
else /* If we have a full buffer's worth, write it out */
{
bytebuff1 = (buff2 >> 24);
*dst++ = bytebuff1;
bytebuff2 = (buff2 >> 16);
*dst++ = bytebuff2;
ready_bits -= 16;
/* shift in new bits */
buff2 = ((buff2 << 16) | (buff1 >> ready_bits));
}
ready_bits += bps;
}
}
/* catch any trailing bits at the end of the line */
while (ready_bits > 0)
{
bytebuff1 = (buff2 >> 24);
*dst++ = bytebuff1;
buff2 = (buff2 << 8);
bytebuff2 = bytebuff1;
ready_bits -= 8;
}
return (0);
} /* end reverseSamples24bits */
static int
reverseSamples32bits (uint16 spp, uint16 bps, uint32 width,
uint8 *ibuff, uint8 *obuff)
{
int ready_bits = 0, shift_width = 0;
int bytes_per_sample, bytes_per_pixel;
uint32 bit_offset;
uint32 src_byte = 0, high_bit = 0;
uint32 col;
uint32 longbuff1 = 0, longbuff2 = 0;
uint64 mask_bits = 0, match_bits = 0;
uint64 buff1 = 0, buff2 = 0, buff3 = 0;
uint8 bytebuff1 = 0, bytebuff2 = 0, bytebuff3 = 0, bytebuff4 = 0;
unsigned char *src;
unsigned char *dst;
tsample_t sample;
if ((ibuff == NULL) || (obuff == NULL))
{
TIFFError("reverseSamples32bits","Invalid image or work buffer");
return (1);
}
ready_bits = 0;
mask_bits = (uint64)-1 >> (64 - bps);
dst = obuff;
bytes_per_sample = (bps + 7) / 8;
bytes_per_pixel = ((bps * spp) + 7) / 8;
if (bytes_per_pixel < (bytes_per_sample + 1))
shift_width = bytes_per_pixel;
else
shift_width = bytes_per_sample + 1;
for (col = width; col > 0; col--)
{
/* Compute src byte(s) and bits within byte(s) */
bit_offset = (col - 1) * bps * spp;
for (sample = 0; sample < spp; sample++)
{
if (sample == 0)
{
src_byte = bit_offset / 8;
high_bit = bit_offset % 8;
}
else
{
src_byte = (bit_offset + (sample * bps)) / 8;
high_bit = (bit_offset + (sample * bps)) % 8;
}
src = ibuff + src_byte;
match_bits = mask_bits << (64 - high_bit - bps);
if (little_endian)
{
longbuff1 = (src[0] << 24) | (src[1] << 16) | (src[2] << 8) | src[3];
longbuff2 = longbuff1;
}
else
{
longbuff1 = (src[3] << 24) | (src[2] << 16) | (src[1] << 8) | src[0];
longbuff2 = longbuff1;
}
buff3 = ((uint64)longbuff1 << 32) | longbuff2;
buff1 = (buff3 & match_bits) << (high_bit);
if (ready_bits < 32)
{ /* add another bps bits to the buffer */
bytebuff1 = bytebuff2 = bytebuff3 = bytebuff4 = 0;
buff2 = (buff2 | (buff1 >> ready_bits));
}
else /* If we have a full buffer's worth, write it out */
{
bytebuff1 = (buff2 >> 56);
*dst++ = bytebuff1;
bytebuff2 = (buff2 >> 48);
*dst++ = bytebuff2;
bytebuff3 = (buff2 >> 40);
*dst++ = bytebuff3;
bytebuff4 = (buff2 >> 32);
*dst++ = bytebuff4;
ready_bits -= 32;
/* shift in new bits */
buff2 = ((buff2 << 32) | (buff1 >> ready_bits));
}
ready_bits += bps;
}
}
while (ready_bits > 0)
{
bytebuff1 = (buff2 >> 56);
*dst++ = bytebuff1;
buff2 = (buff2 << 8);
ready_bits -= 8;
}
return (0);
} /* end reverseSamples32bits */
static int
reverseSamplesBytes (uint16 spp, uint16 bps, uint32 width,
uint8 *src, uint8 *dst)
{
int i;
uint32 col, bytes_per_pixel, col_offset;
uint8 bytebuff1;
unsigned char swapbuff[32];
if ((src == NULL) || (dst == NULL))
{
TIFFError("reverseSamplesBytes","Invalid input or output buffer");
return (1);
}
bytes_per_pixel = ((bps * spp) + 7) / 8;
switch (bps / 8)
{
case 8: /* Use memcpy for multiple bytes per sample data */
case 4:
case 3:
case 2: for (col = 0; col < (width / 2); col++)
{
col_offset = col * bytes_per_pixel;
_TIFFmemcpy (swapbuff, src + col_offset, bytes_per_pixel);
_TIFFmemcpy (src + col_offset, dst - col_offset - bytes_per_pixel, bytes_per_pixel);
_TIFFmemcpy (dst - col_offset - bytes_per_pixel, swapbuff, bytes_per_pixel);
}
break;
case 1: /* Use byte copy only for single byte per sample data */
for (col = 0; col < (width / 2); col++)
{
for (i = 0; i < spp; i++)
{
bytebuff1 = *src;
*src++ = *(dst - spp + i);
*(dst - spp + i) = bytebuff1;
}
dst -= spp;
}
break;
default: TIFFError("reverseSamplesBytes","Unsupported bit depth %d", bps);
return (1);
}
return (0);
} /* end reverseSamplesBytes */
/* Mirror an image horizontally or vertically */
static int
mirrorImage(uint16 spp, uint16 bps, uint16 mirror, uint32 width, uint32 length, unsigned char *ibuff)
{
int shift_width;
uint32 bytes_per_pixel, bytes_per_sample;
uint32 row, rowsize, row_offset;
unsigned char *line_buff = NULL;
unsigned char *src;
unsigned char *dst;
src = ibuff;
rowsize = ((width * bps * spp) + 7) / 8;
switch (mirror)
{
case MIRROR_BOTH:
case MIRROR_VERT:
line_buff = (unsigned char *)_TIFFmalloc(rowsize);
if (line_buff == NULL)
{
TIFFError ("mirrorImage", "Unable to allocate mirror line buffer of %1u bytes", rowsize);
return (-1);
}
dst = ibuff + (rowsize * (length - 1));
for (row = 0; row < length / 2; row++)
{
_TIFFmemcpy(line_buff, src, rowsize);
_TIFFmemcpy(src, dst, rowsize);
_TIFFmemcpy(dst, line_buff, rowsize);
src += (rowsize);
dst -= (rowsize);
}
if (line_buff)
_TIFFfree(line_buff);
if (mirror == MIRROR_VERT)
break;
case MIRROR_HORIZ :
if ((bps % 8) == 0) /* byte alligned data */
{
for (row = 0; row < length; row++)
{
row_offset = row * rowsize;
src = ibuff + row_offset;
dst = ibuff + row_offset + rowsize;
if (reverseSamplesBytes(spp, bps, width, src, dst))
{
return (-1);
}
}
}
else
{ /* non 8 bit per sample data */
if (!(line_buff = (unsigned char *)_TIFFmalloc(rowsize + 1)))
{
TIFFError("mirrorImage", "Unable to allocate mirror line buffer");
return (-1);
}
bytes_per_sample = (bps + 7) / 8;
bytes_per_pixel = ((bps * spp) + 7) / 8;
if (bytes_per_pixel < (bytes_per_sample + 1))
shift_width = bytes_per_pixel;
else
shift_width = bytes_per_sample + 1;
for (row = 0; row < length; row++)
{
row_offset = row * rowsize;
src = ibuff + row_offset;
_TIFFmemset (line_buff, '\0', rowsize);
switch (shift_width)
{
case 1: if (reverseSamples16bits(spp, bps, width, src, line_buff))
{
_TIFFfree(line_buff);
return (-1);
}
_TIFFmemcpy (src, line_buff, rowsize);
break;
case 2: if (reverseSamples24bits(spp, bps, width, src, line_buff))
{
_TIFFfree(line_buff);
return (-1);
}
_TIFFmemcpy (src, line_buff, rowsize);
break;
case 3:
case 4:
case 5: if (reverseSamples32bits(spp, bps, width, src, line_buff))
{
_TIFFfree(line_buff);
return (-1);
}
_TIFFmemcpy (src, line_buff, rowsize);
break;
default: TIFFError("mirrorImage","Unsupported bit depth %d", bps);
_TIFFfree(line_buff);
return (-1);
}
}
if (line_buff)
_TIFFfree(line_buff);
}
break;
default: TIFFError ("mirrorImage", "Invalid mirror axis %d", mirror);
return (-1);
break;
}
return (0);
}
/* Invert the light and dark values for a bilevel or grayscale image */
static int
invertImage(uint16 photometric, uint16 spp, uint16 bps, uint32 width, uint32 length, unsigned char *work_buff)
{
uint32 row, col;
unsigned char bytebuff1, bytebuff2, bytebuff3, bytebuff4;
unsigned char *src;
uint16 *src_uint16;
uint32 *src_uint32;
if (spp != 1)
{
TIFFError("invertImage", "Image inversion not supported for more than one sample per pixel");
return (-1);
}
if (photometric != PHOTOMETRIC_MINISWHITE && photometric != PHOTOMETRIC_MINISBLACK)
{
TIFFError("invertImage", "Only black and white and grayscale images can be inverted");
return (-1);
}
src = work_buff;
if (src == NULL)
{
TIFFError ("invertImage", "Invalid crop buffer passed to invertImage");
return (-1);
}
switch (bps)
{
case 32: src_uint32 = (uint32 *)src;
for (row = 0; row < length; row++)
for (col = 0; col < width; col++)
{
*src_uint32 = (uint32)0xFFFFFFFF - *src_uint32;
src_uint32++;
}
break;
case 16: src_uint16 = (uint16 *)src;
for (row = 0; row < length; row++)
for (col = 0; col < width; col++)
{
*src_uint16 = (uint16)0xFFFF - *src_uint16;
src_uint16++;
}
break;
case 8: for (row = 0; row < length; row++)
for (col = 0; col < width; col++)
{
*src = (uint8)255 - *src;
src++;
}
break;
case 4: for (row = 0; row < length; row++)
for (col = 0; col < width; col++)
{
bytebuff1 = 16 - (uint8)(*src & 240 >> 4);
bytebuff2 = 16 - (*src & 15);
*src = bytebuff1 << 4 & bytebuff2;
src++;
}
break;
case 2: for (row = 0; row < length; row++)
for (col = 0; col < width; col++)
{
bytebuff1 = 4 - (uint8)(*src & 192 >> 6);
bytebuff2 = 4 - (uint8)(*src & 48 >> 4);
bytebuff3 = 4 - (uint8)(*src & 12 >> 2);
bytebuff4 = 4 - (uint8)(*src & 3);
*src = (bytebuff1 << 6) || (bytebuff2 << 4) || (bytebuff3 << 2) || bytebuff4;
src++;
}
break;
case 1: for (row = 0; row < length; row++)
for (col = 0; col < width; col += 8 /(spp * bps))
{
*src = ~(*src);
src++;
}
break;
default: TIFFError("invertImage", "Unsupported bit depth %d", bps);
return (-1);
}
return (0);
}
/* vim: set ts=8 sts=8 sw=8 noet: */
/*
* Local Variables:
* mode: c
* c-basic-offset: 8
* fill-column: 78
* End:
*/