/*
* Copyright (C) Internet Systems Consortium, Inc. ("ISC")
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* See the COPYRIGHT file distributed with this work for additional
* information regarding copyright ownership.
*/
#ifdef OPENSSL
#include <config.h>
#ifndef USE_EVP
#if !defined(HAVE_EVP_SHA256) || !defined(HAVE_EVP_SHA512)
#define USE_EVP 0
#else
#define USE_EVP 1
#endif
#endif
#include <stdbool.h>
#include <isc/entropy.h>
#include <isc/md5.h>
#include <isc/mem.h>
#include <isc/safe.h>
#include <isc/sha1.h>
#include <isc/sha2.h>
#include <isc/string.h>
#include <isc/util.h>
#include <pk11/site.h>
#include <dst/result.h>
#include "dst_internal.h"
#include "dst_openssl.h"
#include "dst_parse.h"
#include <openssl/err.h>
#include <openssl/objects.h>
#include <openssl/rsa.h>
#if OPENSSL_VERSION_NUMBER > 0x00908000L
#include <openssl/bn.h>
#endif
#if !defined(OPENSSL_NO_ENGINE)
#include <openssl/engine.h>
#endif
/*
* Limit the size of public exponents.
*/
#ifndef RSA_MAX_PUBEXP_BITS
#define RSA_MAX_PUBEXP_BITS 35
#endif
/*
* We don't use configure for windows so enforce the OpenSSL version
* here. Unlike with configure we don't support overriding this test.
*/
#ifdef WIN32
#if !((OPENSSL_VERSION_NUMBER >= 0x009070cfL && \
OPENSSL_VERSION_NUMBER < 0x00908000L) || \
(OPENSSL_VERSION_NUMBER >= 0x0090804fL && \
OPENSSL_VERSION_NUMBER < 0x10002000L) || \
OPENSSL_VERSION_NUMBER >= 0x1000205fL)
#error Please upgrade OpenSSL to 0.9.8d/0.9.7l or greater.
#endif
#endif
/*
* XXXMPA Temporarily disable RSA_BLINDING as it requires
* good quality random data that cannot currently be guaranteed.
* XXXMPA Find which versions of openssl use pseudo random data
* and set RSA_FLAG_BLINDING for those.
*/
#if 0
#if OPENSSL_VERSION_NUMBER < 0x0090601fL
#define SET_FLAGS(rsa) \
do { \
(rsa)->flags &= ~(RSA_FLAG_CACHE_PUBLIC | RSA_FLAG_CACHE_PRIVATE); \
(rsa)->flags |= RSA_FLAG_BLINDING; \
} while (0)
#else
#define SET_FLAGS(rsa) \
do { \
(rsa)->flags |= RSA_FLAG_BLINDING; \
} while (0)
#endif
#endif
#if OPENSSL_VERSION_NUMBER < 0x0090601fL
#define SET_FLAGS(rsa) \
do { \
(rsa)->flags &= ~(RSA_FLAG_CACHE_PUBLIC | RSA_FLAG_CACHE_PRIVATE); \
(rsa)->flags &= ~RSA_FLAG_BLINDING; \
} while (0)
#elif OPENSSL_VERSION_NUMBER < 0x10100000L || defined(LIBRESSL_VERSION_NUMBER)
#if defined(RSA_FLAG_NO_BLINDING)
#define SET_FLAGS(rsa) \
do { \
(rsa)->flags &= ~RSA_FLAG_BLINDING; \
(rsa)->flags |= RSA_FLAG_NO_BLINDING; \
} while (0)
#else
#define SET_FLAGS(rsa) \
do { \
(rsa)->flags &= ~RSA_FLAG_BLINDING; \
} while (0)
#endif
#else
#define SET_FLAGS(rsa) \
do { \
RSA_clear_flags(rsa, RSA_FLAG_BLINDING); \
RSA_set_flags(rsa, RSA_FLAG_NO_BLINDING); \
} while (0)
#endif
#define DST_RET(a) {ret = a; goto err;}
#if !defined(HAVE_RSA_SET0_KEY)
/* From OpenSSL 1.1.0 */
static int
RSA_set0_key(RSA *r, BIGNUM *n, BIGNUM *e, BIGNUM *d) {
/*
* If the fields n and e in r are NULL, the corresponding input
* parameters MUST be non-NULL for n and e. d may be
* left NULL (in case only the public key is used).
*/
if ((r->n == NULL && n == NULL) || (r->e == NULL && e == NULL)) {
return 0;
}
if (n != NULL) {
BN_free(r->n);
r->n = n;
}
if (e != NULL) {
BN_free(r->e);
r->e = e;
}
if (d != NULL) {
BN_free(r->d);
r->d = d;
}
return 1;
}
static int
RSA_set0_factors(RSA *r, BIGNUM *p, BIGNUM *q) {
/*
* If the fields p and q in r are NULL, the corresponding input
* parameters MUST be non-NULL.
*/
if ((r->p == NULL && p == NULL) || (r->q == NULL && q == NULL)) {
return 0;
}
if (p != NULL) {
BN_free(r->p);
r->p = p;
}
if (q != NULL) {
BN_free(r->q);
r->q = q;
}
return 1;
}
static int
RSA_set0_crt_params(RSA *r, BIGNUM *dmp1, BIGNUM *dmq1, BIGNUM *iqmp) {
/*
* If the fields dmp1, dmq1 and iqmp in r are NULL, the
* corresponding input parameters MUST be non-NULL.
*/
if ((r->dmp1 == NULL && dmp1 == NULL) ||
(r->dmq1 == NULL && dmq1 == NULL) ||
(r->iqmp == NULL && iqmp == NULL))
{
return 0;
}
if (dmp1 != NULL) {
BN_free(r->dmp1);
r->dmp1 = dmp1;
}
if (dmq1 != NULL) {
BN_free(r->dmq1);
r->dmq1 = dmq1;
}
if (iqmp != NULL) {
BN_free(r->iqmp);
r->iqmp = iqmp;
}
return 1;
}
static void
RSA_get0_key(const RSA *r,
const BIGNUM **n, const BIGNUM **e, const BIGNUM **d)
{
if (n != NULL) {
*n = r->n;
}
if (e != NULL) {
*e = r->e;
}
if (d != NULL) {
*d = r->d;
}
}
static void
RSA_get0_factors(const RSA *r, const BIGNUM **p, const BIGNUM **q) {
if (p != NULL) {
*p = r->p;
}
if (q != NULL) {
*q = r->q;
}
}
static void
RSA_get0_crt_params(const RSA *r, const BIGNUM **dmp1, const BIGNUM **dmq1,
const BIGNUM **iqmp)
{
if (dmp1 != NULL) {
*dmp1 = r->dmp1;
}
if (dmq1 != NULL) {
*dmq1 = r->dmq1;
}
if (iqmp != NULL) {
*iqmp = r->iqmp;
}
}
static int
RSA_test_flags(const RSA *r, int flags) {
return (r->flags & flags);
}
#endif
static isc_result_t opensslrsa_todns(const dst_key_t *key, isc_buffer_t *data);
static isc_result_t
opensslrsa_createctx(dst_key_t *key, dst_context_t *dctx) {
#if USE_EVP
EVP_MD_CTX *evp_md_ctx;
const EVP_MD *type = NULL;
#endif
UNUSED(key);
#ifndef PK11_MD5_DISABLE
REQUIRE(dctx->key->key_alg == DST_ALG_RSAMD5 ||
dctx->key->key_alg == DST_ALG_RSASHA1 ||
dctx->key->key_alg == DST_ALG_NSEC3RSASHA1 ||
dctx->key->key_alg == DST_ALG_RSASHA256 ||
dctx->key->key_alg == DST_ALG_RSASHA512);
#else
REQUIRE(dctx->key->key_alg == DST_ALG_RSASHA1 ||
dctx->key->key_alg == DST_ALG_NSEC3RSASHA1 ||
dctx->key->key_alg == DST_ALG_RSASHA256 ||
dctx->key->key_alg == DST_ALG_RSASHA512);
#endif
/*
* Reject incorrect RSA key lengths.
*/
switch (dctx->key->key_alg) {
case DST_ALG_RSAMD5:
case DST_ALG_RSASHA1:
case DST_ALG_NSEC3RSASHA1:
/* From RFC 3110 */
if (dctx->key->key_size > 4096)
return (ISC_R_FAILURE);
break;
case DST_ALG_RSASHA256:
/* From RFC 5702 */
if ((dctx->key->key_size < 512) ||
(dctx->key->key_size > 4096))
return (ISC_R_FAILURE);
break;
case DST_ALG_RSASHA512:
/* From RFC 5702 */
if ((dctx->key->key_size < 1024) ||
(dctx->key->key_size > 4096))
return (ISC_R_FAILURE);
break;
default:
INSIST(0);
ISC_UNREACHABLE();
}
#if USE_EVP
evp_md_ctx = EVP_MD_CTX_create();
if (evp_md_ctx == NULL)
return (ISC_R_NOMEMORY);
switch (dctx->key->key_alg) {
#ifndef PK11_MD5_DISABLE
case DST_ALG_RSAMD5:
type = EVP_md5(); /* MD5 + RSA */
break;
#endif
case DST_ALG_RSASHA1:
case DST_ALG_NSEC3RSASHA1:
type = EVP_sha1(); /* SHA1 + RSA */
break;
#ifdef HAVE_EVP_SHA256
case DST_ALG_RSASHA256:
type = EVP_sha256(); /* SHA256 + RSA */
break;
#endif
#ifdef HAVE_EVP_SHA512
case DST_ALG_RSASHA512:
type = EVP_sha512();
break;
#endif
default:
INSIST(0);
ISC_UNREACHABLE();
}
if (!EVP_DigestInit_ex(evp_md_ctx, type, NULL)) {
EVP_MD_CTX_destroy(evp_md_ctx);
return (dst__openssl_toresult3(dctx->category,
"EVP_DigestInit_ex",
ISC_R_FAILURE));
}
dctx->ctxdata.evp_md_ctx = evp_md_ctx;
#else
switch (dctx->key->key_alg) {
#ifndef PK11_MD5_DISABLE
case DST_ALG_RSAMD5:
{
isc_md5_t *md5ctx;
md5ctx = isc_mem_get(dctx->mctx, sizeof(isc_md5_t));
if (md5ctx == NULL)
return (ISC_R_NOMEMORY);
isc_md5_init(md5ctx);
dctx->ctxdata.md5ctx = md5ctx;
}
break;
#endif
case DST_ALG_RSASHA1:
case DST_ALG_NSEC3RSASHA1:
{
isc_sha1_t *sha1ctx;
sha1ctx = isc_mem_get(dctx->mctx, sizeof(isc_sha1_t));
if (sha1ctx == NULL)
return (ISC_R_NOMEMORY);
isc_sha1_init(sha1ctx);
dctx->ctxdata.sha1ctx = sha1ctx;
}
break;
case DST_ALG_RSASHA256:
{
isc_sha256_t *sha256ctx;
sha256ctx = isc_mem_get(dctx->mctx,
sizeof(isc_sha256_t));
if (sha256ctx == NULL)
return (ISC_R_NOMEMORY);
isc_sha256_init(sha256ctx);
dctx->ctxdata.sha256ctx = sha256ctx;
}
break;
case DST_ALG_RSASHA512:
{
isc_sha512_t *sha512ctx;
sha512ctx = isc_mem_get(dctx->mctx,
sizeof(isc_sha512_t));
if (sha512ctx == NULL)
return (ISC_R_NOMEMORY);
isc_sha512_init(sha512ctx);
dctx->ctxdata.sha512ctx = sha512ctx;
}
break;
default:
INSIST(0);
ISC_UNREACHABLE();
}
#endif
return (ISC_R_SUCCESS);
}
static void
opensslrsa_destroyctx(dst_context_t *dctx) {
#if USE_EVP
EVP_MD_CTX *evp_md_ctx = dctx->ctxdata.evp_md_ctx;
#endif
#ifndef PK11_MD5_DISABLE
REQUIRE(dctx->key->key_alg == DST_ALG_RSAMD5 ||
dctx->key->key_alg == DST_ALG_RSASHA1 ||
dctx->key->key_alg == DST_ALG_NSEC3RSASHA1 ||
dctx->key->key_alg == DST_ALG_RSASHA256 ||
dctx->key->key_alg == DST_ALG_RSASHA512);
#else
REQUIRE(dctx->key->key_alg == DST_ALG_RSASHA1 ||
dctx->key->key_alg == DST_ALG_NSEC3RSASHA1 ||
dctx->key->key_alg == DST_ALG_RSASHA256 ||
dctx->key->key_alg == DST_ALG_RSASHA512);
#endif
#if USE_EVP
if (evp_md_ctx != NULL) {
EVP_MD_CTX_destroy(evp_md_ctx);
dctx->ctxdata.evp_md_ctx = NULL;
}
#else
switch (dctx->key->key_alg) {
#ifndef PK11_MD5_DISABLE
case DST_ALG_RSAMD5:
{
isc_md5_t *md5ctx = dctx->ctxdata.md5ctx;
if (md5ctx != NULL) {
isc_md5_invalidate(md5ctx);
isc_mem_put(dctx->mctx, md5ctx,
sizeof(isc_md5_t));
dctx->ctxdata.md5ctx = NULL;
}
}
break;
#endif
case DST_ALG_RSASHA1:
case DST_ALG_NSEC3RSASHA1:
{
isc_sha1_t *sha1ctx = dctx->ctxdata.sha1ctx;
if (sha1ctx != NULL) {
isc_sha1_invalidate(sha1ctx);
isc_mem_put(dctx->mctx, sha1ctx,
sizeof(isc_sha1_t));
dctx->ctxdata.sha1ctx = NULL;
}
}
break;
case DST_ALG_RSASHA256:
{
isc_sha256_t *sha256ctx = dctx->ctxdata.sha256ctx;
if (sha256ctx != NULL) {
isc_sha256_invalidate(sha256ctx);
isc_mem_put(dctx->mctx, sha256ctx,
sizeof(isc_sha256_t));
dctx->ctxdata.sha256ctx = NULL;
}
}
break;
case DST_ALG_RSASHA512:
{
isc_sha512_t *sha512ctx = dctx->ctxdata.sha512ctx;
if (sha512ctx != NULL) {
isc_sha512_invalidate(sha512ctx);
isc_mem_put(dctx->mctx, sha512ctx,
sizeof(isc_sha512_t));
dctx->ctxdata.sha512ctx = NULL;
}
}
break;
default:
INSIST(0);
ISC_UNREACHABLE();
}
#endif
}
static isc_result_t
opensslrsa_adddata(dst_context_t *dctx, const isc_region_t *data) {
#if USE_EVP
EVP_MD_CTX *evp_md_ctx = dctx->ctxdata.evp_md_ctx;
#endif
#ifndef PK11_MD5_DISABLE
REQUIRE(dctx->key->key_alg == DST_ALG_RSAMD5 ||
dctx->key->key_alg == DST_ALG_RSASHA1 ||
dctx->key->key_alg == DST_ALG_NSEC3RSASHA1 ||
dctx->key->key_alg == DST_ALG_RSASHA256 ||
dctx->key->key_alg == DST_ALG_RSASHA512);
#else
REQUIRE(dctx->key->key_alg == DST_ALG_RSASHA1 ||
dctx->key->key_alg == DST_ALG_NSEC3RSASHA1 ||
dctx->key->key_alg == DST_ALG_RSASHA256 ||
dctx->key->key_alg == DST_ALG_RSASHA512);
#endif
#if USE_EVP
if (!EVP_DigestUpdate(evp_md_ctx, data->base, data->length)) {
return (dst__openssl_toresult3(dctx->category,
"EVP_DigestUpdate",
ISC_R_FAILURE));
}
#else
switch (dctx->key->key_alg) {
#ifndef PK11_MD5_DISABLE
case DST_ALG_RSAMD5:
{
isc_md5_t *md5ctx = dctx->ctxdata.md5ctx;
isc_md5_update(md5ctx, data->base, data->length);
}
break;
#endif
case DST_ALG_RSASHA1:
case DST_ALG_NSEC3RSASHA1:
{
isc_sha1_t *sha1ctx = dctx->ctxdata.sha1ctx;
isc_sha1_update(sha1ctx, data->base, data->length);
}
break;
case DST_ALG_RSASHA256:
{
isc_sha256_t *sha256ctx = dctx->ctxdata.sha256ctx;
isc_sha256_update(sha256ctx, data->base, data->length);
}
break;
case DST_ALG_RSASHA512:
{
isc_sha512_t *sha512ctx = dctx->ctxdata.sha512ctx;
isc_sha512_update(sha512ctx, data->base, data->length);
}
break;
default:
INSIST(0);
ISC_UNREACHABLE();
}
#endif
return (ISC_R_SUCCESS);
}
#if ! USE_EVP && OPENSSL_VERSION_NUMBER < 0x00908000L
/*
* Digest prefixes from RFC 5702.
*/
static unsigned char sha256_prefix[] =
{ 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48,
0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20};
static unsigned char sha512_prefix[] =
{ 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48,
0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40};
#define PREFIXLEN sizeof(sha512_prefix)
#else
#define PREFIXLEN 0
#endif
static isc_result_t
opensslrsa_sign(dst_context_t *dctx, isc_buffer_t *sig) {
dst_key_t *key = dctx->key;
isc_region_t r;
unsigned int siglen = 0;
#if USE_EVP
EVP_MD_CTX *evp_md_ctx = dctx->ctxdata.evp_md_ctx;
EVP_PKEY *pkey = key->keydata.pkey;
#else
RSA *rsa = key->keydata.rsa;
/* note: ISC_SHA512_DIGESTLENGTH >= ISC_*_DIGESTLENGTH */
unsigned char digest[PREFIXLEN + ISC_SHA512_DIGESTLENGTH];
int status;
int type = 0;
unsigned int digestlen = 0;
#if OPENSSL_VERSION_NUMBER < 0x00908000L
unsigned int prefixlen = 0;
const unsigned char *prefix = NULL;
#endif
#endif
#ifndef PK11_MD5_DISABLE
REQUIRE(dctx->key->key_alg == DST_ALG_RSAMD5 ||
dctx->key->key_alg == DST_ALG_RSASHA1 ||
dctx->key->key_alg == DST_ALG_NSEC3RSASHA1 ||
dctx->key->key_alg == DST_ALG_RSASHA256 ||
dctx->key->key_alg == DST_ALG_RSASHA512);
#else
REQUIRE(dctx->key->key_alg == DST_ALG_RSASHA1 ||
dctx->key->key_alg == DST_ALG_NSEC3RSASHA1 ||
dctx->key->key_alg == DST_ALG_RSASHA256 ||
dctx->key->key_alg == DST_ALG_RSASHA512);
#endif
isc_buffer_availableregion(sig, &r);
#if USE_EVP
if (r.length < (unsigned int) EVP_PKEY_size(pkey))
return (ISC_R_NOSPACE);
if (!EVP_SignFinal(evp_md_ctx, r.base, &siglen, pkey)) {
return (dst__openssl_toresult3(dctx->category,
"EVP_SignFinal",
ISC_R_FAILURE));
}
#else
if (r.length < (unsigned int) RSA_size(rsa))
return (ISC_R_NOSPACE);
switch (dctx->key->key_alg) {
#ifndef PK11_MD5_DISABLE
case DST_ALG_RSAMD5:
{
isc_md5_t *md5ctx = dctx->ctxdata.md5ctx;
isc_md5_final(md5ctx, digest);
type = NID_md5;
digestlen = ISC_MD5_DIGESTLENGTH;
}
break;
#endif
case DST_ALG_RSASHA1:
case DST_ALG_NSEC3RSASHA1:
{
isc_sha1_t *sha1ctx = dctx->ctxdata.sha1ctx;
isc_sha1_final(sha1ctx, digest);
type = NID_sha1;
digestlen = ISC_SHA1_DIGESTLENGTH;
}
break;
case DST_ALG_RSASHA256:
{
isc_sha256_t *sha256ctx = dctx->ctxdata.sha256ctx;
isc_sha256_final(digest, sha256ctx);
digestlen = ISC_SHA256_DIGESTLENGTH;
#if OPENSSL_VERSION_NUMBER < 0x00908000L
prefix = sha256_prefix;
prefixlen = sizeof(sha256_prefix);
#else
type = NID_sha256;
#endif
}
break;
case DST_ALG_RSASHA512:
{
isc_sha512_t *sha512ctx = dctx->ctxdata.sha512ctx;
isc_sha512_final(digest, sha512ctx);
digestlen = ISC_SHA512_DIGESTLENGTH;
#if OPENSSL_VERSION_NUMBER < 0x00908000L
prefix = sha512_prefix;
prefixlen = sizeof(sha512_prefix);
#else
type = NID_sha512;
#endif
}
break;
default:
INSIST(0);
ISC_UNREACHABLE();
}
#if OPENSSL_VERSION_NUMBER < 0x00908000L
switch (dctx->key->key_alg) {
#ifndef PK11_MD5_DISABLE
case DST_ALG_RSAMD5:
#endif
case DST_ALG_RSASHA1:
case DST_ALG_NSEC3RSASHA1:
INSIST(type != 0);
status = RSA_sign(type, digest, digestlen, r.base,
&siglen, rsa);
break;
case DST_ALG_RSASHA256:
case DST_ALG_RSASHA512:
INSIST(prefix != NULL);
INSIST(prefixlen != 0);
INSIST(prefixlen + digestlen <= sizeof(digest));
memmove(digest + prefixlen, digest, digestlen);
memmove(digest, prefix, prefixlen);
status = RSA_private_encrypt(digestlen + prefixlen,
digest, r.base, rsa,
RSA_PKCS1_PADDING);
if (status < 0)
status = 0;
else
siglen = status;
break;
default:
INSIST(0);
ISC_UNREACHABLE();
}
#else
INSIST(type != 0);
status = RSA_sign(type, digest, digestlen, r.base, &siglen, rsa);
#endif
if (status == 0)
return (dst__openssl_toresult3(dctx->category,
"RSA_sign",
DST_R_OPENSSLFAILURE));
#endif
isc_buffer_add(sig, siglen);
return (ISC_R_SUCCESS);
}
static isc_result_t
opensslrsa_verify2(dst_context_t *dctx, int maxbits, const isc_region_t *sig) {
dst_key_t *key = dctx->key;
int status = 0;
const BIGNUM *e = NULL;
#if USE_EVP
EVP_MD_CTX *evp_md_ctx = dctx->ctxdata.evp_md_ctx;
EVP_PKEY *pkey = key->keydata.pkey;
RSA *rsa;
int bits;
#else
/* note: ISC_SHA512_DIGESTLENGTH >= ISC_*_DIGESTLENGTH */
unsigned char digest[ISC_SHA512_DIGESTLENGTH];
int type = 0;
unsigned int digestlen = 0;
RSA *rsa = key->keydata.rsa;
#if OPENSSL_VERSION_NUMBER < 0x00908000L
unsigned int prefixlen = 0;
const unsigned char *prefix = NULL;
#endif
#endif
#ifndef PK11_MD5_DISABLE
REQUIRE(dctx->key->key_alg == DST_ALG_RSAMD5 ||
dctx->key->key_alg == DST_ALG_RSASHA1 ||
dctx->key->key_alg == DST_ALG_NSEC3RSASHA1 ||
dctx->key->key_alg == DST_ALG_RSASHA256 ||
dctx->key->key_alg == DST_ALG_RSASHA512);
#else
REQUIRE(dctx->key->key_alg == DST_ALG_RSASHA1 ||
dctx->key->key_alg == DST_ALG_NSEC3RSASHA1 ||
dctx->key->key_alg == DST_ALG_RSASHA256 ||
dctx->key->key_alg == DST_ALG_RSASHA512);
#endif
#if USE_EVP
rsa = EVP_PKEY_get1_RSA(pkey);
if (rsa == NULL)
return (dst__openssl_toresult(DST_R_OPENSSLFAILURE));
RSA_get0_key(rsa, NULL, &e, NULL);
bits = BN_num_bits(e);
RSA_free(rsa);
if (bits > maxbits && maxbits != 0)
return (DST_R_VERIFYFAILURE);
status = EVP_VerifyFinal(evp_md_ctx, sig->base, sig->length, pkey);
switch (status) {
case 1:
return (ISC_R_SUCCESS);
case 0:
return (dst__openssl_toresult(DST_R_VERIFYFAILURE));
default:
return (dst__openssl_toresult3(dctx->category,
"EVP_VerifyFinal",
DST_R_VERIFYFAILURE));
}
#else
RSA_get0_key(rsa, NULL, &e, NULL);
if (BN_num_bits(e) > maxbits && maxbits != 0)
return (DST_R_VERIFYFAILURE);
switch (dctx->key->key_alg) {
#ifndef PK11_MD5_DISABLE
case DST_ALG_RSAMD5:
{
isc_md5_t *md5ctx = dctx->ctxdata.md5ctx;
isc_md5_final(md5ctx, digest);
type = NID_md5;
digestlen = ISC_MD5_DIGESTLENGTH;
}
break;
#endif
case DST_ALG_RSASHA1:
case DST_ALG_NSEC3RSASHA1:
{
isc_sha1_t *sha1ctx = dctx->ctxdata.sha1ctx;
isc_sha1_final(sha1ctx, digest);
type = NID_sha1;
digestlen = ISC_SHA1_DIGESTLENGTH;
}
break;
case DST_ALG_RSASHA256:
{
isc_sha256_t *sha256ctx = dctx->ctxdata.sha256ctx;
isc_sha256_final(digest, sha256ctx);
digestlen = ISC_SHA256_DIGESTLENGTH;
#if OPENSSL_VERSION_NUMBER < 0x00908000L
prefix = sha256_prefix;
prefixlen = sizeof(sha256_prefix);
#else
type = NID_sha256;
#endif
}
break;
case DST_ALG_RSASHA512:
{
isc_sha512_t *sha512ctx = dctx->ctxdata.sha512ctx;
isc_sha512_final(digest, sha512ctx);
digestlen = ISC_SHA512_DIGESTLENGTH;
#if OPENSSL_VERSION_NUMBER < 0x00908000L
prefix = sha512_prefix;
prefixlen = sizeof(sha512_prefix);
#else
type = NID_sha512;
#endif
}
break;
default:
INSIST(0);
ISC_UNREACHABLE();
}
if (sig->length != (unsigned int) RSA_size(rsa))
return (DST_R_VERIFYFAILURE);
#if OPENSSL_VERSION_NUMBER < 0x00908000L
switch (dctx->key->key_alg) {
#ifndef PK11_MD5_DISABLE
case DST_ALG_RSAMD5:
#endif
case DST_ALG_RSASHA1:
case DST_ALG_NSEC3RSASHA1:
INSIST(type != 0);
status = RSA_verify(type, digest, digestlen, sig->base,
RSA_size(rsa), rsa);
break;
case DST_ALG_RSASHA256:
case DST_ALG_RSASHA512:
{
/*
* 1024 is big enough for all valid RSA bit sizes
* for use with DNSSEC.
*/
unsigned char original[PREFIXLEN + 1024];
INSIST(prefix != NULL);
INSIST(prefixlen != 0U);
if (RSA_size(rsa) > (int)sizeof(original))
return (DST_R_VERIFYFAILURE);
status = RSA_public_decrypt(sig->length, sig->base,
original, rsa,
RSA_PKCS1_PADDING);
if (status <= 0)
return (dst__openssl_toresult3(
dctx->category,
"RSA_public_decrypt",
DST_R_VERIFYFAILURE));
if (status != (int)(prefixlen + digestlen))
return (DST_R_VERIFYFAILURE);
if (!isc_safe_memequal(original, prefix, prefixlen))
return (DST_R_VERIFYFAILURE);
if (!isc_safe_memequal(original + prefixlen,
digest, digestlen))
return (DST_R_VERIFYFAILURE);
status = 1;
}
break;
default:
INSIST(0);
ISC_UNREACHABLE();
}
#else
INSIST(type != 0);
status = RSA_verify(type, digest, digestlen, sig->base,
RSA_size(rsa), rsa);
#endif
if (status != 1)
return (dst__openssl_toresult(DST_R_VERIFYFAILURE));
return (ISC_R_SUCCESS);
#endif
}
static isc_result_t
opensslrsa_verify(dst_context_t *dctx, const isc_region_t *sig) {
return (opensslrsa_verify2(dctx, 0, sig));
}
static bool
opensslrsa_compare(const dst_key_t *key1, const dst_key_t *key2) {
int status;
RSA *rsa1 = NULL, *rsa2 = NULL;
const BIGNUM *n1 = NULL, *n2 = NULL;
const BIGNUM *e1 = NULL, *e2 = NULL;
const BIGNUM *d1 = NULL, *d2 = NULL;
const BIGNUM *p1 = NULL, *p2 = NULL;
const BIGNUM *q1 = NULL, *q2 = NULL;
#if USE_EVP
EVP_PKEY *pkey1, *pkey2;
#endif
#if USE_EVP
pkey1 = key1->keydata.pkey;
pkey2 = key2->keydata.pkey;
/*
* The pkey reference will keep these around after
* the RSA_free() call.
*/
if (pkey1 != NULL) {
rsa1 = EVP_PKEY_get1_RSA(pkey1);
RSA_free(rsa1);
}
if (pkey2 != NULL) {
rsa2 = EVP_PKEY_get1_RSA(pkey2);
RSA_free(rsa2);
}
#else
rsa1 = key1->keydata.rsa;
rsa2 = key2->keydata.rsa;
#endif
if (rsa1 == NULL && rsa2 == NULL)
return (true);
else if (rsa1 == NULL || rsa2 == NULL)
return (false);
RSA_get0_key(rsa1, &n1, &e1, &d1);
RSA_get0_key(rsa2, &n2, &e2, &d2);
status = BN_cmp(n1, n2) || BN_cmp(e1, e2);
if (status != 0)
return (false);
#if USE_EVP
if (RSA_test_flags(rsa1, RSA_FLAG_EXT_PKEY) != 0 ||
RSA_test_flags(rsa2, RSA_FLAG_EXT_PKEY) != 0) {
if (RSA_test_flags(rsa1, RSA_FLAG_EXT_PKEY) == 0 ||
RSA_test_flags(rsa2, RSA_FLAG_EXT_PKEY) == 0)
return (false);
/*
* Can't compare private parameters, BTW does it make sense?
*/
return (true);
}
#endif
if (d1 != NULL || d2 != NULL) {
if (d1 == NULL || d2 == NULL)
return (false);
RSA_get0_factors(rsa1, &p1, &q1);
RSA_get0_factors(rsa2, &p2, &q2);
status = BN_cmp(d1, d2) || BN_cmp(p1, p1) || BN_cmp(q1, q2);
if (status != 0)
return (false);
}
return (true);
}
#if OPENSSL_VERSION_NUMBER > 0x00908000L
static int
progress_cb(int p, int n, BN_GENCB *cb) {
union {
void *dptr;
void (*fptr)(int);
} u;
UNUSED(n);
u.dptr = BN_GENCB_get_arg(cb);
if (u.fptr != NULL)
u.fptr(p);
return (1);
}
#endif
static isc_result_t
opensslrsa_generate(dst_key_t *key, int exp, void (*callback)(int)) {
#if OPENSSL_VERSION_NUMBER > 0x00908000L
isc_result_t ret = DST_R_OPENSSLFAILURE;
union {
void *dptr;
void (*fptr)(int);
} u;
RSA *rsa = RSA_new();
BIGNUM *e = BN_new();
#if OPENSSL_VERSION_NUMBER < 0x10100000L || defined(LIBRESSL_VERSION_NUMBER)
BN_GENCB _cb;
#endif
BN_GENCB *cb = BN_GENCB_new();
#if USE_EVP
EVP_PKEY *pkey = EVP_PKEY_new();
#endif
/*
* Reject incorrect RSA key lengths.
*/
switch (key->key_alg) {
case DST_ALG_RSAMD5:
case DST_ALG_RSASHA1:
case DST_ALG_NSEC3RSASHA1:
/* From RFC 3110 */
if (key->key_size > 4096)
goto err;
break;
case DST_ALG_RSASHA256:
/* From RFC 5702 */
if ((key->key_size < 512) ||
(key->key_size > 4096))
goto err;
break;
case DST_ALG_RSASHA512:
/* From RFC 5702 */
if ((key->key_size < 1024) ||
(key->key_size > 4096))
goto err;
break;
default:
INSIST(0);
ISC_UNREACHABLE();
}
if (rsa == NULL || e == NULL || cb == NULL)
goto err;
#if USE_EVP
if (pkey == NULL)
goto err;
if (!EVP_PKEY_set1_RSA(pkey, rsa))
goto err;
#endif
if (exp == 0) {
/* RSA_F4 0x10001 */
BN_set_bit(e, 0);
BN_set_bit(e, 16);
} else {
/* (phased-out) F5 0x100000001 */
BN_set_bit(e, 0);
BN_set_bit(e, 32);
}
if (callback == NULL) {
BN_GENCB_set_old(cb, NULL, NULL);
} else {
u.fptr = callback;
BN_GENCB_set(cb, &progress_cb, u.dptr);
}
if (RSA_generate_key_ex(rsa, key->key_size, e, cb)) {
BN_free(e);
BN_GENCB_free(cb);
cb = NULL;
SET_FLAGS(rsa);
#if USE_EVP
key->keydata.pkey = pkey;
RSA_free(rsa);
#else
key->keydata.rsa = rsa;
#endif
return (ISC_R_SUCCESS);
}
ret = dst__openssl_toresult2("RSA_generate_key_ex",
DST_R_OPENSSLFAILURE);
err:
#if USE_EVP
if (pkey != NULL) {
EVP_PKEY_free(pkey);
pkey = NULL;
}
#endif
if (e != NULL) {
BN_free(e);
e = NULL;
}
if (rsa != NULL) {
RSA_free(rsa);
rsa = NULL;
}
if (cb != NULL) {
BN_GENCB_free(cb);
cb = NULL;
}
return (dst__openssl_toresult(ret));
#else
RSA *rsa;
unsigned long e;
#if USE_EVP
EVP_PKEY *pkey = EVP_PKEY_new();
UNUSED(callback);
if (pkey == NULL)
return (ISC_R_NOMEMORY);
#else
UNUSED(callback);
#endif
if (exp == 0)
e = RSA_F4;
else
e = 0x40000003;
rsa = RSA_generate_key(key->key_size, e, NULL, NULL);
if (rsa == NULL) {
#if USE_EVP
EVP_PKEY_free(pkey);
#endif
return (dst__openssl_toresult2("RSA_generate_key",
DST_R_OPENSSLFAILURE));
}
SET_FLAGS(rsa);
#if USE_EVP
if (!EVP_PKEY_set1_RSA(pkey, rsa)) {
EVP_PKEY_free(pkey);
RSA_free(rsa);
return (dst__openssl_toresult(DST_R_OPENSSLFAILURE));
}
key->keydata.pkey = pkey;
RSA_free(rsa);
#else
key->keydata.rsa = rsa;
#endif
return (ISC_R_SUCCESS);
#endif
}
static bool
opensslrsa_isprivate(const dst_key_t *key) {
const BIGNUM *d = NULL;
#if USE_EVP
RSA *rsa = EVP_PKEY_get1_RSA(key->keydata.pkey);
INSIST(rsa != NULL);
RSA_free(rsa);
/* key->keydata.pkey still has a reference so rsa is still valid. */
#else
RSA *rsa = key->keydata.rsa;
#endif
if (rsa != NULL && RSA_test_flags(rsa, RSA_FLAG_EXT_PKEY) != 0)
return (true);
RSA_get0_key(rsa, NULL, NULL, &d);
return (rsa != NULL && d != NULL);
}
static void
opensslrsa_destroy(dst_key_t *key) {
#if USE_EVP
EVP_PKEY *pkey = key->keydata.pkey;
EVP_PKEY_free(pkey);
key->keydata.pkey = NULL;
#else
RSA *rsa = key->keydata.rsa;
RSA_free(rsa);
key->keydata.rsa = NULL;
#endif
}
static isc_result_t
opensslrsa_todns(const dst_key_t *key, isc_buffer_t *data) {
isc_region_t r;
unsigned int e_bytes;
unsigned int mod_bytes;
isc_result_t ret;
RSA *rsa;
#if USE_EVP
EVP_PKEY *pkey;
#endif
const BIGNUM *e = NULL, *n = NULL;
#if USE_EVP
REQUIRE(key->keydata.pkey != NULL);
#else
REQUIRE(key->keydata.rsa != NULL);
#endif
#if USE_EVP
pkey = key->keydata.pkey;
rsa = EVP_PKEY_get1_RSA(pkey);
if (rsa == NULL)
return (dst__openssl_toresult(DST_R_OPENSSLFAILURE));
#else
rsa = key->keydata.rsa;
#endif
isc_buffer_availableregion(data, &r);
RSA_get0_key(rsa, &n, &e, NULL);
mod_bytes = BN_num_bytes(n);
e_bytes = BN_num_bytes(e);
if (e_bytes < 256) { /*%< key exponent is <= 2040 bits */
if (r.length < 1)
DST_RET(ISC_R_NOSPACE);
isc_buffer_putuint8(data, (uint8_t) e_bytes);
isc_region_consume(&r, 1);
} else {
if (r.length < 3)
DST_RET(ISC_R_NOSPACE);
isc_buffer_putuint8(data, 0);
isc_buffer_putuint16(data, (uint16_t) e_bytes);
isc_region_consume(&r, 3);
}
if (r.length < e_bytes + mod_bytes)
DST_RET(ISC_R_NOSPACE);
RSA_get0_key(rsa, &n, &e, NULL);
BN_bn2bin(e, r.base);
isc_region_consume(&r, e_bytes);
BN_bn2bin(n, r.base);
isc_buffer_add(data, e_bytes + mod_bytes);
ret = ISC_R_SUCCESS;
err:
#if USE_EVP
if (rsa != NULL)
RSA_free(rsa);
#endif
return (ret);
}
static isc_result_t
opensslrsa_fromdns(dst_key_t *key, isc_buffer_t *data) {
RSA *rsa;
isc_region_t r;
unsigned int e_bytes;
unsigned int length;
#if USE_EVP
EVP_PKEY *pkey;
#endif
BIGNUM *e = NULL, *n = NULL;
isc_buffer_remainingregion(data, &r);
if (r.length == 0)
return (ISC_R_SUCCESS);
length = r.length;
rsa = RSA_new();
if (rsa == NULL)
return (dst__openssl_toresult(ISC_R_NOMEMORY));
SET_FLAGS(rsa);
if (r.length < 1) {
RSA_free(rsa);
return (DST_R_INVALIDPUBLICKEY);
}
e_bytes = *r.base;
isc_region_consume(&r, 1);
if (e_bytes == 0) {
if (r.length < 2) {
RSA_free(rsa);
return (DST_R_INVALIDPUBLICKEY);
}
e_bytes = (*r.base) << 8;
isc_region_consume(&r, 1);
e_bytes += *r.base;
isc_region_consume(&r, 1);
}
if (r.length < e_bytes) {
RSA_free(rsa);
return (DST_R_INVALIDPUBLICKEY);
}
e = BN_bin2bn(r.base, e_bytes, NULL);
isc_region_consume(&r, e_bytes);
n = BN_bin2bn(r.base, r.length, NULL);
if (RSA_set0_key(rsa, n, e, NULL) == 0) {
if (n != NULL) BN_free(n);
if (e != NULL) BN_free(e);
RSA_free(rsa);
return (ISC_R_NOMEMORY);
}
key->key_size = BN_num_bits(n);
isc_buffer_forward(data, length);
#if USE_EVP
pkey = EVP_PKEY_new();
if (pkey == NULL) {
RSA_free(rsa);
return (ISC_R_NOMEMORY);
}
if (!EVP_PKEY_set1_RSA(pkey, rsa)) {
EVP_PKEY_free(pkey);
RSA_free(rsa);
return (dst__openssl_toresult(DST_R_OPENSSLFAILURE));
}
key->keydata.pkey = pkey;
RSA_free(rsa);
#else
key->keydata.rsa = rsa;
#endif
return (ISC_R_SUCCESS);
}
static isc_result_t
opensslrsa_tofile(const dst_key_t *key, const char *directory) {
int i;
RSA *rsa;
dst_private_t priv;
unsigned char *bufs[8];
isc_result_t result;
const BIGNUM *n = NULL, *e = NULL, *d = NULL;
const BIGNUM *p = NULL, *q = NULL;
const BIGNUM *dmp1 = NULL, *dmq1 = NULL, *iqmp = NULL;
#if USE_EVP
if (key->keydata.pkey == NULL)
return (DST_R_NULLKEY);
rsa = EVP_PKEY_get1_RSA(key->keydata.pkey);
if (rsa == NULL)
return (dst__openssl_toresult(DST_R_OPENSSLFAILURE));
#else
if (key->keydata.rsa == NULL)
return (DST_R_NULLKEY);
rsa = key->keydata.rsa;
#endif
memset(bufs, 0, sizeof(bufs));
RSA_get0_key(rsa, &n, &e, &d);
RSA_get0_factors(rsa, &p, &q);
RSA_get0_crt_params(rsa, &dmp1, &dmq1, &iqmp);
if (key->external) {
priv.nelements = 0;
result = dst__privstruct_writefile(key, &priv, directory);
goto fail;
}
for (i = 0; i < 8; i++) {
bufs[i] = isc_mem_get(key->mctx, BN_num_bytes(n));
if (bufs[i] == NULL) {
result = ISC_R_NOMEMORY;
goto fail;
}
}
i = 0;
priv.elements[i].tag = TAG_RSA_MODULUS;
priv.elements[i].length = BN_num_bytes(n);
BN_bn2bin(n, bufs[i]);
priv.elements[i].data = bufs[i];
i++;
priv.elements[i].tag = TAG_RSA_PUBLICEXPONENT;
priv.elements[i].length = BN_num_bytes(e);
BN_bn2bin(e, bufs[i]);
priv.elements[i].data = bufs[i];
i++;
if (d != NULL) {
priv.elements[i].tag = TAG_RSA_PRIVATEEXPONENT;
priv.elements[i].length = BN_num_bytes(d);
BN_bn2bin(d, bufs[i]);
priv.elements[i].data = bufs[i];
i++;
}
if (p != NULL) {
priv.elements[i].tag = TAG_RSA_PRIME1;
priv.elements[i].length = BN_num_bytes(p);
BN_bn2bin(p, bufs[i]);
priv.elements[i].data = bufs[i];
i++;
}
if (q != NULL) {
priv.elements[i].tag = TAG_RSA_PRIME2;
priv.elements[i].length = BN_num_bytes(q);
BN_bn2bin(q, bufs[i]);
priv.elements[i].data = bufs[i];
i++;
}
if (dmp1 != NULL) {
priv.elements[i].tag = TAG_RSA_EXPONENT1;
priv.elements[i].length = BN_num_bytes(dmp1);
BN_bn2bin(dmp1, bufs[i]);
priv.elements[i].data = bufs[i];
i++;
}
if (dmq1 != NULL) {
priv.elements[i].tag = TAG_RSA_EXPONENT2;
priv.elements[i].length = BN_num_bytes(dmq1);
BN_bn2bin(dmq1, bufs[i]);
priv.elements[i].data = bufs[i];
i++;
}
if (iqmp != NULL) {
priv.elements[i].tag = TAG_RSA_COEFFICIENT;
priv.elements[i].length = BN_num_bytes(iqmp);
BN_bn2bin(iqmp, bufs[i]);
priv.elements[i].data = bufs[i];
i++;
}
if (key->engine != NULL) {
priv.elements[i].tag = TAG_RSA_ENGINE;
priv.elements[i].length =
(unsigned short)strlen(key->engine) + 1;
priv.elements[i].data = (unsigned char *)key->engine;
i++;
}
if (key->label != NULL) {
priv.elements[i].tag = TAG_RSA_LABEL;
priv.elements[i].length =
(unsigned short)strlen(key->label) + 1;
priv.elements[i].data = (unsigned char *)key->label;
i++;
}
priv.nelements = i;
result = dst__privstruct_writefile(key, &priv, directory);
fail:
#if USE_EVP
RSA_free(rsa);
#endif
for (i = 0; i < 8; i++) {
if (bufs[i] == NULL)
break;
isc_mem_put(key->mctx, bufs[i], BN_num_bytes(n));
}
return (result);
}
static isc_result_t
rsa_check(RSA *rsa, RSA *pub) {
const BIGNUM *n1 = NULL, *n2 = NULL;
const BIGNUM *e1 = NULL, *e2 = NULL;
BIGNUM *n = NULL, *e = NULL;
/*
* Public parameters should be the same but if they are not set
* copy them from the public key.
*/
RSA_get0_key(rsa, &n1, &e1, NULL);
if (pub != NULL) {
RSA_get0_key(pub, &n2, &e2, NULL);
if (n1 != NULL) {
if (BN_cmp(n1, n2) != 0)
return (DST_R_INVALIDPRIVATEKEY);
} else {
n = BN_dup(n2);
}
if (e1 != NULL) {
if (BN_cmp(e1, e2) != 0)
return (DST_R_INVALIDPRIVATEKEY);
} else {
e = BN_dup(e2);
}
if (RSA_set0_key(rsa, n, e, NULL) == 0) {
if (n != NULL)
BN_free(n);
if (e != NULL)
BN_free(e);
}
}
RSA_get0_key(rsa, &n1, &e1, NULL);
if (n1 == NULL || e1 == NULL)
return (DST_R_INVALIDPRIVATEKEY);
return (ISC_R_SUCCESS);
}
static isc_result_t
opensslrsa_parse(dst_key_t *key, isc_lex_t *lexer, dst_key_t *pub) {
dst_private_t priv;
isc_result_t ret;
int i;
RSA *rsa = NULL, *pubrsa = NULL;
#if !defined(OPENSSL_NO_ENGINE)
ENGINE *ep = NULL;
const BIGNUM *ex = NULL;
#endif
isc_mem_t *mctx = key->mctx;
const char *engine = NULL, *label = NULL;
#if !defined(OPENSSL_NO_ENGINE) || USE_EVP
EVP_PKEY *pkey = NULL;
#endif
BIGNUM *n = NULL, *e = NULL, *d = NULL;
BIGNUM *p = NULL, *q = NULL;
BIGNUM *dmp1 = NULL, *dmq1 = NULL, *iqmp = NULL;
/* read private key file */
ret = dst__privstruct_parse(key, DST_ALG_RSA, lexer, mctx, &priv);
if (ret != ISC_R_SUCCESS)
goto err;
if (key->external) {
if (priv.nelements != 0)
DST_RET(DST_R_INVALIDPRIVATEKEY);
if (pub == NULL)
DST_RET(DST_R_INVALIDPRIVATEKEY);
key->keydata.pkey = pub->keydata.pkey;
pub->keydata.pkey = NULL;
key->key_size = pub->key_size;
dst__privstruct_free(&priv, mctx);
isc_safe_memwipe(&priv, sizeof(priv));
return (ISC_R_SUCCESS);
}
#if USE_EVP
if (pub != NULL && pub->keydata.pkey != NULL)
pubrsa = EVP_PKEY_get1_RSA(pub->keydata.pkey);
#else
if (pub != NULL && pub->keydata.rsa != NULL) {
pubrsa = pub->keydata.rsa;
pub->keydata.rsa = NULL;
}
#endif
for (i = 0; i < priv.nelements; i++) {
switch (priv.elements[i].tag) {
case TAG_RSA_ENGINE:
engine = (char *)priv.elements[i].data;
break;
case TAG_RSA_LABEL:
label = (char *)priv.elements[i].data;
break;
default:
break;
}
}
/*
* Is this key is stored in a HSM?
* See if we can fetch it.
*/
if (label != NULL) {
#if !defined(OPENSSL_NO_ENGINE)
if (engine == NULL)
DST_RET(DST_R_NOENGINE);
ep = dst__openssl_getengine(engine);
if (ep == NULL)
DST_RET(DST_R_NOENGINE);
pkey = ENGINE_load_private_key(ep, label, NULL, NULL);
if (pkey == NULL)
DST_RET(dst__openssl_toresult2(
"ENGINE_load_private_key",
ISC_R_NOTFOUND));
key->engine = isc_mem_strdup(key->mctx, engine);
if (key->engine == NULL)
DST_RET(ISC_R_NOMEMORY);
key->label = isc_mem_strdup(key->mctx, label);
if (key->label == NULL)
DST_RET(ISC_R_NOMEMORY);
rsa = EVP_PKEY_get1_RSA(pkey);
if (rsa == NULL)
DST_RET(dst__openssl_toresult(DST_R_OPENSSLFAILURE));
if (rsa_check(rsa, pubrsa) != ISC_R_SUCCESS)
DST_RET(DST_R_INVALIDPRIVATEKEY);
RSA_get0_key(rsa, NULL, &ex, NULL);
if (BN_num_bits(ex) > RSA_MAX_PUBEXP_BITS)
DST_RET(ISC_R_RANGE);
if (pubrsa != NULL)
RSA_free(pubrsa);
key->key_size = EVP_PKEY_bits(pkey);
#if USE_EVP
key->keydata.pkey = pkey;
RSA_free(rsa);
#else
key->keydata.rsa = rsa;
EVP_PKEY_free(pkey);
#endif
dst__privstruct_free(&priv, mctx);
isc_safe_memwipe(&priv, sizeof(priv));
return (ISC_R_SUCCESS);
#else
DST_RET(DST_R_NOENGINE);
#endif
}
rsa = RSA_new();
if (rsa == NULL)
DST_RET(ISC_R_NOMEMORY);
SET_FLAGS(rsa);
#if USE_EVP
pkey = EVP_PKEY_new();
if (pkey == NULL)
DST_RET(ISC_R_NOMEMORY);
if (!EVP_PKEY_set1_RSA(pkey, rsa))
DST_RET(ISC_R_FAILURE);
key->keydata.pkey = pkey;
#else
key->keydata.rsa = rsa;
#endif
for (i = 0; i < priv.nelements; i++) {
BIGNUM *bn;
switch (priv.elements[i].tag) {
case TAG_RSA_ENGINE:
continue;
case TAG_RSA_LABEL:
continue;
default:
bn = BN_bin2bn(priv.elements[i].data,
priv.elements[i].length, NULL);
if (bn == NULL)
DST_RET(ISC_R_NOMEMORY);
switch (priv.elements[i].tag) {
case TAG_RSA_MODULUS:
n = bn;
break;
case TAG_RSA_PUBLICEXPONENT:
e = bn;
break;
case TAG_RSA_PRIVATEEXPONENT:
d = bn;
break;
case TAG_RSA_PRIME1:
p = bn;
break;
case TAG_RSA_PRIME2:
q = bn;
break;
case TAG_RSA_EXPONENT1:
dmp1 = bn;
break;
case TAG_RSA_EXPONENT2:
dmq1 = bn;
break;
case TAG_RSA_COEFFICIENT:
iqmp = bn;
break;
}
}
}
dst__privstruct_free(&priv, mctx);
isc_safe_memwipe(&priv, sizeof(priv));
if (RSA_set0_key(rsa, n, e, d) == 0) {
if (n != NULL) BN_free(n);
if (e != NULL) BN_free(e);
if (d != NULL) BN_free(d);
}
if (RSA_set0_factors(rsa, p, q) == 0) {
if (p != NULL) BN_free(p);
if (q != NULL) BN_free(q);
}
if (RSA_set0_crt_params(rsa, dmp1, dmq1, iqmp) == 0) {
if (dmp1 != NULL) BN_free(dmp1);
if (dmq1 != NULL) BN_free(dmq1);
if (iqmp != NULL) BN_free(iqmp);
}
if (rsa_check(rsa, pubrsa) != ISC_R_SUCCESS)
DST_RET(DST_R_INVALIDPRIVATEKEY);
if (BN_num_bits(e) > RSA_MAX_PUBEXP_BITS)
DST_RET(ISC_R_RANGE);
key->key_size = BN_num_bits(n);
if (pubrsa != NULL)
RSA_free(pubrsa);
#if USE_EVP
RSA_free(rsa);
#endif
return (ISC_R_SUCCESS);
err:
#if USE_EVP
if (pkey != NULL)
EVP_PKEY_free(pkey);
#endif
if (rsa != NULL)
RSA_free(rsa);
if (pubrsa != NULL)
RSA_free(pubrsa);
key->keydata.generic = NULL;
dst__privstruct_free(&priv, mctx);
isc_safe_memwipe(&priv, sizeof(priv));
return (ret);
}
static isc_result_t
opensslrsa_fromlabel(dst_key_t *key, const char *engine, const char *label,
const char *pin)
{
#if !defined(OPENSSL_NO_ENGINE)
ENGINE *e = NULL;
isc_result_t ret;
EVP_PKEY *pkey = NULL;
RSA *rsa = NULL, *pubrsa = NULL;
const BIGNUM *ex = NULL;
UNUSED(pin);
if (engine == NULL) {
DST_RET(DST_R_NOENGINE);
}
e = dst__openssl_getengine(engine);
if (e == NULL) {
DST_RET(DST_R_NOENGINE);
}
pkey = ENGINE_load_public_key(e, label, NULL, NULL);
if (pkey != NULL) {
pubrsa = EVP_PKEY_get1_RSA(pkey);
EVP_PKEY_free(pkey);
if (pubrsa == NULL) {
DST_RET(dst__openssl_toresult(DST_R_OPENSSLFAILURE));
}
}
pkey = ENGINE_load_private_key(e, label, NULL, NULL);
if (pkey == NULL) {
DST_RET(dst__openssl_toresult2("ENGINE_load_private_key",
ISC_R_NOTFOUND));
}
key->engine = isc_mem_strdup(key->mctx, engine);
if (key->engine == NULL) {
DST_RET(ISC_R_NOMEMORY);
}
key->label = isc_mem_strdup(key->mctx, label);
if (key->label == NULL) {
DST_RET(ISC_R_NOMEMORY);
}
rsa = EVP_PKEY_get1_RSA(pkey);
if (rsa == NULL) {
DST_RET(dst__openssl_toresult(DST_R_OPENSSLFAILURE));
}
if (rsa_check(rsa, pubrsa) != ISC_R_SUCCESS) {
DST_RET(DST_R_INVALIDPRIVATEKEY);
}
RSA_get0_key(rsa, NULL, &ex, NULL);
if (BN_num_bits(ex) > RSA_MAX_PUBEXP_BITS) {
DST_RET(ISC_R_RANGE);
}
if (pubrsa != NULL) {
RSA_free(pubrsa);
}
key->key_size = EVP_PKEY_bits(pkey);
#if USE_EVP
key->keydata.pkey = pkey;
RSA_free(rsa);
#else
key->keydata.rsa = rsa;
EVP_PKEY_free(pkey);
#endif
return (ISC_R_SUCCESS);
err:
if (rsa != NULL)
RSA_free(rsa);
if (pubrsa != NULL)
RSA_free(pubrsa);
if (pkey != NULL)
EVP_PKEY_free(pkey);
return (ret);
#else
UNUSED(key);
UNUSED(engine);
UNUSED(label);
UNUSED(pin);
return(DST_R_NOENGINE);
#endif
}
static dst_func_t opensslrsa_functions = {
opensslrsa_createctx,
NULL, /*%< createctx2 */
opensslrsa_destroyctx,
opensslrsa_adddata,
opensslrsa_sign,
opensslrsa_verify,
opensslrsa_verify2,
NULL, /*%< computesecret */
opensslrsa_compare,
NULL, /*%< paramcompare */
opensslrsa_generate,
opensslrsa_isprivate,
opensslrsa_destroy,
opensslrsa_todns,
opensslrsa_fromdns,
opensslrsa_tofile,
opensslrsa_parse,
NULL, /*%< cleanup */
opensslrsa_fromlabel,
NULL, /*%< dump */
NULL, /*%< restore */
};
isc_result_t
dst__opensslrsa_init(dst_func_t **funcp, unsigned char algorithm) {
REQUIRE(funcp != NULL);
if (*funcp == NULL) {
switch (algorithm) {
#ifndef PK11_MD5_DISABLE
case DST_ALG_RSAMD5:
if (isc_md5_available())
*funcp = &opensslrsa_functions;
break;
#endif
case DST_ALG_RSASHA256:
#if defined(HAVE_EVP_SHA256) || !USE_EVP
*funcp = &opensslrsa_functions;
#endif
break;
case DST_ALG_RSASHA512:
#if defined(HAVE_EVP_SHA512) || !USE_EVP
*funcp = &opensslrsa_functions;
#endif
break;
default:
*funcp = &opensslrsa_functions;
break;
}
}
return (ISC_R_SUCCESS);
}
#else /* OPENSSL */
#include <isc/util.h>
EMPTY_TRANSLATION_UNIT
#endif /* OPENSSL */
/*! \file */