Blob Blame History Raw
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2013, Weta Digital Ltd
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// *       Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// *       Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// *       Neither the name of Industrial Light & Magic nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
///////////////////////////////////////////////////////////////////////////

#include "ImfInputFile.h"
#include <stdlib.h>
#include <vector>
#include "ImfChannelList.h"
#include "ImfOutputFile.h"
#include "ImfCompression.h"
#include "ImfStandardAttributes.h"
#include <algorithm>
#include <iostream>
#include <assert.h>
#include <IlmThread.h>
#include <ImathBox.h>

#include "tmpDir.h"

namespace IMF = OPENEXR_IMF_NAMESPACE;
using namespace IMF;
using namespace std;
using namespace IMATH_NAMESPACE;
using namespace ILMTHREAD_NAMESPACE;


namespace
{

using OPENEXR_IMF_NAMESPACE::UINT;
using OPENEXR_IMF_NAMESPACE::FLOAT;

std::string filename;

vector<char> writingBuffer; // buffer as file was written
vector<char> readingBuffer; // buffer containing new image (and filled channels?)
vector<char> preReadBuffer; // buffer as it was before reading - unread, unfilled channels should be unchanged

int gOptimisedReads = 0;
int gSuccesses = 0;
int gFailures = 0;


//
// @todo Needs a description of what this is used for.
//
//
struct Schema
{
    const char*         _name;     // name of this scheme
    const char* const*  _active;   // channels to be read
    const char* const * _passive;  // channels to be ignored (keep in buffer passed to inputfile, should not be overwritten)
    int                 _banks;
    const char* const * _views;    // list of views to write, or NULL
    const PixelType*    _types;    // NULL for all HALF, otherwise per-channel type
    
    vector<string> views() const
    {
        const char * const* v = _views;
        vector<string> svec;
        while(*v!=NULL)
        {
            svec.push_back (*v);
            v++;
        }
        return svec;
    } 
};


const char * rgb[] = {"R","G","B",NULL};
const char * rgba[] = {"R","G","B","A",NULL};
const char * bgr[] = {"B","G","R",NULL};
const char * abgr[] = {"A","B","G","R",NULL};
const char * alpha[] = {"A",NULL};
const char * redalpha[] = {"R","A",NULL};
const char * rgbrightrgb[] = {"R","G","B","right.R","right.G","right.B",NULL};
const char * rgbleftrgb[] = {"R","G","B","left.R","left.G","left.B",NULL};
const char * rgbarightrgba[] = {"R","G","B","A","right.R","right.G","right.B","right.A",NULL};
const char * rgbaleftrgba[] = {"R","G","B","A","left.R","left.G","left.B","left.A",NULL};
const char * rgbrightrgba[] = {"R","G","B","right.R","right.G","right.B","right.A",NULL};
const char * rgbleftrgba[] = {"R","G","B","left.R","left.G","left.B","left.A",NULL};
const char * rgbarightrgb[] = {"R","G","B","A","right.R","right.G","right.B",NULL};
const char * rgbaleftrgb[] = {"R","G","B","A","left.R","left.G","left.B",NULL};
const char * rightrgba[] = {"right.R","right.G","right.B","right.A",NULL};
const char * leftrgba[] = {"left.R","left.G","left.B","left.A",NULL};
const char * rightrgb[] = {"right.R","right.G","right.B",NULL};
const char * leftrgb[] = {"left.R","left.G","left.B",NULL};
const char * threeview[] ={"R","G","B","A","left.R","left.G","left.B","left.A","right.R","right.G","right.B","right.A",NULL};
const char * trees[] = {"rimu","pohutukawa","manuka","kauri",NULL};
const char * treesandbirds[]= {"kiwi","rimu","pohutukawa","kakapu","kauri","manuka","moa","fantail",NULL};

const char * lefthero[] = {"left","right",NULL};
const char * righthero[] = {"right","left",NULL};
const char * centrehero[] = {"centre","left","right",NULL};

const PixelType four_floats[] = {IMF::FLOAT,IMF::FLOAT,IMF::FLOAT,IMF::FLOAT};
const PixelType hhhfff[] = {IMF::HALF,IMF::HALF,IMF::HALF,IMF::FLOAT,IMF::FLOAT,IMF::FLOAT};
const PixelType hhhhffff[] = {IMF::HALF,IMF::HALF,IMF::HALF,IMF::HALF,IMF::FLOAT,IMF::FLOAT,IMF::FLOAT,IMF::FLOAT};

Schema Schemes[] =
{
        {"RGBHalf"              ,rgb           ,NULL      ,1 ,NULL       ,NULL       },
        {"RGBAHalf"             ,rgba          ,NULL      ,1 ,NULL       ,NULL       },
        {"ABGRHalf"             ,abgr          ,NULL      ,1 ,NULL       ,NULL       },
        {"RGBFloat"             ,rgb           ,NULL      ,1 ,NULL       ,four_floats},
        {"BGRHalf"              ,bgr           ,NULL      ,1 ,NULL       ,NULL       },
        {"RGBLeftRGB"           ,rgbleftrgb    ,NULL      ,1 ,righthero  ,NULL       },
        {"RGBRightRGB"          ,rgbrightrgb   ,NULL      ,1 ,lefthero   ,NULL       },
        {"RGBALeftRGBA"         ,rgbaleftrgba  ,NULL      ,1 ,righthero  ,NULL       },
        {"RGBARightRGBA"        ,rgbarightrgba ,NULL      ,1 ,lefthero   ,NULL       },
        {"LeftRGB"              ,leftrgb       ,NULL      ,1 ,NULL       ,NULL       },
        {"RightRGB"             ,rightrgb      ,NULL      ,1 ,NULL       ,NULL       },
        {"LeftRGBA"             ,leftrgba      ,NULL      ,1 ,NULL       ,NULL       },
        {"RightRGBA"            ,rightrgba     ,NULL      ,1 ,NULL       ,NULL       },
        {"TripleView"           ,threeview     ,NULL      ,1 ,centrehero ,NULL       },
        {"Trees"                ,trees         ,NULL      ,1 ,NULL       ,NULL       },
        {"TreesAndBirds"        ,treesandbirds ,NULL      ,1 ,NULL       ,NULL       },
        {"RGBLeftRGBA"          ,rgbleftrgba   ,NULL      ,1 ,righthero  ,NULL       },
        {"RGBRightRGBA"         ,rgbrightrgba  ,NULL      ,1 ,lefthero   ,NULL       },
        {"RGBALeftRGB"          ,rgbaleftrgb   ,NULL      ,1 ,righthero  ,NULL       },
        {"RGBARightRGB"         ,rgbarightrgb  ,NULL      ,1 ,lefthero   ,NULL       },
        {"TwinRGBLeftRGB"       ,rgbleftrgb    ,NULL      ,2 ,righthero  ,NULL       },
        {"TwinRGBRightRGB"      ,rgbrightrgb   ,NULL      ,2 ,lefthero   ,NULL       },
        {"TwinRGBALeftRGBA"     ,rgbaleftrgba  ,NULL      ,2 ,righthero  ,NULL       },
        {"TwinRGBARightRGBA"    ,rgbarightrgba ,NULL     , 2 ,lefthero   ,NULL       },
        {"TripleTripleView"     ,threeview     ,NULL      ,3 ,centrehero ,NULL       },
        {"Alpha"                ,alpha         ,NULL      ,1 ,NULL       ,NULL       },
        {"RedAlpha"             ,redalpha      ,NULL      ,1 ,NULL       ,NULL       },
        {"RG+BA"                ,rgba          ,NULL      ,2 ,NULL       ,NULL       },//interleave only RG, then BA
        {"RGBpassiveA"          ,rgb           ,alpha     ,1 ,NULL       ,NULL       },//interleave only RG, then BA
        {"RGBpassiveleftRGB"    ,rgb           ,leftrgb   ,1 ,NULL       ,NULL       },
        {"RGBFloatA"            ,rgba          ,NULL      ,1 ,NULL       ,hhhfff     },
        {"RGBFloatLeftRGB"      ,rgbleftrgb    ,NULL      ,1 ,righthero  ,hhhfff     },
        {"RGBAFloatLeftRGBA"    ,rgbaleftrgba  ,NULL      ,1 ,righthero  ,hhhhffff   },
        {"RGBApassiverightRGBA" ,rgba          ,rightrgba ,1 ,NULL       ,NULL       },
        {"BanksOfTreesAndBirds" ,treesandbirds ,NULL      ,2 ,NULL       ,NULL       },
        {NULL,NULL,NULL,0,NULL,NULL}
};



bool compare(const FrameBuffer& asRead,
             const FrameBuffer& asWritten,
             const Box2i& dataWindow,
             bool nonfatal
            )
{
    for (FrameBuffer::ConstIterator i =asRead.begin();i!=asRead.end();i++)
    {
        FrameBuffer::ConstIterator p = asWritten.find(i.name());
        for (int y=dataWindow.min.y; y<= dataWindow.max.y; y++)
        {
            for (int x = dataWindow.min.x; x <= dataWindow.max.x; x++)
                 
            {
                char * ptr = (i.slice().base+i.slice().yStride*y +i.slice().xStride*x);
                half readHalf;
                switch (i.slice().type)
                {
                    case IMF::FLOAT :
                        readHalf =  half(*(float*) ptr);
                        break;
                    case IMF::HALF :
                        readHalf = half(*(half*) ptr);
                        break;
                    case IMF::UINT :
                        continue; // can't very well check this
                    default :
                        cout << "don't know about that\n";
                        exit(1);
                }
                
                half writtenHalf;

                if (p!=asWritten.end())
                {
                    char * ptr = p.slice().base+p.slice().yStride*y +
                                 p.slice().xStride*x;
                    switch (p.slice().type)
                    {
                    case IMF::FLOAT :
                        writtenHalf = half(*(float*) ptr);
                        break;
                    case IMF::HALF :
                        writtenHalf = half(*(half*) ptr);
                        break;
                    case IMF::UINT :
                        continue;
                    default :
                        cout << "don't know about that\n";
                        exit(1);
                    }
                }
                else
                {
                    writtenHalf=half(i.slice().fillValue);
                }

                if (writtenHalf.bits()!=readHalf.bits())
                {
                    if (nonfatal)
                    {
                        return false;
                    }
                    else
                    {
                        cout << "\n\nerror reading back channel " << i.name() << " pixel " << x << ',' << y << " got " << readHalf << " expected " << writtenHalf << endl;
                        assert(writtenHalf.bits()==readHalf.bits());
                        exit(1);
                    }
                }             
            }

        }
    }
    return true;
}

//
// allocate readingBuffer or writingBuffer, setting up a framebuffer to point to the right thing
//
ChannelList
setupBuffer (const Header& hdr,       // header to grab datawindow from
             const char * const *channels, // NULL terminated list of channels to write
             const char * const *passivechannels, // NULL terminated list of channels to write
             const PixelType* pt,     // type of each channel, or NULL for all HALF
             FrameBuffer& buf,        // buffer to fill with pointers to channel
             FrameBuffer& prereadbuf, // channels which aren't being read - indexes into the preread buffer
             FrameBuffer& postreadbuf, // channels which aren't being read - indexes into the postread buffer
             int banks,                    // number of banks - channels within each bank are interleaved, banks are scanline interleaved
             bool writing                  // true if should allocate
            )
{
    Box2i dw = hdr.dataWindow();

    //
    // how many channels in total
    //
    int activechans = 0;
    int bytes_per_pixel =0;
    
    while (channels[activechans]!=NULL)
    {
        if (pt==NULL)
        {
            bytes_per_pixel+=2;
        }
        else
        {
            switch (pt[activechans])
            {
                case IMF::HALF : bytes_per_pixel+=2;break;
                case IMF::FLOAT : case IMF::UINT : bytes_per_pixel+=4;break;
                default :
                    cout << "Unexpected PixelType?\n";
                    exit(1);
            }
        }
        activechans++;
    }

    
    int passivechans=0;
    while (passivechannels!=NULL && passivechannels[passivechans]!=NULL)
    {
        if (pt==NULL)
        {
            bytes_per_pixel+=2;
        }
        else
        {
            switch (pt[passivechans+activechans])
            {
                case IMF::HALF : bytes_per_pixel+=2;break;
                case IMF::FLOAT : case IMF::UINT : bytes_per_pixel+=4;break;
                default :
                    cout << "Unexpected PixelType?\n";
                    exit(1);
            }
        }
        passivechans++;
    }

   int chans = activechans+passivechans;

    
    int bytes_per_bank = bytes_per_pixel/banks;
    
    int samples = (hdr.dataWindow().max.x+1-hdr.dataWindow().min.x)*
                  (hdr.dataWindow().max.y+1-hdr.dataWindow().min.y)*chans;

    int size = samples*bytes_per_pixel;

    
    if (writing)
    {
        writingBuffer.resize(size);
    }
    else
    {
        readingBuffer.resize(size);
    }
   
     const char * write_ptr = writing ? &writingBuffer[0] : &readingBuffer[0];
     // fill with random halfs, casting to floats for float channels
     int chan=0;
     for (int i=0;i<samples;i++)
     {
         unsigned short int values = (unsigned short int) floor((double(rand())/double(RAND_MAX))*65535.0);
         half v;
         v.setBits(values);
         if (pt==NULL || pt[chan]==IMF::HALF)
         {
             *(half*)write_ptr = half(v);
             write_ptr+=2;
         }
         else
         {
             *(float*)write_ptr = float(v);
             write_ptr+=4;
         }
         chan++;
         if (chan==chans)
         {
             chan=0;
         }
     
     }

     if (!writing)
     {
         //take a copy of the buffer as it was before being read
         preReadBuffer = readingBuffer;
     }
     
    char* offset=NULL;

    ChannelList chanlist;

    int bytes_per_row = bytes_per_pixel*(dw.max.x+1-dw.min.x);
    int bytes_per_bank_row = bytes_per_row/banks;
    
    int first_pixel_index = bytes_per_row*dw.min.y+bytes_per_bank*dw.min.x;
    
    for (int i=0;i<chans;i++)
    {
        PixelType type = pt==NULL ? IMF::HALF : pt[i];
        if (i<activechans && writing)
        {
            chanlist.insert(channels[i],type);
        }


        if (i % (chans/banks) ==0)
        {
            //
            // set offset pointer to beginning of bank
            //

            int bank = i / (chans/banks);
            offset = (writing ? &writingBuffer[0] :
                                &readingBuffer[0]) + bank*bytes_per_bank_row - first_pixel_index;
        }
        
        if (i<activechans)
        {
            
            buf.insert (channels[i],
                        Slice (type,
                               offset,
                               bytes_per_bank,
                               bytes_per_row,
                               1,1,100+i));
        }
        else
        {
            if (!writing)
            {
                
                postreadbuf.insert (passivechannels[i-activechans],
                                    Slice (type,
                                           offset,
                                           bytes_per_bank,
                                           bytes_per_row,
                                           1,1,0.4));

                char * pre_offset = offset-&readingBuffer[0]+&preReadBuffer[0];
                prereadbuf.insert (passivechannels[i-activechans],
                                   Slice (type,
                                          pre_offset,
                                          bytes_per_bank,
                                          bytes_per_row,
                                          1,1,0.4));
            }
        }
        switch (type)
        {
            case IMF::HALF :
                offset+=2;
                break;
            case IMF::FLOAT :
                offset+=4;
                break;
            default :
                cout << "Unexpected Pixel Type\n";
                exit(1);
        
        }
    }

    return chanlist;
}



Box2i writefile(Schema & scheme,FrameBuffer& buf,bool tiny)
{
    const int height = 128;
    const int width  = 128;

    Header hdr(width,height,1);
    
    
    //min values in range (-100,100)
    hdr.dataWindow().min.x = int(200.0*double(rand())/double(RAND_MAX)-100.0);
    hdr.dataWindow().min.y = int(200.0*double(rand())/double(RAND_MAX)-100.0);
    
    
    // in tiny mode, make image up to 14*14 pixels (less than two SSE instructions)
    if (tiny)
    {
        hdr.dataWindow().max.x = hdr.dataWindow().min.x + 1+int(13*double(rand())/double(RAND_MAX));
        hdr.dataWindow().max.y = hdr.dataWindow().min.y + 1+int(13*double(rand())/double(RAND_MAX));
    }
    else
    {
        // in normal mode, make chunky images
        hdr.dataWindow().max.x = hdr.dataWindow().min.x + 64+int(400*double(rand())/double(RAND_MAX));
        hdr.dataWindow().max.y = hdr.dataWindow().min.y + 64+int(400*double(rand())/double(RAND_MAX));
    }
    
    hdr.compression()=ZIPS_COMPRESSION;
    
    FrameBuffer dummy1,dummy2;
    
    hdr.channels() = setupBuffer (hdr,
                                  scheme._active,
                                  scheme._passive,
                                  scheme._types,
                                  buf,
                                  dummy1,
                                  dummy2,
                                  scheme._banks,
                                  true);
    
    if (scheme._views)
    {
        addMultiView(hdr,scheme.views());
    }
    
    remove (filename.c_str());
    OutputFile f(filename.c_str(), hdr);
    f.setFrameBuffer(buf);
    f.writePixels(hdr.dataWindow().max.y-hdr.dataWindow().min.y+1);

    return hdr.dataWindow();
}

bool
readfile (Schema scheme,
          FrameBuffer & buf,      ///< list of channels to read: index to readingBuffer
          FrameBuffer & preread,  ///< list of channels to skip: index to preReadBuffer
          FrameBuffer & postread) ///< list of channels to skip: index to readingBuffer)
{
    InputFile infile (filename.c_str());
    setupBuffer(infile.header(),
                scheme._active,
                scheme._passive,
                scheme._types,
                buf,
                preread,
                postread,
                scheme._banks,false);
    infile.setFrameBuffer(buf);
    
    cout.flush();
    infile.readPixels (infile.header().dataWindow().min.y,
                       infile.header().dataWindow().max.y);

    return infile.isOptimizationEnabled();
}

void
test (Schema writeScheme, Schema readScheme, bool nonfatal, bool tiny)
{
    ostringstream q;
    q << writeScheme._name << " read as " << readScheme._name << "...";
    cout << left << setw(53) << q.str();

    FrameBuffer writeFrameBuf;
    Box2i dw = writefile(writeScheme,writeFrameBuf,tiny);
    FrameBuffer readFrameBuf;
    FrameBuffer preReadFrameBuf;
    FrameBuffer postReadFrameBuf;
    cout.flush();
    bool opt = readfile (readScheme,
                         readFrameBuf,
                         preReadFrameBuf,
                         postReadFrameBuf);
    if (compare(readFrameBuf, writeFrameBuf, dw, nonfatal) &&
        compare(preReadFrameBuf, postReadFrameBuf, dw, nonfatal)
    )
    {
        cout <<  " OK ";
        if (opt)
        {
            cout << "OPTIMISED ";
            gOptimisedReads++;
        }
        cout << "\n";
        gSuccesses++;
    }
    else
    {
        cout <<  " FAIL" << endl;
        gFailures++;
    }
    remove (filename.c_str());
}


void runtests(bool nonfatal,bool tiny)
{
    srand(1);
    int i=0;
    int skipped=0;
    
    gFailures=0;
    gSuccesses=0;
    gOptimisedReads=0;
    
    
    while(Schemes[i]._name!=NULL)
    {
        int j=0;
        while(Schemes[j]._name!=NULL)
        {
           cout << right << setw(2) << i << ',' << right << setw(2) << j << ": ";
           cout.flush();

           if (nonfatal)
           {
               cout << " skipping " << Schemes[i]._name << ',' << Schemes[j]._name << ": known to crash\n";
               skipped++;
           }
           else
           {
               test(Schemes[i],Schemes[j],nonfatal,tiny);
           }
           j++;
        }
        i++;
    }

    cout << gFailures << '/' << (gSuccesses+gFailures) << " runs failed\n";
    cout << skipped << " tests skipped (assumed to be bad)\n";
    cout << gOptimisedReads << '/' << gSuccesses << " optimised\n";
        
    if (gFailures>0 )
    {
        cout << " TESTS FAILED\n";
        assert(false);
    }
}


} // namespace anon


void 
testOptimizedInterleavePatterns (const std::string & tempDir)
{
    filename = tempDir + "imf_test_interleave_patterns.exr";


    cout << "Testing SSE optimisation with different interleave patterns (large images) ... " << endl;
    runtests (false,false);
    
    cout << "Testing SSE optimisation with different interleave patterns (tiny images) ... " << endl;
    runtests (false,true);
    
    cout << "ok\n" << endl;
}