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1.

This text should be read with a pinch of salt

Introduction

Due to the statistical nature of ionisation energy loss, large fluctuations can occur in the
amount of energy deposited by a particle traversing an absorber element. Continuous
processes such as multiple scattering and energy loss play a relevant role in the longitudinal
and lateral development of electromagnetic and hadronic showers, and in the case of sampling
calorimeters the measured resolution can be significantly affected by such fluctuations in their
active layers. The description of ionisation fluctuations is characterised by the significance
parameterx , which is proportional to the ratio of mean energy loss to the maximum allowed
energy transfer in a single collision with an atomic electron
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Emax is the maximum transferable energy in a single collision with an atomic electron.
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wherey = E/m, , E is energy andn, the mass of the incident particlg? = 1 — 1/+?2
andm, is the electron masg. comes from the Rutherford scattering crosss section and is
defined as:
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where

z charge of the
incident particle

Nay Avogadro’s
number

Z atomic number
of the material

A atomic weight
of the material

p density

o thickness of the

material

x measures the contribution of the collisions with energy transfer cloggrigx . For a
given absorber; tends towards large valuesiif: is large and/or if3 is small. Likewisex
tends towards zero iz is small and/or if8 approaches 1.

The value ofx distinguishes two regimes which occur in the description of ionisation
fluctuations :



e A large number of collisions involving the loss of all or most of the incident
particle energy during the traversal of an absorber.
As the total energy transfer is composed of a multitude of small energy losses, we
can apply the central limit theorem and describe the fluctuations by a Gaussian
distribution. This case is applicable to non-relativistic particles and is described
by the inequality<)10 (i.e. when the mean energy loss in the absorber is greater
than the maximum energy transfer in a single collision).

e Particles traversing thin counters and incident electrons under any conditions.
The relevant inequalities and distributions arel(x(10 , Vavilov distribution,
andx(0.01 , Landau distribution.

An additional regime is defined by the contribution of the collisions with low energy
transfer which can be estimated with the relati9fl, , where I, is the mean ion-
isation potential of the atom. Landau theory assumes that the number of these colli-
sions is high, and consequently, it has a restric§gi, > 1 . In GEANT (see URL
http://wwwinfo.cern.ch/asdoc/geant/geantall.html), the limit of Landau theory has been set
at¢/I, = 50 . Below this limit special models taking into account the atomic structure of
the material are used. This is important in thin layers and gaseous matdrigiews the
behaviour of /I, as a function of the layer thickness for an electron of 100 keV and 1 GeV
of kinetic energy in Argon, Silicon and Uranium.

In the following sections, the different theories and models for the energy loss fluctuation
are described. First, the Landau theory and its limitations are discussed, and then, the Vavilov
and Gaussian straggling functions and the methods in the thin layers and gaseous materials
are presented.

2. Landau theory

For a particle of mass, traversing a thickness of materiét , the Landau probability
distribution may be written in terms of the universal Landau functioh) as[1]:

fle,62) = %dv(A)

where
o) = -+ /Oo (ulas + Au) d >0
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N1 =0.422784... =1 — 5

~v = 0.577215...(Euler’s constant)

"¢ = average energy loss

e = actual energy loss
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Figurel. The variabl€ /I, can be used to measure the validity range of the
Landau theory. It depends on the type and energy of the parficle and the
ionisation potential of the material and the layer thickness.



2.1.

energy of the most tightly bound electron. For gaseous detectors, typical energy
losses are a few keV which is comparable to the binding energies of the inner
electrons. In such cases a more sophisticated approach which accounts for atomic
energy level§4] is necessary to accurately simulate data distributionGEANT,

a parameterised model by L. Urbéan is used (see sebt{oitban model)

In addition, the average value of the Landau distribution is infinite. Summing the Landau
ﬂuctuation obtained to the average energy fromdhg'dx tables, we obtain a value which
is larger than the one coming from the table. The probability to sample a large value is small,
SHIELIPBFe number of steps (extractions) for the average fluctuation to be significantly
IEtigdrahdaw ésom lisen mvaickcrscardspintide e ofripogizergy 1oss on the step size which can

affect calculatjons. . . .
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In order for this to have average 0, we must impose that:
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Thisis realised introducing.amax(' A) such thatif only values of < Amax are accepted,
the average value of the distribution is.

A parametric fit to the universal Landau distribution has been performed, with following
result:

Amax = 0.60715 + 1.1934°\ + (0.67794 + 0.052382X Jeap(0.94753 + 0.74442X7)

only values smaller thahkmax are accepted, otherwise the distribution is resampled.

3. Vavilov theory

Vavilov [5] derived a more accurate straggling distribution by introducing the kinematic limit
on the maximum transferable energy in a single collision, rather than usifgx = oo .
Now we can writg2]:

f(€765) = %(év ()‘va HaﬁQ)

where
b0 (Ao, 5, B2) = % /(:: b (s)eds >0
¢ (s) = eap [K(1 + B°)] exp[¥ (s)],
W (s) = slnk + (s + 0%k) [In(s/k) + Er(s/w)] — ke /",
and

Ei(z) = / tte tdt (the exponential integral), = » [6_5 € I — 52]

(oo}

The Vavilov parameters are simply related to the Landau parameter by A\, /x—Ink. It
can be shown that as— 0, the distribution of the variablg; approaches that of Landau.
Forx < 0.01 the two distributions are already practically identical. Contrary to what many
textbooks report, the Vavilov distributiotioes notapproximate the Landau distribution for
smallx , but rather the distribution of;, defined above tends to the distribution of the thue
from the Landau density function. Thus the routd¥&vIv samples the variablg;, rather
than), . Forkx > 10 the Vavilov distribution tends to a Gaussian distribution (see next
section).
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4. Gaussian Theory

Various conflicting forms have been proposed for Gaussian straggling functions, but most of
these appear to have little theoretical or experimental basis. However, it has beerf3hown
that forx > 10 the Vavilov distribution can be replaced by a Gaussian of the form:

N 1 (e —"¢)? K
fleos= )e”’{ 2 @A)

thus implying

mean = €0’ = ;(1 — 32/2) = EEmax(1 — 3%/2)

5. Urban model

The method for computing restricted energy losses Witlray production above given
threshold energy IlGEANT is a Monte Carlo method that can be used for thin layers. It is
fast and it can be used for any thickness of a medium. Approaching the limit of the validity
of Landau’s theory, the loss distribution approaches smoothly the Landau form as shown in
2.

It is assumed that the atoms have only two energy levels with binding efigrggnd E
. The particle--atom interaction will then be an excitation with energy losor F, , or an
ionisation with an energy loss distributed according to a fungfidn) ~ 1/E? :

(Bmax+I)I 1

E =

The macroscopic cross-section for excitations (
i=1,2
)is
fi In(2mpB*42/E;) — 32 i
E; In(2mp3~2/I) — 32
and the macroscopic cross-section for ionisation is

2=

—7‘)

Emax .,
Emaxt!
I(Emax+ I)in(=M8%=)
Emax is theGEANT cut for ¢ -production, or the maximum energy transfer minus mean
ionisation energy, if it is smaller than this cut-off value. The following notation is used:

r,C parameters
of the
model

Sy =

E; atomic
energy
levels

I mean
ionisa-
tion
energy

fi oscillator
strengths
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Figure2. Energy loss distribution for a 3 GeV electron in Argon as given by standard GEANT.
The width of the layers is given in centimeters.



The model has the parametgfis, £; , C andr(0 < r < 1) . The oscillator strengthg;
and the atomic level energiég should satisfy the constraints

fi+ fo=1filnE1 + folnEs = Inl

The parametet” can be defined with the help of the mean energy b&8gdx in the
following way: The numbers of collisions:f , i = 1,2 for the excitation and 3 for the
ionisation) follow the Poisson distribution with a mean numbep); . In a stepAz the
mean number of collisions is

The mean energy losgE/dx in a step is the sum of the excitation and ionisation
contributions

dE

Ag —
dmm

Emaxt!
ZlEl + EQEQ + 23/ Eg(E)dE Az
I

From this, using the equation®)( (3), (1) and (), one can define the parameter

dFE
C=

The following values have been choserGEANT for the other parameters:

0 ifz<2 B
1
1
Ey =10Z%eV - Ey = (Effz) r=04
2

With these values the atomic leve}, corresponds approximately the K-shell energy of the
atoms andZ f, the number of K-shell electrons. is the only variable which can be tuned
freely. It determines the relative contribution of ionisation and excitation to the energy loss.

The energy loss is computed with the assumption that the step length (or the relative energy
loss) is small, and---in consequence---the cross-section can be considered constant along the
path length. The energy loss due to the excitation is

AES = ’I’L1E1 + nQEQ

wheren; andn, are sampled from Poisson distribution as discussed above. The loss due
to the ionisation can be generated from the distributiofi) by the inverse transformation
method:

1

_ ., _Emax
1 uEmaXJrI

E
u=F(FE)= /I g(x)dzE = F~Y(u) =

wherew is a uniform random number betweé{/) = 0 andF(Emax+ I) = 1. The
contribution from the ionisations will be

ns I
AEZ':ZI_M Emax
J=1 7 Emaxt!

whereng is the number of ionisation (sampled from Poisson distribution). The energy loss
in a step willthen b\FE = AFE, + AE; .
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5.1. Fast simulation forns > 16
If the number of ionisatioms is bigger than 16, a faster sampling method can be used. The
possible energy loss interval is divided in two parts: one in which the number of collisions is
large and the sampling can be done from a Gaussian distribution and the other in which the
energy loss is sampled for each collision. Let us call the former int¢fyall] the interval
A, and the lattefa], Emayx the interval B« lies between 1 and@max/I . A collision with
a loss in the interval A happens with the probability

(Emax+ I)(a—1)
Emaxx

al
P)= [ g(B)iE -
I
The mean energy loss and the standard deviation for this type of collision are

B Talna

al
(AB(a); = %a) / Eg(E)dE —

a—1
and ol 9
o2(a) = ﬁ/l E%¢(E)dE = I*a (1 - m>

If the collision number is high, we assume that the number of the type A collisions can be
calculated from a Gaussian distribution with the following mean value and standard deviation:

(na);=n3P(a)o% = n3P(a)(1 — P(a))
It is further assumed that the energy loss in these collisions has a Gaussian distribution with
(AEA);=na(AE(q)); U%’A =na0%(a)

The energy loss of these collision can then be sampled from the Gaussian distribution.
The collisions where the energy loss is in the interval B are sampled directly from

nalA ol
AEB = Z 1 _Emax+1—od
i=t = YT Emaxt]

The total energy loss is the sum of these two types of collisions:

AE =AFE,+ AFEg

The approximation of equationd)( (1), (1) and (L) can be used under the following
conditions:

(na);—coa > 0(na);+coa <n3(AE4); —cop,a >0

wherec > 4 . From the equations}, (1) and (1) and from the conditionslj and () the
following limits can be

(n3 + c*)(Emax+ 1) ~ (ns+*)(Emax+ 1)

Qmpin = S « S (67 =
ns(EPmax+ I) + 21 max (Emax+I) + nsl

This conditions gives a lower limit to number of the ionisatiegsfor which the fastiz > ¢?
As in the conditions¥), (1) and () the value ofc is as minimum 4, one geis; > 16 . In
order to speed the simulation, the maximum value is used for

8



The number of collisions with energy loss in the interval B (the number of interactions
which has to be simulated directly) increases slowly with the total number of collisipns
The maximum number of these collisions can be estimatedsag,. = 73 — nA,min =
ns({na); —oa) From the previous expressions fon4); ando, one can derive the

2’!L302

NB < NBmazr = jote The following values are obtained with= 4 :

ns NB,max ns3 NB,max
16 16

200 29.63
20 17.78

500 31.01
50 24.24

1000 31.50
100 27.59 00

32.00

5.2. Special sampling for lower part of the spectrum

If the step length is very small<{ 5 mm in gases< 2-3 x m in solids) the model
gives 0 energy loss for some events. To avoid this, the probability of O energy loss is
P(AE = 0) = e~ (m)it(n2)i+(n3)) |f the probability is bigger than 0.01 a special sampling

is done, taking into account the fact that in these cases the projectile interacts only with the
outer electrons of the atom. An energy le¥®l= 10 eV is chosen to correspond to the outer
electrons. The mean number of collisions can be calculated {rom= Eio% The number

of collisionsn is sampled from Poisson distribution. In the case of the thin layers, all the
collisions are considered as ionisations and the energy loss is computed as

n

Eo
AE=y —————
Z 1 _Pmax .
=1 EmaxtEo ™
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