/* * mont_btb.c - example of how use the ETB with the Dual-Core Itanium 2 PMU * * Copyright (c) 2005-2006 Hewlett-Packard Development Company, L.P. * Contributed by Stephane Eranian * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies * of the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A * PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * This file is part of libpfm, a performance monitoring support library for * applications on Linux. */ #include #include #include #include #include #include #include #include #include #include #include #include #include typedef pfm_dfl_smpl_hdr_t etb_hdr_t; typedef pfm_dfl_smpl_entry_t etb_entry_t; typedef pfm_dfl_smpl_arg_t smpl_arg_t; #define NUM_PMCS PFMLIB_MAX_PMCS #define NUM_PMDS PFMLIB_MAX_PMDS #define MAX_EVT_NAME_LEN 128 #define MAX_PMU_NAME_LEN 32 /* * The ETB_EVENT is increment by 1 for each branch event. Such event is composed of * two entries in the ETB: a source and a target entry. The ETB is full after 4 branch * events. */ #define SMPL_PERIOD (4UL*256) /* * We use a small buffer size to exercise the overflow handler */ #define SMPL_BUF_NENTRIES 64 static void *smpl_vaddr; static size_t entry_size; static int id; #define BPL (sizeof(uint64_t)<<3) #define LBPL 6 static inline void pfm_bv_set(uint64_t *bv, uint16_t rnum) { bv[rnum>>LBPL] |= 1UL << (rnum&(BPL-1)); } /* * we don't use static to make sure the compiler does not inline the function */ long func1(void) { return random();} long func2(void) { return random();} long do_test(unsigned long loop) { long sum = 0; while(loop--) { if (loop & 0x1) sum += func1(); else sum += loop + func2(); } return sum; } static void fatal_error(char *fmt,...) __attribute__((noreturn)); static void fatal_error(char *fmt, ...) { va_list ap; va_start(ap, fmt); vfprintf(stderr, fmt, ap); va_end(ap); exit(1); } /* * print content of sampling buffer * * XXX: using stdio to print from a signal handler is not safe with multi-threaded * applications */ #define safe_printf printf static void show_etb_reg(int j, pfm_mont_pmd_reg_t reg, pfm_mont_pmd_reg_t pmd39) { unsigned long bruflush, b1, etb_ext; unsigned long addr; int is_valid; is_valid = reg.pmd48_63_etb_mont_reg.etb_s == 0 && reg.pmd48_63_etb_mont_reg.etb_mp == 0 ? 0 : 1; /* * the joy of the ETB extension register layout! */ if (j < 8) etb_ext = (pmd39.pmd_val>>(8*j)) & 0xf; else etb_ext = (pmd39.pmd_val>>(4+8*(j-8))) & 0xf; b1 = etb_ext & 0x1; bruflush = (etb_ext >> 1) & 0x1; safe_printf("\tPMD%-2d: 0x%016lx s=%d mp=%d bru=%ld b1=%ld valid=%c\n", j+48, reg.pmd_val, reg.pmd48_63_etb_mont_reg.etb_s, reg.pmd48_63_etb_mont_reg.etb_mp, bruflush, b1, is_valid ? 'Y' : 'N'); if (!is_valid) return; if (reg.pmd48_63_etb_mont_reg.etb_s) { addr = (reg.pmd48_63_etb_mont_reg.etb_addr+b1)<<4; addr |= reg.pmd48_63_etb_mont_reg.etb_slot < 3 ? reg.pmd48_63_etb_mont_reg.etb_slot : 0; safe_printf("\t Source Address: 0x%016lx\n" "\t Taken=%c Prediction:%s\n\n", addr, reg.pmd48_63_etb_mont_reg.etb_slot < 3 ? 'Y' : 'N', reg.pmd48_63_etb_mont_reg.etb_mp ? "FE Failure" : bruflush ? "BE Failure" : "Success"); } else { safe_printf("\t Target Address:0x%016lx\n\n", (unsigned long)(reg.pmd48_63_etb_mont_reg.etb_addr<<4)); } } static void show_etb(pfm_mont_pmd_reg_t *etb) { int i, last; pfm_mont_pmd_reg_t pmd38, pmd39; pmd38.pmd_val = etb[0].pmd_val; pmd39.pmd_val = etb[1].pmd_val; i = pmd38.pmd38_mont_reg.etbi_full ? pmd38.pmd38_mont_reg.etbi_ebi : 0; last = pmd38.pmd38_mont_reg.etbi_ebi; safe_printf("btb_trace: i=%d last=%d bbi=%d full=%d\n", i, last, pmd38.pmd38_mont_reg.etbi_ebi, pmd38.pmd38_mont_reg.etbi_full); /* * i+2 = skip over PMD38/pmd39 */ do { show_etb_reg(i, etb[i+2], pmd39); i = (i+1) % 16; } while (i != last); } void process_smpl_buffer(void) { etb_hdr_t *hdr; etb_entry_t *ent; unsigned long pos; unsigned long smpl_entry = 0; pfm_mont_pmd_reg_t *reg; size_t count; static unsigned long last_ovfl = ~0UL; hdr = (etb_hdr_t *)smpl_vaddr; /* * check that we are not diplaying the previous set of samples again. * Required to take care of the last batch of samples. */ if (hdr->hdr_overflows <= last_ovfl && last_ovfl != ~0UL) { printf("skipping identical set of samples %lu <= %lu\n", hdr->hdr_overflows, last_ovfl); return; } pos = (unsigned long)(hdr+1); count = hdr->hdr_count; /* * walk through all the entries recored in the buffer */ while(count--) { ent = (etb_entry_t *)pos; /* * print entry header */ safe_printf("Entry %ld PID:%d TID:%d CPU:%d STAMP:0x%lx IIP:0x%016lx\n", smpl_entry++, ent->tgid, ent->pid, ent->cpu, ent->tstamp, ent->ip); /* * point to first recorded register (always contiguous with entry header) */ reg = (pfm_mont_pmd_reg_t*)(ent+1); /* * in this particular example, we have pmd48-pmd63 has the ETB. We have also * included pmd38/pmd39 (ETB index and extenseion) has part of the registers * to record. This trick allows us to get the index to decode the sequential * order of the ETB. * * Recorded registers are always recorded in increasing index order. So we know * that where to find pmd38/pmd39. */ show_etb(reg); /* * move to next entry */ pos += entry_size; } } static void overflow_handler(int n, struct siginfo *info, struct sigcontext *sc) { process_smpl_buffer(); /* * And resume monitoring */ if (pfm_restart(id)) fatal_error("pfm_restart errno %d\n", errno); } int main(void) { int ret; int type = 0; pfarg_pmr_t pc[NUM_PMCS]; pfarg_pmd_attr_t pd[NUM_PMDS]; pfmlib_input_param_t inp; pfmlib_output_param_t outp; pfmlib_mont_input_param_t mont_inp; smpl_arg_t buf_arg; pfmlib_options_t pfmlib_options; struct sigaction act; unsigned int i; /* * Initialize pfm library (required before we can use it) */ if (pfm_initialize() != PFMLIB_SUCCESS) fatal_error("Can't initialize library\n"); /* * Let's make sure we run this on the right CPU */ pfm_get_pmu_type(&type); if (type != PFMLIB_MONTECITO_PMU) { char model[MAX_PMU_NAME_LEN]; pfm_get_pmu_name(model, MAX_PMU_NAME_LEN); fatal_error("this program does not work with %s PMU\n", model); } /* * Install the overflow handler (SIGIO) */ memset(&act, 0, sizeof(act)); act.sa_handler = (sig_t)overflow_handler; sigaction (SIGIO, &act, 0); /* * pass options to library (optional) */ memset(&pfmlib_options, 0, sizeof(pfmlib_options)); pfmlib_options.pfm_debug = 0; /* set to 1 for debug */ pfmlib_options.pfm_verbose = 0; /* set to 1 for debug */ pfm_set_options(&pfmlib_options); memset(pc, 0, sizeof(pc)); memset(pd, 0, sizeof(pd)); memset(&buf_arg, 0, sizeof(buf_arg)); /* * prepare parameters to library. we don't use any Itanium * specific features here. so the pfp_model is NULL. */ memset(&inp,0, sizeof(inp)); memset(&outp,0, sizeof(outp)); memset(&mont_inp,0, sizeof(mont_inp)); /* * Before calling pfm_find_dispatch(), we must specify what kind * of branches we want to capture. We are interested in all taken * branches * therefore we program we set the various fields to: */ mont_inp.pfp_mont_etb.etb_used = 1; mont_inp.pfp_mont_etb.etb_tm = 0x2; mont_inp.pfp_mont_etb.etb_ptm = 0x3; mont_inp.pfp_mont_etb.etb_ppm = 0x3; mont_inp.pfp_mont_etb.etb_brt = 0x0; mont_inp.pfp_mont_etb.etb_plm = PFM_PLM3; if (pfm_find_full_event("ETB_EVENT", &inp.pfp_events[0]) != PFMLIB_SUCCESS) fatal_error("cannot find event ETB_EVENT\n"); /* * set the (global) privilege mode: * PFM_PLM3 : user level only */ inp.pfp_dfl_plm = PFM_PLM3; /* * how many counters we use */ inp.pfp_event_count = 1; /* * let the library figure out the values for the PMCS */ if ((ret=pfm_dispatch_events(&inp, &mont_inp, &outp, NULL)) != PFMLIB_SUCCESS) fatal_error("cannot configure events: %s\n", pfm_strerror(ret)); /* * the size of the buffer is indicated in bytes (not entries). * * The kernel will record into the buffer up to a certain point. * No partial samples are ever recorded. */ buf_arg.buf_size = getpagesize(); /* * now create the session */ id = pfm_create(PFM_FL_SMPL_FMT, NULL, "default", &buf_arg, sizeof(buf_arg)); if (id == -1) { if (errno == ENOSYS) fatal_error("Your kernel does not have performance monitoring support!\n"); fatal_error("cannot create session %s\n", strerror(errno)); } /* * retrieve the virtual address at which the sampling * buffer has been mapped */ smpl_vaddr = mmap(NULL, (size_t)buf_arg.buf_size, PROT_READ, MAP_PRIVATE, id, 0); if (smpl_vaddr == MAP_FAILED) fatal_error("cannot mmap sampling buffer errno %d\n", errno); printf("Sampling buffer mapped at %p\n", smpl_vaddr); /* * Now prepare the argument to initialize the PMDs and PMCS. * We must pfp_pmc_count to determine the number of PMC to intialize. * We must use pfp_event_count to determine the number of PMD to initialize. * Some events cause extra PMCs to be used, so pfp_pmc_count may be >= pfp_event_count. */ for (i=0; i < outp.pfp_pmc_count; i++) { pc[i].reg_num = outp.pfp_pmcs[i].reg_num; pc[i].reg_value = outp.pfp_pmcs[i].reg_value; } /* * figure out pmd mapping from output pmc * PMD38 is part of the set of used PMD returned by libpfm. * It will be reset automatically */ for (i=0; i < outp.pfp_pmd_count; i++) pd[i].reg_num = outp.pfp_pmds[i].reg_num; /* * indicate we want notification when buffer is full and randomization */ pd[0].reg_flags |= PFM_REGFL_OVFL_NOTIFY | PFM_REGFL_RANDOM; /* * Now prepare the argument to initialize the PMD and the sampling period * We know we use only one PMD in this case, therefore pmd[0] corresponds * to our first event which is our sampling period. */ pd[0].reg_value = - SMPL_PERIOD; pd[0].reg_long_reset = - SMPL_PERIOD; pd[0].reg_short_reset = - SMPL_PERIOD; /* * populate our smpl_pmds bitmask to include all of the ETB PMDs, * including index, extensions */ pfm_bv_set(pd[0].reg_smpl_pmds, 38); pfm_bv_set(pd[0].reg_smpl_pmds, 39); entry_size = sizeof(etb_entry_t) + 2 * 8; for(i=48; i < 64; i++) { pfm_bv_set(pd[0].reg_smpl_pmds, i); entry_size += 8; } /* * When our counter overflows, we want to ETB index to be reset, so that we keep * in sync. */ pfm_bv_set(pd[0].reg_reset_pmds, 38); /* * Now program the registers */ if (pfm_write(id, 0, PFM_RW_PMC, pc, outp.pfp_pmc_count * sizeof(*pc))) fatal_error("pfm_write error errno %d\n",errno); if (pfm_write(id, 0, PFM_RW_PMD_ATTR, pd, outp.pfp_pmd_count * sizeof(*pd))) fatal_error("pfm_write(PMD) error errno %d\n",errno); /* * now we attach session */ if (pfm_attach(id, 0, getpid())) fatal_error("pfm_attach error errno %d\n",errno); /* * setup asynchronous notification on the file descriptor */ ret = fcntl(id, F_SETFL, fcntl(id, F_GETFL, 0) | O_ASYNC); if (ret == -1) fatal_error("cannot set ASYNC: %s\n", strerror(errno)); /* * get ownership of the descriptor */ ret = fcntl(id, F_SETOWN, getpid()); if (ret == -1) fatal_error("cannot setown: %s\n", strerror(errno)); /* * Let's roll now. */ if (pfm_set_state(id, 0, PFM_ST_START)) fatal_error("pfm_set_state error errno %d\n",errno); do_test(1000); if (pfm_set_state(id, 0, PFM_ST_STOP)) fatal_error("pfm_set_state error errno %d\n",errno); /* * We must call the processing routine to cover the last entries recorded * in the sampling buffer. Note that the buffer may not be full at this point. * */ process_smpl_buffer(); /* * let's stop this now */ munmap(smpl_vaddr, (size_t)buf_arg.buf_size); close(id); return 0; }