/* * task_smpl.c - example of a task sampling another one using a randomized sampling period * * Copyright (c) 2003-2006 Hewlett-Packard Development Company, L.P. * Contributed by Stephane Eranian * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies * of the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A * PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * This file is part of libpfm, a performance monitoring support library for * applications on Linux/ia64. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include typedef pfm_default_smpl_arg_t smpl_fmt_arg_t; typedef pfm_default_smpl_hdr_t smpl_hdr_t; typedef pfm_default_smpl_entry_t smpl_entry_t; typedef pfm_default_smpl_ctx_arg_t ctx_arg_t; typedef int ctxid_t; #define FMT_UUID PFM_DEFAULT_SMPL_UUID #define NUM_PMCS PFMLIB_MAX_PMCS #define NUM_PMDS PFMLIB_MAX_PMDS #define FIRST_COUNTER 4 static unsigned long collect_samples; static void *buf_addr; static pfm_uuid_t buf_fmt_id = FMT_UUID; static void fatal_error(char *fmt,...) __attribute__((noreturn)); static void warning(char *fmt, ...) { va_list ap; va_start(ap, fmt); vfprintf(stderr, fmt, ap); va_end(ap); } static void fatal_error(char *fmt, ...) { va_list ap; va_start(ap, fmt); vfprintf(stderr, fmt, ap); va_end(ap); exit(1); } int child(char **arg) { /* * force the task to stop before executing the first * user level instruction */ ptrace(PTRACE_TRACEME, 0, NULL, NULL); execvp(arg[0], arg); /* not reached */ exit(1); } static __inline__ int bit_weight(unsigned long x) { int sum = 0; for (; x ; x>>=1) { if (x & 0x1UL) sum++; } return sum; } static void process_smpl_buf(int id, unsigned long smpl_pmd_mask, int need_restart) { static unsigned long last_overflow = ~0UL; /* initialize to biggest value possible */ smpl_hdr_t *hdr = (smpl_hdr_t *)buf_addr; smpl_entry_t *ent; unsigned long count, entry, *reg, pos, msk; unsigned long entry_size; int j; printf("processing %s buffer at %p\n", need_restart==0 ? "leftover" : "", hdr); if (hdr->hdr_overflows <= last_overflow && last_overflow != ~0UL) { warning("skipping identical set of samples %lu <= %lu\n", hdr->hdr_overflows, last_overflow); return; } last_overflow = hdr->hdr_overflows; count = hdr->hdr_count; ent = (smpl_entry_t *)(hdr+1); pos = (unsigned long)ent; entry = collect_samples; /* * in this example program, we use fixed-size entries, therefore we * can compute the entry size in advance. Perfmon-2 supports variable * size entries. */ entry_size = sizeof(smpl_entry_t)+(bit_weight(smpl_pmd_mask)<<3); while(count--) { printf("entry %ld PID:%d CPU:%d IIP:0x%016lx\n", entry, ent->pid, ent->cpu, ent->ip); printf("\tOVFL: %d LAST_VAL: %lu\n", ent->ovfl_pmd, -ent->last_reset_val); /* * print body: additional PMDs recorded * PMD are recorded in increasing index order */ reg = (unsigned long *)(ent+1); for(j=0, msk = smpl_pmd_mask; msk; msk >>=1, j++) { if ((msk & 0x1) == 0) continue; printf("PMD%-2d = 0x%016lx\n", j, *reg); reg++; } /* * we could have removed this and used: * ent = (smpl_entry_t *)reg * instead. */ pos += entry_size; ent = (smpl_entry_t *)pos; entry++; } collect_samples = entry; /* * reactivate monitoring once we are done with the samples * * Note that this call can fail with EBUSY in non-blocking mode * as the task may have disappeared while we were processing * the samples. */ if (need_restart && perfmonctl(id, PFM_RESTART, 0, 0) == -1) { if (errno != EBUSY) fatal_error("perfmonctl error PFM_RESTART errno %d\n",errno); else warning("PFM_RESTART: task has probably terminated \n"); } } int mainloop(char **arg) { ctx_arg_t ctx; pfmlib_input_param_t inp; pfmlib_output_param_t outp; pfarg_reg_t pd[NUM_PMDS]; pfarg_reg_t pc[NUM_PMCS]; pfarg_load_t load_args; pfm_msg_t msg; unsigned long ovfl_count = 0UL; unsigned long sample_period; unsigned long smpl_pmd_mask = 0UL; pid_t pid; int status, ret, fd; unsigned int i, num_counters; /* * intialize all locals */ memset(&ctx, 0, sizeof(ctx)); memset(&inp,0, sizeof(inp)); memset(&outp,0, sizeof(outp)); memset(pd, 0, sizeof(pd)); memset(pc, 0, sizeof(pc)); /* * locate events */ pfm_get_num_counters(&num_counters); if (pfm_get_cycle_event(&inp.pfp_events[0]) != PFMLIB_SUCCESS) fatal_error("cannot find cycle event\n"); if (pfm_get_inst_retired_event(&inp.pfp_events[1]) != PFMLIB_SUCCESS) fatal_error("cannot find inst retired event\n"); i = 2; if (i > num_counters) { i = num_counters; printf("too many events provided (max=%d events), using first %d event(s)\n", num_counters, i); } /* * set the privilege mode: * PFM_PLM3 : user level * PFM_PLM0 : kernel level */ inp.pfp_dfl_plm = PFM_PLM3; /* * how many counters we use */ inp.pfp_event_count = i; /* * let the library figure out the values for the PMCS */ if ((ret=pfm_dispatch_events(&inp, NULL, &outp, NULL)) != PFMLIB_SUCCESS) { fatal_error("cannot configure events: %s\n", pfm_strerror(ret)); } /* * Now prepare the argument to initialize the PMDs and PMCS. * We must pfp_pmc_count to determine the number of PMC to intialize. * We must use pfp_event_count to determine the number of PMD to initialize. * Some events causes extra PMCs to be used, so pfp_pmc_count may be >= pfp_event_count. * * This step is new compared to libpfm-2.x. It is necessary because the library no * longer knows about the kernel data structures. */ for (i=0; i < outp.pfp_pmc_count; i++) { pc[i].reg_num = outp.pfp_pmcs[i].reg_num; pc[i].reg_value = outp.pfp_pmcs[i].reg_value; } /* * the PMC controlling the event ALWAYS come first, that's why this loop * is safe even when extra PMC are needed to support a particular event. */ for (i=0; i < inp.pfp_event_count; i++) { pd[i].reg_num = pc[i].reg_num; /* build sampling mask */ smpl_pmd_mask |= 1UL << pc[i].reg_num; } printf("smpl_pmd_mask=0x%lx\n", smpl_pmd_mask); /* * now we indicate what to record when each counter overflows. * In our case, we only have one sampling period and it is set for the * first event. Here we indicate that when the sampling period expires * then we want to record the value of all the other counters. * * We exclude the first counter in this case. */ smpl_pmd_mask &= ~(1UL << pc[0].reg_num); pc[0].reg_smpl_pmds[0] = smpl_pmd_mask; /* * we our sampling counter overflow, we want to be notified. * The notification will come ONLY when the sampling buffer * becomes full. * * We also activate randomization of the sampling period. */ pc[0].reg_flags |= PFM_REGFL_OVFL_NOTIFY | PFM_REGFL_RANDOM; /* * we also want to reset the other PMDs on * every overflow. If we do not set * this, the non-overflowed counters * will be untouched. */ pc[0].reg_reset_pmds[0] |= smpl_pmd_mask; sample_period = 1000000UL; pd[0].reg_value = (~0) - sample_period + 1; pd[0].reg_short_reset = (~0) - sample_period + 1; pd[0].reg_long_reset = (~0) - sample_period + 1; /* * setup randomization parameters, we allow a range of up to +256 here. */ pd[0].reg_random_seed = 5; pd[0].reg_random_mask = 0xff; printf("programming %u PMCS and %u PMDS\n", outp.pfp_pmc_count, inp.pfp_event_count); /* * prepare context structure. * * format specific parameters MUST be concatenated to the regular * pfarg_context_t structure. For convenience, the default sampling * format provides a data structure that already combines the pfarg_context_t * with what is needed fot this format. */ /* * We initialize the format specific information. * The format is identified by its UUID which must be copied * into the ctx_buf_fmt_id field. */ memcpy(ctx.ctx_arg.ctx_smpl_buf_id, buf_fmt_id, sizeof(pfm_uuid_t)); /* * the size of the buffer is indicated in bytes (not entries). * * The kernel will record into the buffer up to a certain point. * No partial samples are ever recorded. */ ctx.buf_arg.buf_size = 8192; /* * now create our perfmon context. */ if (perfmonctl(0, PFM_CREATE_CONTEXT, &ctx, 1) == -1 ) { if (errno == ENOSYS) { fatal_error("Your kernel does not have performance monitoring support!\n"); } fatal_error("Can't create PFM context %s\n", strerror(errno)); } /* * extract the file descriptor we will use to * identify this newly created context */ fd = ctx.ctx_arg.ctx_fd; /* * retrieve the virtual address at which the sampling * buffer has been mapped */ buf_addr = ctx.ctx_arg.ctx_smpl_vaddr; printf("context [%d] buffer mapped @%p\n", fd, buf_addr); /* * Now program the registers */ if (perfmonctl(fd, PFM_WRITE_PMCS, pc, outp.pfp_pmc_count) == -1) { fatal_error("perfmonctl error PFM_WRITE_PMCS errno %d\n",errno); } /* * initialize the PMDs */ if (perfmonctl(fd, PFM_WRITE_PMDS, pd, inp.pfp_event_count) == -1) { fatal_error("perfmonctl error PFM_WRITE_PMDS errno %d\n",errno); } /* * Create the child task */ if ((pid=fork()) == -1) fatal_error("Cannot fork process\n"); /* * In order to get the PFM_END_MSG message, it is important * to ensure that the child task does not inherit the file * descriptor of the context. By default, file descriptor * are inherited during exec(). We explicitely close it * here. We could have set it up through fcntl(FD_CLOEXEC) * to achieve the same thing. */ if (pid == 0) { close(fd); child(arg); } /* * wait for the child to exec */ waitpid(pid, &status, WUNTRACED); /* * process is stopped at this point */ if (WIFEXITED(status)) { warning("task %s [%d] exited already status %d\n", arg[0], pid, WEXITSTATUS(status)); goto terminate_session; } /* * attach context to stopped task */ load_args.load_pid = pid; if (perfmonctl(fd, PFM_LOAD_CONTEXT, &load_args, 1) == -1) { fatal_error("perfmonctl error PFM_LOAD_CONTEXT errno %d\n",errno); } /* * activate monitoring for stopped task. * (nothing will be measured at this point */ if (perfmonctl(fd, PFM_START, NULL, 0) == -1) { fatal_error(" perfmonctl error PFM_START errno %d\n",errno); } /* * detach child. Side effect includes * activation of monitoring. */ ptrace(PTRACE_DETACH, pid, NULL, 0); /* * core loop */ for(;;) { /* * wait for overflow/end notification messages */ ret = read(fd, &msg, sizeof(msg)); if (ret == -1) { fatal_error("cannot read perfmon msg: %s\n", strerror(errno)); } switch(msg.type) { case PFM_MSG_OVFL: /* the sampling buffer is full */ process_smpl_buf(fd, smpl_pmd_mask, 1); ovfl_count++; break; case PFM_MSG_END: /* monitored task terminated */ printf("task terminated\n"); goto terminate_session; default: fatal_error("unknown message type %d\n", msg.type); } } terminate_session: /* * cleanup child */ waitpid(pid, &status, 0); /* * check for any leftover samples */ process_smpl_buf(fd, smpl_pmd_mask, 0); /* * destroy perfmon context */ close(fd); printf("%lu samples collected in %lu buffer overflows\n", collect_samples, ovfl_count); return 0; } int main(int argc, char **argv) { pfmlib_options_t pfmlib_options; if (argc < 2) fatal_error("You must specify a command to execute\n"); /* * Initialize pfm library (required before we can use it) */ if (pfm_initialize() != PFMLIB_SUCCESS) { fatal_error("Can't initialize library\n"); } /* * pass options to library (optional) */ memset(&pfmlib_options, 0, sizeof(pfmlib_options)); pfmlib_options.pfm_debug = 0; /* set to 1 for debug */ pfmlib_options.pfm_verbose = 0; /* set to 1 for verbose */ pfm_set_options(&pfmlib_options); return mainloop(argv+1); }