/* * task_smpl.c - example of a task sampling another one using a randomized sampling period * * Copyright (c) 2003-2006 Hewlett-Packard Development Company, L.P. * Contributed by Stephane Eranian * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies * of the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A * PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "detect_pmcs.h" #define SAMPLING_PERIOD 100000 typedef struct { int opt_no_show; int opt_block; } options_t; typedef pfm_dfl_smpl_arg_t smpl_fmt_arg_t; typedef pfm_dfl_smpl_hdr_t smpl_hdr_t; typedef pfm_dfl_smpl_entry_t smpl_entry_t; typedef pfm_dfl_smpl_arg_t smpl_arg_t; #define FMT_NAME PFM_DFL_SMPL_NAME #define NUM_PMCS PFMLIB_MAX_PMCS #define NUM_PMDS PFMLIB_MAX_PMDS static uint64_t collected_samples, collected_partial; static options_t options; static struct option the_options[]={ { "help", 0, 0, 1}, { "ovfl-block", 0, &options.opt_block, 1}, { "no-show", 0, &options.opt_no_show, 1}, { 0, 0, 0, 0} }; static void fatal_error(char *fmt,...) __attribute__((noreturn)); #define BPL (sizeof(uint64_t)<<3) #define LBPL 6 static inline void pfm_bv_set(uint64_t *bv, uint16_t rnum) { bv[rnum>>LBPL] |= 1UL << (rnum&(BPL-1)); } static inline int pfm_bv_isset(uint64_t *bv, uint16_t rnum) { return bv[rnum>>LBPL] & (1UL <<(rnum&(BPL-1))) ? 1 : 0; } static inline void pfm_bv_copy(uint64_t *d, uint64_t *j, uint16_t n) { if (n <= BPL) *d = *j; else { memcpy(d, j, (n>>LBPL)*sizeof(uint64_t)); } } static void warning(char *fmt, ...) { va_list ap; va_start(ap, fmt); vfprintf(stderr, fmt, ap); va_end(ap); } static void fatal_error(char *fmt, ...) { va_list ap; va_start(ap, fmt); vfprintf(stderr, fmt, ap); va_end(ap); exit(1); } int child(char **arg) { /* * force the task to stop before executing the first * user level instruction */ ptrace(PTRACE_TRACEME, 0, NULL, NULL); execvp(arg[0], arg); /* not reached */ exit(1); } void show_task_rusage(const struct timeval *start, const struct timeval *end, const struct rusage *ru) { long secs, suseconds, end_usec; secs = end->tv_sec - start->tv_sec; end_usec = end->tv_usec; if (end_usec < start->tv_usec) { end_usec += 1000000; secs--; } suseconds = end_usec - start->tv_usec; printf ("real %ldh%02ldm%02ld.%03lds user %ldh%02ldm%02ld.%03lds sys %ldh%02ldm%02ld.%03lds\n", secs / 3600, (secs % 3600) / 60, secs % 60, suseconds / 1000, ru->ru_utime.tv_sec / 3600, (ru->ru_utime.tv_sec % 3600) / 60, ru->ru_utime.tv_sec% 60, (long)(ru->ru_utime.tv_usec / 1000), ru->ru_stime.tv_sec / 3600, (ru->ru_stime.tv_sec % 3600) / 60, ru->ru_stime.tv_sec% 60, (long)(ru->ru_stime.tv_usec / 1000) ); } static void process_smpl_buf(smpl_hdr_t *hdr, uint64_t *smpl_pmds, unsigned int num_smpl_pmds, size_t entry_size) { static uint64_t last_overflow = ~0; /* initialize to biggest value possible */ static uint64_t last_count; smpl_entry_t *ent; size_t pos, count; uint64_t entry, *reg; unsigned int j, n; if (hdr->hdr_overflows == last_overflow && hdr->hdr_count == last_count) { warning("skipping identical set of samples %"PRIu64" = %"PRIu64"\n", hdr->hdr_overflows, last_overflow); return; } count = hdr->hdr_count; if (options.opt_no_show) { collected_samples += count; return; } ent = (smpl_entry_t *)(hdr+1); pos = (unsigned long)ent; entry = collected_samples; while(count--) { printf("entry %"PRIu64" PID:%d TID:%d CPU:%d LAST_VAL:%"PRIu64" IIP:0x%llx\n", entry, ent->tgid, ent->pid, ent->cpu, -ent->last_reset_val, (unsigned long long)ent->ip); /* * print body: additional PMDs recorded * PMD are recorded in increasing index order */ reg = (uint64_t *)(ent+1); n = num_smpl_pmds; for(j=0; n; j++) { if (pfm_bv_isset(smpl_pmds, j)) { printf("PMD%-3d:0x%016"PRIx64"\n", j, *reg); reg++; n--; } } pos += entry_size; ent = (smpl_entry_t *)pos; entry++; } collected_samples = entry; last_overflow = hdr->hdr_overflows; if (last_count != hdr->hdr_count && (last_count || last_overflow == 0)) collected_partial += hdr->hdr_count; last_count = hdr->hdr_count; } int mainloop(char **arg) { smpl_hdr_t *hdr; smpl_arg_t buf_arg; pfmlib_input_param_t inp; pfmlib_output_param_t outp; pfarg_pmd_attr_t pd[NUM_PMDS]; pfarg_pmr_t pc[NUM_PMCS]; pfarg_sinfo_t sif; struct timeval start_time, end_time; struct rusage rusage; pfarg_msg_t msg; uint64_t ovfl_count = 0; uint32_t ctx_flags; size_t entry_size; void *buf_addr; pid_t pid; int status, ret, fd; unsigned int i, num_counters; unsigned int max_pmd = 0, num_smpl_pmds = 0; /* * intialize all locals */ memset(&buf_arg, 0, sizeof(buf_arg)); memset(&inp,0, sizeof(inp)); memset(&outp,0, sizeof(outp)); memset(pd, 0, sizeof(pd)); memset(pc, 0, sizeof(pc)); memset(&sif, 0, sizeof(sif)); pfm_get_num_counters(&num_counters); if (pfm_get_cycle_event(&inp.pfp_events[0]) != PFMLIB_SUCCESS) fatal_error("cannot find cycle event\n"); if (pfm_get_inst_retired_event(&inp.pfp_events[1]) != PFMLIB_SUCCESS) fatal_error("cannot find inst retired event\n"); i = 2; /* * set the privilege mode: * PFM_PLM3 : user level * PFM_PLM0 : kernel level */ inp.pfp_dfl_plm = PFM_PLM3; if (i > num_counters) { i = num_counters; printf("too many events provided (max=%d events), using first %d event(s)\n", num_counters, i); } /* * how many counters we use */ inp.pfp_event_count = i; /* * build the pfp_unavail_pmcs bitmask by looking * at what perfmon has available. It is not always * the case that all PMU registers are actually available * to applications. For instance, on IA-32 platforms, some * registers may be reserved for the NMI watchdog timer. * * With this bitmap, the library knows which registers NOT to * use. Of source, it is possible that no valid assignement may * be possible if certina PMU registers are not available. */ get_sif(0, &sif); detect_unavail_pmu_regs(&sif, &inp.pfp_unavail_pmcs, NULL); /* * let the library figure out the values for the PMCS */ if ((ret=pfm_dispatch_events(&inp, NULL, &outp, NULL)) != PFMLIB_SUCCESS) fatal_error("cannot configure events: %s\n", pfm_strerror(ret)); /* * Now prepare the argument to initialize the PMDs and PMCS. * We use pfp_pmc_count to determine the number of PMC to intialize. * We use pfp_pmd_count to determine the number of PMD to initialize. * Some events/features may cause extra PMCs to be used, leading to: * - pfp_pmc_count may be >= pfp_event_count * - pfp_pmd_count may be >= pfp_event_count */ for (i=0; i < outp.pfp_pmc_count; i++) { pc[i].reg_num = outp.pfp_pmcs[i].reg_num; pc[i].reg_value = outp.pfp_pmcs[i].reg_value; } for (i=0; i < outp.pfp_pmd_count; i++) { pd[i].reg_num = outp.pfp_pmds[i].reg_num; /* * skip first counter (sampling period) * track highest PMD */ if (i) { pfm_bv_set(pd[0].reg_smpl_pmds, pd[i].reg_num); if (pd[i].reg_num > max_pmd) max_pmd = pd[i].reg_num; num_smpl_pmds++; } } /* * we our sampling counter overflow, we want to be notified. * The notification will come ONLY when the sampling buffer * becomes full. * * We also activate randomization of the sampling period. */ pd[0].reg_flags |= PFM_REGFL_OVFL_NOTIFY | PFM_REGFL_RANDOM; /* * we also want to reset the other PMDs on * every overflow. If we do not set * this, the non-overflowed counters * will be untouched. */ pfm_bv_copy(pd[0].reg_reset_pmds, pd[0].reg_smpl_pmds, max_pmd); pd[0].reg_value = - SAMPLING_PERIOD; pd[0].reg_short_reset = - SAMPLING_PERIOD; pd[0].reg_long_reset = - SAMPLING_PERIOD; /* * setup randomization parameters, we allow a range of up to +256 here. */ pd[0].reg_random_mask = 0xff; /* * in this example program, we use fixed-size entries, therefore we * can compute the entry size in advance. Perfmon-2 supports variable * size entries. */ entry_size = sizeof(smpl_entry_t)+(num_smpl_pmds<<3); printf("programming %u PMCS and %u PMDS\n", outp.pfp_pmc_count, inp.pfp_event_count); /* * indicate we are using a smapling format, i.e., extra arguments * passed to pfm_create_session() */ ctx_flags = PFM_FL_SMPL_FMT; /* * add overflow blocking is necessary */ ctx_flags |= options.opt_block ? PFM_FL_NOTIFY_BLOCK : 0; /* * the size of the buffer is indicated in bytes (not entries). * * The kernel will record into the buffer up to a certain point. * No partial samples are ever recorded. */ buf_arg.buf_size = 3*getpagesize()+512; /* * now create our session */ fd = pfm_create(ctx_flags, NULL, FMT_NAME, &buf_arg, sizeof(buf_arg)); if (fd == -1) { if (errno == ENOSYS) { fatal_error("Your kernel does not have performance monitoring support!\n"); } fatal_error("cannot create session %s\n", strerror(errno)); } /* * retrieve the virtual address at which the sampling * buffer has been mapped */ buf_addr = mmap(NULL, (size_t)buf_arg.buf_size, PROT_READ, MAP_PRIVATE, fd, 0); if (buf_addr == MAP_FAILED) fatal_error("cannot mmap sampling buffer: %s\n", strerror(errno)); printf("buffer mapped @%p\n", buf_addr); hdr = (smpl_hdr_t *)buf_addr; printf("hdr_cur_offs=%llu version=%u.%u\n", (unsigned long long)hdr->hdr_cur_offs, PFM_VERSION_MAJOR(hdr->hdr_version), PFM_VERSION_MINOR(hdr->hdr_version)); if (PFM_VERSION_MAJOR(hdr->hdr_version) < 1) fatal_error("invalid buffer format version\n"); /* * Now program the registers */ if (pfm_write(fd, 0, PFM_RW_PMC, pc, outp.pfp_pmc_count * sizeof(*pc))) fatal_error("pfm_write error errno %d\n",errno); /* * initialize the PMDs * To be read, each PMD must be either written or declared * as being part of a sample (reg_smpl_pmds, reg_reset_pmds) */ if (pfm_write(fd, 0, PFM_RW_PMD_ATTR, pd, outp.pfp_pmd_count * sizeof(*pd))) fatal_error("pfm_write(PMD) error errno %d\n",errno); /* * Create the child task */ if ((pid=fork()) == -1) fatal_error("Cannot fork process\n"); /* * In order to get the PFM_END_MSG message, it is important * to ensure that the child task does not inherit the file * descriptor of the session. By default, file descriptor * are inherited during exec(). We explicitely close it * here. We could have set it up through fcntl(FD_CLOEXEC) * to achieve the same thing. */ if (pid == 0) { close(fd); child(arg); } /* * wait for the child to exec */ waitpid(pid, &status, WUNTRACED); /* * process is stopped at this point */ if (WIFEXITED(status)) { warning("task %s [%d] exited already status %d\n", arg[0], pid, WEXITSTATUS(status)); goto terminate_session; } /* * attach session to stopped task */ if (pfm_attach(fd, 0, pid)) fatal_error("pfm_attach error errno %d\n",errno); /* * activate monitoring for stopped task. * (nothing will be measured at this point */ if (pfm_set_state(fd, 0, PFM_ST_START)) fatal_error("pfm_set_state(start) error errno %d\n",errno); /* * detach child. Side effect includes * activation of monitoring. */ ptrace(PTRACE_DETACH, pid, NULL, 0); gettimeofday(&start_time, NULL); /* * core loop */ for(;;) { /* * wait for overflow/end notification messages */ ret = read(fd, &msg, sizeof(msg)); if (ret == -1) { if(ret == -1 && errno == EINTR) { warning("read interrupted, retrying\n"); continue; } fatal_error("cannot read perfmon msg: %s\n", strerror(errno)); } switch(msg.type) { case PFM_MSG_OVFL: /* the sampling buffer is full */ process_smpl_buf(hdr, pd[0].reg_smpl_pmds, num_smpl_pmds, entry_size); ovfl_count++; /* * reactivate monitoring once we are done with the samples * * Note that this call can fail with EBUSY in non-blocking mode * as the task may have disappeared while we were processing * the samples. */ if (pfm_set_state(fd, 0, PFM_ST_RESTART)) { if (errno != EBUSY) fatal_error("pfm_set_state(restart) error errno %d\n",errno); else warning("pfm_set_state(restart): task probably terminated \n"); } break; case PFM_MSG_END: /* monitored task terminated */ printf("task terminated\n"); goto terminate_session; default: fatal_error("unknown message type %d\n", msg.type); } } terminate_session: /* * cleanup child */ wait4(pid, &status, 0, &rusage); gettimeofday(&end_time, NULL); /* * check for any leftover samples */ process_smpl_buf(hdr, pd[0].reg_smpl_pmds, num_smpl_pmds, entry_size); /* * close file descritor. Because of mmap() the number of reference to the * "file" is 2, thus the session is only freed when the last reference is closed * either by closed or munmap() depending on the order in which those calls are * made: * - close() -> munmap(): session and buffer destroyed after munmap(). * buffer remains accessible after close(). * - munmap() -> close(): buffer unaccessible after munmap(), session and * buffer destroyed after close(). * * It is important to free the resources cleanly, especially because the sampling * buffer reserves locked memory. */ close(fd); /* * unmap buffer, actually free the buffer and session because placed after * the close(), i.e. is the last reference. See comments about close() above. */ ret = munmap(hdr, (size_t)buf_arg.buf_size); if (ret) fatal_error("cannot unmap buffer: %s\n", strerror(errno)); printf("%"PRIu64" samples (%"PRIu64" in partial buffer) collected in %"PRIu64" buffer overflows\n", collected_samples, collected_partial, ovfl_count); show_task_rusage(&start_time, &end_time, &rusage); return 0; } static void usage(void) { printf("usage: task_smpl [-h] [--help] [--no-show] [--ovfl-block] cmd\n"); } int main(int argc, char **argv) { pfmlib_options_t pfmlib_options; int c, ret; while ((c=getopt_long(argc, argv,"h", the_options, 0)) != -1) { switch(c) { case 0: continue; case 1: case 'h': usage(); exit(0); default: fatal_error(""); } } if (argv[optind] == NULL) { fatal_error("You must specify a command to execute\n"); } /* * pass options to library (optional) */ memset(&pfmlib_options, 0, sizeof(pfmlib_options)); pfmlib_options.pfm_debug = 0; /* set to 1 for debug */ pfmlib_options.pfm_verbose = 1; /* set to 1 for verbose */ pfm_set_options(&pfmlib_options); /* * Initialize pfm library (required before we can use it) */ ret = pfm_initialize(); if (ret != PFMLIB_SUCCESS) fatal_error("Cannot initialize library: %s\n", pfm_strerror(ret)); return mainloop(argv+optind); }