/* * task_attach.c - example of how to attach to another task for monitoring * * Copyright (c) 2002-2006 Hewlett-Packard Development Company, L.P. * Contributed by Stephane Eranian * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies * of the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A * PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "detect_pmcs.h" #define NUM_PMCS PFMLIB_MAX_PMCS #define NUM_PMDS PFMLIB_MAX_PMDS #define MAX_EVT_NAME_LEN 128 static void fatal_error(char *fmt,...) __attribute__((noreturn)); static void fatal_error(char *fmt, ...) { va_list ap; va_start(ap, fmt); vfprintf(stderr, fmt, ap); va_end(ap); exit(1); } int parent(pid_t pid) { pfmlib_input_param_t inp; pfmlib_output_param_t outp; pfarg_ctx_t ctx[1]; pfarg_pmc_t pc[NUM_PMCS]; pfarg_pmd_t pd[NUM_PMDS]; pfarg_load_t load_args; pfarg_msg_t msg; unsigned int i, num_counters; int status, ret; int ctx_fd; char name[MAX_EVT_NAME_LEN]; memset(pc, 0, sizeof(pc)); memset(pd, 0, sizeof(pd)); memset(ctx, 0, sizeof(ctx)); memset(&inp,0, sizeof(inp)); memset(&outp,0, sizeof(outp)); memset(&load_args,0, sizeof(load_args)); pfm_get_num_counters(&num_counters); if (pfm_get_cycle_event(&inp.pfp_events[0]) != PFMLIB_SUCCESS) { fatal_error("cannot find cycle event\n"); } if (pfm_get_inst_retired_event(&inp.pfp_events[1]) != PFMLIB_SUCCESS) { fatal_error("cannot find inst retired event\n"); } i = 2; /* * set the privilege mode: * PFM_PLM3 : user level * PFM_PLM0 : kernel level */ inp.pfp_dfl_plm = PFM_PLM3; if (i > num_counters) { i = num_counters; printf("too many events provided (max=%d events), using first %d event(s)\n", num_counters, i); } /* * how many counters we use */ inp.pfp_event_count = i; /* * now create a context. we will later attach it to the task we are creating. */ ctx_fd = pfm_create_context(ctx, NULL, NULL, 0); if (ctx_fd == -1) { if (errno == ENOSYS) { fatal_error("Your kernel does not have performance monitoring support!\n"); } fatal_error("Can't create PFM context %s\n", strerror(errno)); } /* * build the pfp_unavail_pmcs bitmask by looking * at what perfmon has available. It is not always * the case that all PMU registers are actually available * to applications. For instance, on IA-32 platforms, some * registers may be reserved for the NMI watchdog timer. * * With this bitmap, the library knows which registers NOT to * use. Of source, it is possible that no valid assignement may * be possible if certina PMU registers are not available. */ detect_unavail_pmcs(ctx_fd, &inp.pfp_unavail_pmcs); /* * let the library figure out the values for the PMCS */ if ((ret=pfm_dispatch_events(&inp, NULL, &outp, NULL)) != PFMLIB_SUCCESS) { fatal_error("cannot configure events: %s\n", pfm_strerror(ret)); } /* * Now prepare the argument to initialize the PMDs and PMCS. * We must pfp_pmc_count to determine the number of PMC to intialize. * We must use pfp_event_count to determine the number of PMD to initialize. * Some events causes extra PMCs to be used, so pfp_pmc_count may be >= pfp_event_count. * * This step is new compared to libpfm-2.x. It is necessary because the library no * longer knows about the kernel data structures. */ for (i=0; i < outp.pfp_pmc_count; i++) { pc[i].reg_num = outp.pfp_pmcs[i].reg_num; pc[i].reg_value = outp.pfp_pmcs[i].reg_value; } for(i=0; i < outp.pfp_pmd_count; i++) pd[i].reg_num = outp.pfp_pmds[i].reg_num; /* * Now program the registers * * We don't use the save variable to indicate the number of elements passed to * the kernel because, as we said earlier, pc may contain more elements than * the number of events we specified, i.e., contains more thann counting monitors. */ if (pfm_write_pmcs(ctx_fd, pc, outp.pfp_pmc_count) == -1) fatal_error("pfm_write_pmcs error errno %d\n",errno); /* * To be read, each PMD must be either written or declared * as being part of a sample (reg_smpl_pmds) */ if (pfm_write_pmds(ctx_fd, pd, outp.pfp_pmd_count) == -1) fatal_error("pfm_write_pmds error errno %d\n",errno); ret = ptrace(PTRACE_ATTACH, pid, NULL, 0); if (ret == -1) { fatal_error("cannot attach to %d: %s\n", pid, strerror(errno)); } /* * wait for the child to be actually stopped */ waitpid(pid, &status, WUNTRACED); /* * check if process exited early */ if (WIFEXITED(status)) { fatal_error("command process %d exited too early with status %d\n", pid, WEXITSTATUS(status)); } /* * the task is stopped at this point */ /* * now we load (i.e., attach) the context to ourself */ load_args.load_pid = pid; if (pfm_load_context(ctx_fd, &load_args) == -1) { fatal_error("pfm_load_context error errno %d\n",errno); } /* * activate monitoring. The task is still STOPPED at this point. Monitoring * will not take effect until the execution of the task is resumed. */ if (pfm_start(ctx_fd, NULL) == -1) { fatal_error("pfm_start error errno %d\n",errno); } /* * now resume execution of the task, effectively activating * monitoring. */ ptrace(PTRACE_DETACH, pid, NULL, 0); /* * now the task is running */ /* * We cannot simply do a waitpid() because we may be attaching to a process * totally unrelated to our program. Instead we use a perfmon facility that * notifies us when the monitoring task is exiting. * * When a task with a monitoring context attached to it exits, a PFM_MSG_END * is generated. It can be retrieve with a simple read() on the context's descriptor. * * Another reason why you might return from the read is if there was a counter * overflow, unlikely in this example. * * To measure only for short period of time, use select or poll with a timeout, * see task_attach_timeout.c * */ ret = read(ctx_fd, &msg, sizeof(msg)); if (ret == -1) { fatal_error("cannot read from descriptor: %s\n", strerror(errno)); } if (msg.type != PFM_MSG_END) { fatal_error("unexpected msg type : %d\n", msg.type); } /* * the task has exited, we can simply read the results */ /* * now simply read the results. */ if (pfm_read_pmds(ctx_fd, pd, inp.pfp_event_count) == -1) { fatal_error("pfm_read_pmds error errno %d\n",errno); return -1; } /* * print the results * * It is important to realize, that the first event we specified may not * be in PMD4. Not all events can be measured by any monitor. That's why * we need to use the pc[] array to figure out where event i was allocated. * */ for (i=0; i < inp.pfp_event_count; i++) { pfm_get_full_event_name(&inp.pfp_events[i], name, MAX_EVT_NAME_LEN); printf("PMD%-3u %20"PRIu64" %s\n", pd[i].reg_num, pd[i].reg_value, name); } /* * free the context */ close(ctx_fd); return 0; } int main(int argc, char **argv) { pfmlib_options_t pfmlib_options; pid_t pid; int ret; if (argc < 2) { fatal_error("usage: %s pid\n", argv[0]); } pid = atoi(argv[1]); /* * pass options to library (optional) */ memset(&pfmlib_options, 0, sizeof(pfmlib_options)); pfmlib_options.pfm_debug = 0; /* set to 1 for debug */ pfm_set_options(&pfmlib_options); /* * Initialize pfm library (required before we can use it) */ ret = pfm_initialize(); if (ret != PFMLIB_SUCCESS) fatal_error("Cannot initialize library: %s\n", pfm_strerror(ret)); return parent(pid); }