/* * task.c - example of a task monitoring another one * * Copyright (c) 2002-2006 Hewlett-Packard Development Company, L.P. * Contributed by Stephane Eranian * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies * of the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A * PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * This file is part of libpfm, a performance monitoring support library for * applications on Linux/ia64. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #define NUM_PMCS PFMLIB_MAX_PMCS #define NUM_PMDS PFMLIB_MAX_PMDS #define MAX_EVT_NAME_LEN 128 static void fatal_error(char *fmt,...) __attribute__((noreturn)); static void fatal_error(char *fmt, ...) { va_list ap; va_start(ap, fmt); vfprintf(stderr, fmt, ap); va_end(ap); exit(1); } int child(char **arg) { /* * will cause the program to stop before executing the first * user level instruction. We can only attach (load) a context * if the task is in the STOPPED state. */ ptrace(PTRACE_TRACEME, 0, NULL, NULL); /* * execute the requested command */ execvp(arg[0], arg); fatal_error("cannot exec: %s\n", arg[0]); /* not reached */ } int parent(char **arg) { pfmlib_input_param_t inp; pfmlib_output_param_t outp; pfarg_context_t ctx[1]; pfarg_reg_t pc[NUM_PMCS]; pfarg_reg_t pd[NUM_PMDS]; pfarg_load_t load_args; unsigned int i, num_counters; int status, ret; int ctx_fd; pid_t pid; char name[MAX_EVT_NAME_LEN]; memset(pc, 0, sizeof(ctx)); memset(pd, 0, sizeof(ctx)); memset(ctx, 0, sizeof(ctx)); memset(&inp,0, sizeof(inp)); memset(&outp,0, sizeof(outp)); memset(&load_args,0, sizeof(load_args)); pfm_get_num_counters(&num_counters); if (pfm_get_cycle_event(&inp.pfp_events[0]) != PFMLIB_SUCCESS) fatal_error("cannot find cycle event\n"); if (pfm_get_inst_retired_event(&inp.pfp_events[1]) != PFMLIB_SUCCESS) fatal_error("cannot find inst retired event\n"); i = 2; if (num_counters < i) { i = num_counters; printf("too many events provided (max=%d events), using first %d event(s)\n", num_counters, i); } /* * set the privilege mode: * PFM_PLM3 : user level * PFM_PLM0 : kernel level */ inp.pfp_dfl_plm = PFM_PLM3; /* * how many counters we use */ inp.pfp_event_count = i; /* * let the library figure out the values for the PMCS */ if ((ret=pfm_dispatch_events(&inp, NULL, &outp, NULL)) != PFMLIB_SUCCESS) { fatal_error("cannot configure events: %s\n", pfm_strerror(ret)); } /* * now create a context. we will later attach it to the task we are creating. */ if (perfmonctl(0, PFM_CREATE_CONTEXT, ctx, 1) == -1) { if (errno == ENOSYS) { fatal_error("Your kernel does not have performance monitoring support!\n"); } fatal_error("Can't create PFM context %s\n", strerror(errno)); } /* * extract the identifier for our context */ ctx_fd = ctx[0].ctx_fd; /* * Now prepare the argument to initialize the PMDs and PMCS. * We must pfp_pmc_count to determine the number of PMC to intialize. * We must use pfp_event_count to determine the number of PMD to initialize. * Some events causes extra PMCs to be used, so pfp_pmc_count may be >= pfp_event_count. * * This step is new compared to libpfm-2.x. It is necessary because the library no * longer knows about the kernel data structures. */ for (i=0; i < outp.pfp_pmc_count; i++) { pc[i].reg_num = outp.pfp_pmcs[i].reg_num; pc[i].reg_value = outp.pfp_pmcs[i].reg_value; } /* * the PMC controlling the event ALWAYS come first, that's why this loop * is safe even when extra PMC are needed to support a particular event. */ for (i=0; i < inp.pfp_event_count; i++) { pd[i].reg_num = pc[i].reg_num; } /* * Now program the registers * * We don't use the save variable to indicate the number of elements passed to * the kernel because, as we said earlier, pc may contain more elements than * the number of events we specified, i.e., contains more thann counting monitors. */ if (perfmonctl(ctx_fd, PFM_WRITE_PMCS, pc, outp.pfp_pmc_count) == -1) { fatal_error("perfmonctl error PFM_WRITE_PMCS errno %d\n",errno); } if (perfmonctl(ctx_fd, PFM_WRITE_PMDS, pd, inp.pfp_event_count) == -1) { fatal_error("perfmonctl error PFM_WRITE_PMDS errno %d\n",errno); } /* * Create the child task */ if ((pid=fork()) == -1) fatal_error("Cannot fork process\n"); /* * and launch the child code */ if (pid == 0) exit(child(arg)); /* * wait for the child to exec */ waitpid(pid, &status, WUNTRACED); /* * check if process exited early */ if (WIFEXITED(status)) { fatal_error("command %s exited too early with status %d\n", arg[0], WEXITSTATUS(status)); } /* * the task is stopped at this point */ /* * now we load (i.e., attach) the context to ourself */ load_args.load_pid = pid; if (perfmonctl(ctx_fd, PFM_LOAD_CONTEXT, &load_args, 1) == -1) { fatal_error("perfmonctl error PFM_LOAD_CONTEXT errno %d\n",errno); } /* * activate monitoring. The task is still STOPPED at this point. Monitoring * will not take effect until the execution of the task is resumed. */ if (perfmonctl(ctx_fd, PFM_START, NULL, 0) == -1) { fatal_error("perfmonctl error PFM_START errno %d\n",errno); } /* * now resume execution of the task, effectively activating * monitoring. */ ptrace(PTRACE_DETACH, pid, NULL, 0); /* * now the task is running */ /* * simply wait for completion */ waitpid(pid, &status, 0); /* * the task has disappeared at this point but our context is still * present and contains all the latest counts. */ /* * now simply read the results. */ if (perfmonctl(ctx_fd, PFM_READ_PMDS, pd, inp.pfp_event_count) == -1) { fatal_error("perfmonctl error READ_PMDS errno %d\n",errno); return -1; } /* * print the results * * It is important to realize, that the first event we specified may not * be in PMD4. Not all events can be measured by any monitor. That's why * we need to use the pc[] array to figure out where event i was allocated. * */ for (i=0; i < inp.pfp_event_count; i++) { pfm_get_full_event_name(&inp.pfp_events[i], name, MAX_EVT_NAME_LEN); printf("PMD%u %20"PRIu64" %s\n", pd[i].reg_num, pd[i].reg_value, name); } /* * free the context */ close(ctx_fd); return 0; } int main(int argc, char **argv) { pfmlib_options_t pfmlib_options; if (argc < 2) { fatal_error("You must specify a command to execute\n"); } /* * Initialize pfm library (required before we can use it) */ if (pfm_initialize() != PFMLIB_SUCCESS) { printf("Can't initialize library\n"); exit(1); } /* * pass options to library (optional) */ memset(&pfmlib_options, 0, sizeof(pfmlib_options)); pfmlib_options.pfm_debug = 0; /* set to 1 for debug */ pfm_set_options(&pfmlib_options); return parent(argv+1); }