/* * notify_self.c - example of how you can use overflow notifications * * Copyright (c) 2002-2006 Hewlett-Packard Development Company, L.P. * Contributed by Stephane Eranian * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies * of the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A * PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * This file is part of libpfm, a performance monitoring support library for * applications on Linux/ia64. */ #include #include #include #include #include #include #include #include #include #include #include #include #define SMPL_PERIOD 1000000000UL static volatile unsigned long notification_received; #define NUM_PMCS PFMLIB_MAX_PMCS #define NUM_PMDS PFMLIB_MAX_PMDS static pfarg_reg_t pd[NUM_PMDS]; static int ctx_fd; static char *event1_name; static void fatal_error(char *fmt,...) __attribute__((noreturn)); static void fatal_error(char *fmt, ...) { va_list ap; va_start(ap, fmt); vfprintf(stderr, fmt, ap); va_end(ap); exit(1); } static void sigio_handler(int n, struct siginfo *info, struct sigcontext *sc) { pfm_msg_t msg; int fd = ctx_fd; int r; if (fd != ctx_fd) { fatal_error("handler does not get valid file descriptor\n"); } if (event1_name && perfmonctl(fd, PFM_READ_PMDS, pd+1, 1) == -1) { fatal_error("PFM_READ_PMDS: %s", strerror(errno)); } r = read(fd, &msg, sizeof(msg)); if (r != sizeof(msg)) { fatal_error("cannot read overflow message: %s\n", strerror(errno)); } if (msg.type != PFM_MSG_OVFL) { fatal_error("unexpected msg type: %d\n",msg.type); } /* * XXX: risky to do printf() in signal handler! */ if (event1_name) printf("Notification %lu: %"PRIu64" %s\n", notification_received, pd[1].reg_value, event1_name); else printf("Notification %lu\n", notification_received); /* * At this point, the counter used for the sampling period has already * be reset by the kernel because we are in non-blocking mode, self-monitoring. */ /* * increment our notification counter */ notification_received++; /* * And resume monitoring */ if (perfmonctl(fd, PFM_RESTART,NULL, 0) == -1) { fatal_error("PFM_RESTART: %s", strerror(errno)); } } /* * infinite loop waiting for notification to get out */ void busyloop(void) { /* * busy loop to burn CPU cycles */ for(;notification_received < 3;) ; } int main(int argc, char **argv) { pfarg_context_t ctx[1]; pfmlib_input_param_t inp; pfmlib_output_param_t outp; pfarg_reg_t pc[NUM_PMCS]; pfarg_load_t load_args; pfmlib_options_t pfmlib_options; struct sigaction act; unsigned int i, num_counters; size_t len; int ret; /* * Initialize pfm library (required before we can use it) */ if (pfm_initialize() != PFMLIB_SUCCESS) { printf("Can't initialize library\n"); exit(1); } /* * Install the signal handler (SIGIO) */ memset(&act, 0, sizeof(act)); act.sa_handler = (sig_t)sigio_handler; sigaction (SIGIO, &act, 0); /* * pass options to library (optional) */ memset(&pfmlib_options, 0, sizeof(pfmlib_options)); pfmlib_options.pfm_debug = 0; /* set to 1 for debug */ pfm_set_options(&pfmlib_options); memset(pc, 0, sizeof(pc)); memset(ctx, 0, sizeof(ctx)); memset(&load_args, 0, sizeof(load_args)); memset(&inp,0, sizeof(inp)); memset(&outp,0, sizeof(outp)); pfm_get_num_counters(&num_counters); if (pfm_get_cycle_event(&inp.pfp_events[0]) != PFMLIB_SUCCESS) fatal_error("cannot find cycle event\n"); if (pfm_get_inst_retired_event(&inp.pfp_events[1]) != PFMLIB_SUCCESS) fatal_error("cannot find inst retired event\n"); i = 2; /* * set the default privilege mode for all counters: * PFM_PLM3 : user level only */ inp.pfp_dfl_plm = PFM_PLM3; if (i > num_counters) { i = num_counters; printf("too many events provided (max=%d events), using first %d event(s)\n", num_counters, i); } /* * how many counters we use */ inp.pfp_event_count = i; pfm_get_max_event_name_len(&len); event1_name = malloc(len+1); if (event1_name == NULL) fatal_error("cannot allocate event name\n"); pfm_get_full_event_name(&inp.pfp_events[1], event1_name, len+1); /* * let the library figure out the values for the PMCS */ if ((ret=pfm_dispatch_events(&inp, NULL, &outp, NULL)) != PFMLIB_SUCCESS) { fatal_error("Cannot configure events: %s\n", pfm_strerror(ret)); } /* * now create the context for self monitoring/per-task */ if (perfmonctl(0, PFM_CREATE_CONTEXT, ctx, 1) == -1 ) { if (errno == ENOSYS) { fatal_error("Your kernel does not have performance monitoring support!\n"); } fatal_error("Can't create PFM context %s\n", strerror(errno)); } ctx_fd = ctx->ctx_fd; /* * Now prepare the argument to initialize the PMDs and PMCS. * We use pfp_pmc_count to determine the number of registers to * setup. Note that this field can be >= pfp_event_count. */ for (i=0; i < outp.pfp_pmc_count; i++) { pc[i].reg_num = outp.pfp_pmcs[i].reg_num; pc[i].reg_value = outp.pfp_pmcs[i].reg_value; } for (i=0; i < inp.pfp_event_count; i++) { pd[i].reg_num = pc[i].reg_num; } /* * We want to get notified when the counter used for our first * event overflows */ pc[0].reg_flags |= PFM_REGFL_OVFL_NOTIFY; pc[0].reg_reset_pmds[0] |= 1UL << outp.pfp_pmcs[1].reg_num; /* * we arm the first counter, such that it will overflow * after SMPL_PERIOD events have been observed */ pd[0].reg_value = (~0UL) - SMPL_PERIOD + 1; pd[0].reg_long_reset = (~0UL) - SMPL_PERIOD + 1; pd[0].reg_short_reset = (~0UL) - SMPL_PERIOD + 1; /* * Now program the registers * * We don't use the save variable to indicate the number of elements passed to * the kernel because, as we said earlier, pc may contain more elements than * the number of events we specified, i.e., contains more than counting monitors. */ if (perfmonctl(ctx_fd, PFM_WRITE_PMCS, pc, outp.pfp_pmc_count) == -1) { fatal_error("perfmonctl error PFM_WRITE_PMCS errno %d\n",errno); } if (perfmonctl(ctx_fd, PFM_WRITE_PMDS, pd, inp.pfp_event_count) == -1) { fatal_error("perfmonctl error PFM_WRITE_PMDS errno %d\n",errno); } /* * we want to monitor ourself */ load_args.load_pid = getpid(); if (perfmonctl(ctx_fd, PFM_LOAD_CONTEXT, &load_args, 1) == -1) { fatal_error("perfmonctl error PFM_WRITE_PMDS errno %d\n",errno); } /* * setup asynchronous notification on the file descriptor */ ret = fcntl(ctx_fd, F_SETFL, fcntl(ctx_fd, F_GETFL, 0) | O_ASYNC); if (ret == -1) { fatal_error("cannot set ASYNC: %s\n", strerror(errno)); } /* * get ownership of the descriptor */ ret = fcntl(ctx_fd, F_SETOWN, getpid()); if (ret == -1) { fatal_error("cannot setown: %s\n", strerror(errno)); } /* * Let's roll now */ pfm_self_start(ctx_fd); busyloop(); pfm_self_stop(ctx_fd); /* * free our context */ close(ctx_fd); return 0; }