/* * ita_rr.c - example of how to use data range restriction with the Itanium PMU * * Copyright (c) 2002-2006 Hewlett-Packard Development Company, L.P. * Contributed by Stephane Eranian * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies * of the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A * PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * This file is part of libpfm, a performance monitoring support library for * applications on Linux/ia64. */ #include #include #include #include #include #include #include #include #include #include #define N_LOOP 100000000U #if defined(__ECC) && defined(__INTEL_COMPILER) /* if you do not have this file, your compiler is too old */ #include #define clear_psr_ac() __rum(1UL<<3) #elif defined(__GNUC__) static inline void clear_psr_ac(void) { __asm__ __volatile__("rum psr.ac;;" ::: "memory" ); } #else #error "You need to define clear_psr_ac() for your compiler" #endif #define TEST_DATA_COUNT 16 #define NUM_PMCS PFMLIB_MAX_PMCS #define NUM_PMDS PFMLIB_MAX_PMDS #define MAX_PMU_NAME_LEN 32 #define MAX_EVT_NAME_LEN 128 typedef struct { char *event_name; unsigned long expected_value; } event_desc_t; static event_desc_t event_list[]={ { "misaligned_loads_retired", N_LOOP }, { "misaligned_stores_retired", N_LOOP }, { NULL, 0UL} }; typedef union { unsigned long l_tab[2]; unsigned int i_tab[4]; unsigned short s_tab[8]; unsigned char c_tab[16]; } test_data_t; static int do_test(test_data_t *data) { unsigned int *l, v; l = (unsigned int *)(data->c_tab+1); if (((unsigned long)l & 0x1) == 0) { printf("Data is not unaligned, can't run test\n"); return -1; } v = *l; v++; *l = v; return 0; } static void fatal_error(char *fmt,...) __attribute__((noreturn)); static void fatal_error(char *fmt, ...) { va_list ap; va_start(ap, fmt); vfprintf(stderr, fmt, ap); va_end(ap); exit(1); } int main(int argc, char **argv) { event_desc_t *p; test_data_t *test_data, *test_data_fake; unsigned long range_start, range_end; int ret, type = 0; pfmlib_input_param_t inp; pfmlib_output_param_t outp; pfmlib_ita_input_param_t ita_inp; pfmlib_ita_output_param_t ita_outp; pfarg_reg_t pd[NUM_PMDS]; pfarg_reg_t pc[NUM_PMCS]; pfarg_dbreg_t dbrs[8]; pfarg_context_t ctx[1]; pfarg_load_t load_args; pfmlib_options_t pfmlib_options; unsigned int i; int id; char name[MAX_EVT_NAME_LEN]; /* * Initialize pfm library (required before we can use it) */ if (pfm_initialize() != PFMLIB_SUCCESS) { fatal_error("Can't initialize library\n"); } /* * Let's make sure we run this on the right CPU family */ pfm_get_pmu_type(&type); if (type != PFMLIB_ITANIUM_PMU) { char model[MAX_PMU_NAME_LEN]; pfm_get_pmu_name(model, MAX_PMU_NAME_LEN); fatal_error("this program does not work with %s PMU\n", model); } /* * pass options to library (optional) */ memset(&pfmlib_options, 0, sizeof(pfmlib_options)); pfmlib_options.pfm_debug = 0; /* set to 1 for debug */ pfmlib_options.pfm_verbose = 0; /* set to 1 for debug */ pfm_set_options(&pfmlib_options); /* * now let's allocate the data structure we will be monitoring */ test_data = (test_data_t *)malloc(sizeof(test_data_t)*TEST_DATA_COUNT); if (test_data == NULL) { fatal_error("cannot allocate test data structure"); } test_data_fake = (test_data_t *)malloc(sizeof(test_data_t)*TEST_DATA_COUNT); if (test_data_fake == NULL) { fatal_error("cannot allocate test data structure"); } /* * Compute the range we are interested in */ range_start = (unsigned long)test_data; range_end = range_start + sizeof(test_data_t)*TEST_DATA_COUNT; memset(pd, 0, sizeof(pd)); memset(pc, 0, sizeof(pc)); memset(ctx, 0, sizeof(ctx)); memset(dbrs,0, sizeof(dbrs)); memset(&load_args, 0, sizeof(load_args)); /* * prepare parameters to library. we don't use any Itanium * specific features here. so the pfp_model is NULL. */ memset(&inp,0, sizeof(inp)); memset(&outp,0, sizeof(outp)); memset(&ita_inp,0, sizeof(ita_inp)); memset(&ita_outp,0, sizeof(ita_outp)); /* * find requested event */ p = event_list; for (i=0; p->event_name ; i++, p++) { if (pfm_find_event(p->event_name, &inp.pfp_events[i].event) != PFMLIB_SUCCESS) { fatal_error("Cannot find %s event\n", p->event_name); } } /* * set the privilege mode: * PFM_PLM3 : user level only */ inp.pfp_dfl_plm = PFM_PLM3; /* * how many counters we use */ inp.pfp_event_count = i; /* * We use the library to figure out how to program the debug registers * to cover the data range we are interested in. The rr_end parameter * must point to the byte after the last of the range (C-style range). * * Because of the masking mechanism and therefore alignment constraints used to implement * this feature, it may not be possible to exactly cover a given range. It may be that * the coverage exceeds the desired range. So it is possible to capture noise if * the surrounding addresses are also heavily used. You can figure out, the actual * start and end offsets of the generated range by checking the rr_soff and rr_eoff fields * in the pfmlib_ita_output_param_t structure when coming back from the library call. * * Upon return, the pfmlib_ita_output_param_t.pfp_ita_drange.rr_dbr array is programmed and * the number of entries used to cover the range is in rr_nbr_used. */ /* * We indicate that we are using a Data Range Restriction feature. * In this particular case this will cause, pfm_dispatch_events() to * add pmc13 to the list of PMC registers to initialize and the */ ita_inp.pfp_ita_drange.rr_used = 1; ita_inp.pfp_ita_drange.rr_limits[0].rr_start = range_start; ita_inp.pfp_ita_drange.rr_limits[0].rr_end = range_end; /* * use the library to find the monitors to use * * upon return, cnt contains the number of entries * used in pc[]. */ if ((ret=pfm_dispatch_events(&inp, &ita_inp, &outp, &ita_outp)) != PFMLIB_SUCCESS) { fatal_error("cannot configure events: %s\n", pfm_strerror(ret)); } printf("data range : [0x%016lx-0x%016lx): %d pair of debug registers used\n" "start_offset:-0x%lx end_offset:+0x%lx\n", range_start, range_end, ita_outp.pfp_ita_drange.rr_nbr_used >> 1, ita_outp.pfp_ita_drange.rr_infos[0].rr_soff, ita_outp.pfp_ita_drange.rr_infos[0].rr_eoff); printf("fake data range: [0x%016lx-0x%016lx)\n", (unsigned long)test_data_fake, (unsigned long)test_data_fake+sizeof(test_data_t)*TEST_DATA_COUNT); /* * now create the context for self monitoring/per-task */ if (perfmonctl(0, PFM_CREATE_CONTEXT, ctx, 1) == -1) { if (errno == ENOSYS) { fatal_error("Your kernel does not have performance monitoring support!\n"); } fatal_error("cannot create PFM context %s\n", strerror(errno)); } /* * extract our file descriptor */ id = ctx[0].ctx_fd; /* * Now prepare the argument to initialize the PMDs and PMCS. * We must pfp_pmc_count to determine the number of PMC to intialize. * We must use pfp_event_count to determine the number of PMD to initialize. * Some events cause extra PMCs to be used, so pfp_pmc_count may be >= pfp_event_count. * * This step is new compared to libpfm-2.x. It is necessary because the library no * longer knows about the kernel data structures. */ for (i=0; i < outp.pfp_pmc_count; i++) { pc[i].reg_num = outp.pfp_pmcs[i].reg_num; pc[i].reg_value = outp.pfp_pmcs[i].reg_value; } /* * the PMC controlling the event ALWAYS come first, that's why this loop * is safe even when extra PMC are needed to support a particular event. */ for (i=0; i < inp.pfp_event_count; i++) { pd[i].reg_num = pc[i].reg_num; } /* * propagate the setup for the debug registers from the library to the arguments * to the perfmonctl() syscall. The library does not know the type of the syscall * anymore. */ for (i=0; i < ita_outp.pfp_ita_drange.rr_nbr_used; i++) { dbrs[i].dbreg_num = ita_outp.pfp_ita_drange.rr_br[i].reg_num; dbrs[i].dbreg_value = ita_outp.pfp_ita_drange.rr_br[i].reg_value; } /* * Program the data debug registers. * * IMPORTANT: programming the debug register MUST always be done before the PMCs * otherwise the kernel will fail on PFM_WRITE_PMCS. This is for security reasons. */ if (perfmonctl(id, PFM_WRITE_DBRS, dbrs, ita_outp.pfp_ita_drange.rr_nbr_used) == -1) { fatal_error("perfmonctl error PFM_WRITE_DBRS errno %d\n",errno); } /* * Now program the registers * * We don't use the save variable to indicate the number of elements passed to * the kernel because, as we said earlier, pc may contain more elements than * the number of events we specified, i.e., contains more than coutning monitors. */ if (perfmonctl(id, PFM_WRITE_PMCS, pc, outp.pfp_pmc_count) == -1) { fatal_error("perfmonctl error PFM_WRITE_PMCS errno %d\n",errno); } if (perfmonctl(id, PFM_WRITE_PMDS, pd, inp.pfp_event_count) == -1) { fatal_error("perfmonctl error PFM_WRITE_PMDS errno %d\n",errno); } /* * now we load (i.e., attach) the context to ourself */ load_args.load_pid = getpid(); if (perfmonctl(id, PFM_LOAD_CONTEXT, &load_args, 1) == -1) { fatal_error("perfmonctl error PFM_LOAD_CONTEXT errno %d\n",errno); } /* * Let's make sure that the hardware does the unaligned accesses (do not use the * kernel software handler otherwise the PMU won't see the unaligned fault). */ clear_psr_ac(); /* * Let's roll now. * * The idea behind this test is to have two dynamically allocated data structures * which are access in a unaligned fashion. But we want to capture only the unaligned * accesses on one of the two. So the debug registers are programmed to cover the * first one ONLY. Then we activate monotoring and access the two data structures. * This is an artificial example just to demonstrate how to use data address range * restrictions. */ pfm_self_start(id); for (i=0; i < N_LOOP; i++) { do_test(test_data); do_test(test_data_fake); } pfm_self_stop(id); /* * now read the results */ if (perfmonctl(id, PFM_READ_PMDS, pd, inp.pfp_event_count) == -1) { fatal_error( "perfmonctl error READ_PMDS errno %d\n",errno); } /* * print the results * * It is important to realize, that the first event we specified may not * be in PMD4. Not all events can be measured by any monitor. That's why * we need to use the pc[] array to figure out where event i was allocated. * * For this example, we expect to see a value of 1 for both misaligned loads * and misaligned stores. But it can be two when the test_data and test_data_fake * are allocate very close from each other and the range created with the debug * registers is larger then test_data. * */ for (i=0; i < inp.pfp_event_count; i++) { pfm_get_full_event_name(&inp.pfp_events[i], name, MAX_EVT_NAME_LEN); printf("PMD%u %20lu %s (expected %lu)\n", pd[i].reg_num, pd[i].reg_value, name, event_list[i].expected_value); if (pd[i].reg_value != event_list[i].expected_value) { printf("error: Result should be %lu for %s\n", event_list[i].expected_value, name); break; } } /* * let's stop this now */ close(id); free(test_data); free(test_data_fake); return 0; }