package bytebufferpool import ( "sort" "sync" "sync/atomic" ) const ( minBitSize = 6 // 2**6=64 is a CPU cache line size steps = 20 minSize = 1 << minBitSize maxSize = 1 << (minBitSize + steps - 1) calibrateCallsThreshold = 42000 maxPercentile = 0.95 ) // Pool represents byte buffer pool. // // Distinct pools may be used for distinct types of byte buffers. // Properly determined byte buffer types with their own pools may help reducing // memory waste. type Pool struct { calls [steps]uint64 calibrating uint64 defaultSize uint64 maxSize uint64 pool sync.Pool } var defaultPool Pool // Get returns an empty byte buffer from the pool. // // Got byte buffer may be returned to the pool via Put call. // This reduces the number of memory allocations required for byte buffer // management. func Get() *ByteBuffer { return defaultPool.Get() } // Get returns new byte buffer with zero length. // // The byte buffer may be returned to the pool via Put after the use // in order to minimize GC overhead. func (p *Pool) Get() *ByteBuffer { v := p.pool.Get() if v != nil { return v.(*ByteBuffer) } return &ByteBuffer{ B: make([]byte, 0, atomic.LoadUint64(&p.defaultSize)), } } // Put returns byte buffer to the pool. // // ByteBuffer.B mustn't be touched after returning it to the pool. // Otherwise data races will occur. func Put(b *ByteBuffer) { defaultPool.Put(b) } // Put releases byte buffer obtained via Get to the pool. // // The buffer mustn't be accessed after returning to the pool. func (p *Pool) Put(b *ByteBuffer) { idx := index(len(b.B)) if atomic.AddUint64(&p.calls[idx], 1) > calibrateCallsThreshold { p.calibrate() } maxSize := int(atomic.LoadUint64(&p.maxSize)) if maxSize == 0 || cap(b.B) <= maxSize { b.Reset() p.pool.Put(b) } } func (p *Pool) calibrate() { if !atomic.CompareAndSwapUint64(&p.calibrating, 0, 1) { return } a := make(callSizes, 0, steps) var callsSum uint64 for i := uint64(0); i < steps; i++ { calls := atomic.SwapUint64(&p.calls[i], 0) callsSum += calls a = append(a, callSize{ calls: calls, size: minSize << i, }) } sort.Sort(a) defaultSize := a[0].size maxSize := defaultSize maxSum := uint64(float64(callsSum) * maxPercentile) callsSum = 0 for i := 0; i < steps; i++ { if callsSum > maxSum { break } callsSum += a[i].calls size := a[i].size if size > maxSize { maxSize = size } } atomic.StoreUint64(&p.defaultSize, defaultSize) atomic.StoreUint64(&p.maxSize, maxSize) atomic.StoreUint64(&p.calibrating, 0) } type callSize struct { calls uint64 size uint64 } type callSizes []callSize func (ci callSizes) Len() int { return len(ci) } func (ci callSizes) Less(i, j int) bool { return ci[i].calls > ci[j].calls } func (ci callSizes) Swap(i, j int) { ci[i], ci[j] = ci[j], ci[i] } func index(n int) int { n-- n >>= minBitSize idx := 0 for n > 0 { n >>= 1 idx++ } if idx >= steps { idx = steps - 1 } return idx }