/* fips/rand/fips_drbg_ctr.c */ /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL * project. */ /* ==================================================================== * Copyright (c) 2011 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * licensing@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== */ #include #include #include #include #include #include "fips_rand_lcl.h" static void inc_128(DRBG_CTR_CTX * cctx) { int i; unsigned char c; unsigned char *p = cctx->V + 15; for (i = 0; i < 16; i++) { c = *p; c++; *p = c; if (c) return; p--; } } static void ctr_XOR(DRBG_CTR_CTX * cctx, const unsigned char *in, size_t inlen) { size_t i, n; /* Any zero padding will have no effect on the result as we * are XORing. So just process however much input we have. */ if (!in || !inlen) return; if (inlen < cctx->keylen) n = inlen; else n = cctx->keylen; for (i = 0; i < n; i++) cctx->K[i] ^= in[i]; if (inlen <= cctx->keylen) return; n = inlen - cctx->keylen; /* Should never happen */ if (n > 16) n = 16; for (i = 0; i < 16; i++) cctx->V[i] ^= in[i + cctx->keylen]; } /* Process a complete block using BCC algorithm of SPP 800-90 10.4.3 */ static void ctr_BCC_block(DRBG_CTR_CTX * cctx, unsigned char *out, const unsigned char *in) { int i; for (i = 0; i < 16; i++) out[i] ^= in[i]; AES_encrypt(out, out, &cctx->df_ks); #if 0 fprintf(stderr, "BCC in+out\n"); BIO_dump_fp(stderr, in, 16); BIO_dump_fp(stderr, out, 16); #endif } /* Handle several BCC operations for as much data as we need for K and X */ static void ctr_BCC_blocks(DRBG_CTR_CTX * cctx, const unsigned char *in) { ctr_BCC_block(cctx, cctx->KX, in); ctr_BCC_block(cctx, cctx->KX + 16, in); if (cctx->keylen != 16) ctr_BCC_block(cctx, cctx->KX + 32, in); } /* Initialise BCC blocks: these have the value 0,1,2 in leftmost positions: * see 10.4.2 stage 7. */ static void ctr_BCC_init(DRBG_CTR_CTX * cctx) { memset(cctx->KX, 0, 48); memset(cctx->bltmp, 0, 16); ctr_BCC_block(cctx, cctx->KX, cctx->bltmp); cctx->bltmp[3] = 1; ctr_BCC_block(cctx, cctx->KX + 16, cctx->bltmp); if (cctx->keylen != 16) { cctx->bltmp[3] = 2; ctr_BCC_block(cctx, cctx->KX + 32, cctx->bltmp); } } /* Process several blocks into BCC algorithm, some possibly partial */ static void ctr_BCC_update(DRBG_CTR_CTX * cctx, const unsigned char *in, size_t inlen) { if (!in || !inlen) return; /* If we have partial block handle it first */ if (cctx->bltmp_pos) { size_t left = 16 - cctx->bltmp_pos; /* If we now have a complete block process it */ if (inlen >= left) { memcpy(cctx->bltmp + cctx->bltmp_pos, in, left); ctr_BCC_blocks(cctx, cctx->bltmp); cctx->bltmp_pos = 0; inlen -= left; in += left; } } /* Process zero or more complete blocks */ while (inlen >= 16) { ctr_BCC_blocks(cctx, in); in += 16; inlen -= 16; } /* Copy any remaining partial block to the temporary buffer */ if (inlen > 0) { memcpy(cctx->bltmp + cctx->bltmp_pos, in, inlen); cctx->bltmp_pos += inlen; } } static void ctr_BCC_final(DRBG_CTR_CTX * cctx) { if (cctx->bltmp_pos) { memset(cctx->bltmp + cctx->bltmp_pos, 0, 16 - cctx->bltmp_pos); ctr_BCC_blocks(cctx, cctx->bltmp); } } static void ctr_df(DRBG_CTR_CTX * cctx, const unsigned char *in1, size_t in1len, const unsigned char *in2, size_t in2len, const unsigned char *in3, size_t in3len) { size_t inlen; unsigned char *p = cctx->bltmp; static unsigned char c80 = 0x80; ctr_BCC_init(cctx); if (!in1) in1len = 0; if (!in2) in2len = 0; if (!in3) in3len = 0; inlen = in1len + in2len + in3len; /* Initialise L||N in temporary block */ *p++ = (inlen >> 24) & 0xff; *p++ = (inlen >> 16) & 0xff; *p++ = (inlen >> 8) & 0xff; *p++ = inlen & 0xff; /* NB keylen is at most 32 bytes */ *p++ = 0; *p++ = 0; *p++ = 0; *p = (unsigned char)((cctx->keylen + 16) & 0xff); cctx->bltmp_pos = 8; ctr_BCC_update(cctx, in1, in1len); ctr_BCC_update(cctx, in2, in2len); ctr_BCC_update(cctx, in3, in3len); ctr_BCC_update(cctx, &c80, 1); ctr_BCC_final(cctx); /* Set up key K */ AES_set_encrypt_key(cctx->KX, cctx->keylen * 8, &cctx->df_kxks); /* X follows key K */ AES_encrypt(cctx->KX + cctx->keylen, cctx->KX, &cctx->df_kxks); AES_encrypt(cctx->KX, cctx->KX + 16, &cctx->df_kxks); if (cctx->keylen != 16) AES_encrypt(cctx->KX + 16, cctx->KX + 32, &cctx->df_kxks); #if 0 fprintf(stderr, "Output of ctr_df:\n"); BIO_dump_fp(stderr, cctx->KX, cctx->keylen + 16); #endif } /* NB the no-df Update in SP800-90 specifies a constant input length * of seedlen, however other uses of this algorithm pad the input with * zeroes if necessary and have up to two parameters XORed together, * handle both cases in this function instead. */ static void ctr_Update(DRBG_CTX *dctx, const unsigned char *in1, size_t in1len, const unsigned char *in2, size_t in2len, const unsigned char *nonce, size_t noncelen) { DRBG_CTR_CTX *cctx = &dctx->d.ctr; /* ks is already setup for correct key */ inc_128(cctx); AES_encrypt(cctx->V, cctx->K, &cctx->ks); /* If keylen longer than 128 bits need extra encrypt */ if (cctx->keylen != 16) { inc_128(cctx); AES_encrypt(cctx->V, cctx->K + 16, &cctx->ks); } inc_128(cctx); AES_encrypt(cctx->V, cctx->V, &cctx->ks); /* If 192 bit key part of V is on end of K */ if (cctx->keylen == 24) { memcpy(cctx->V + 8, cctx->V, 8); memcpy(cctx->V, cctx->K + 24, 8); } if (dctx->xflags & DRBG_FLAG_CTR_USE_DF) { /* If no input reuse existing derived value */ if (in1 || nonce || in2) ctr_df(cctx, in1, in1len, nonce, noncelen, in2, in2len); /* If this a reuse input in1len != 0 */ if (in1len) ctr_XOR(cctx, cctx->KX, dctx->seedlen); } else { ctr_XOR(cctx, in1, in1len); ctr_XOR(cctx, in2, in2len); } AES_set_encrypt_key(cctx->K, dctx->strength, &cctx->ks); #if 0 fprintf(stderr, "K+V after update is:\n"); BIO_dump_fp(stderr, cctx->K, cctx->keylen); BIO_dump_fp(stderr, cctx->V, 16); #endif } static int drbg_ctr_instantiate(DRBG_CTX *dctx, const unsigned char *ent, size_t entlen, const unsigned char *nonce, size_t noncelen, const unsigned char *pers, size_t perslen) { DRBG_CTR_CTX *cctx = &dctx->d.ctr; memset(cctx->K, 0, sizeof(cctx->K)); memset(cctx->V, 0, sizeof(cctx->V)); AES_set_encrypt_key(cctx->K, dctx->strength, &cctx->ks); ctr_Update(dctx, ent, entlen, pers, perslen, nonce, noncelen); return 1; } static int drbg_ctr_reseed(DRBG_CTX *dctx, const unsigned char *ent, size_t entlen, const unsigned char *adin, size_t adinlen) { ctr_Update(dctx, ent, entlen, adin, adinlen, NULL, 0); return 1; } static int drbg_ctr_generate(DRBG_CTX *dctx, unsigned char *out, size_t outlen, const unsigned char *adin, size_t adinlen) { DRBG_CTR_CTX *cctx = &dctx->d.ctr; if (adin && adinlen) { ctr_Update(dctx, adin, adinlen, NULL, 0, NULL, 0); /* This means we reuse derived value */ if (dctx->xflags & DRBG_FLAG_CTR_USE_DF) { adin = NULL; adinlen = 1; } } else adinlen = 0; for (;;) { inc_128(cctx); if (outlen < 16) { /* Use K as temp space as it will be updated */ AES_encrypt(cctx->V, cctx->K, &cctx->ks); memcpy(out, cctx->K, outlen); break; } AES_encrypt(cctx->V, out, &cctx->ks); out += 16; outlen -= 16; if (outlen == 0) break; } ctr_Update(dctx, adin, adinlen, NULL, 0, NULL, 0); return 1; } static int drbg_ctr_uninstantiate(DRBG_CTX *dctx) { memset(&dctx->d.ctr, 0, sizeof(DRBG_CTR_CTX)); return 1; } int fips_drbg_ctr_init(DRBG_CTX *dctx) { DRBG_CTR_CTX *cctx = &dctx->d.ctr; size_t keylen; switch (dctx->type) { case NID_aes_128_ctr: keylen = 16; break; case NID_aes_192_ctr: keylen = 24; break; case NID_aes_256_ctr: keylen = 32; break; default: return -2; } dctx->instantiate = drbg_ctr_instantiate; dctx->reseed = drbg_ctr_reseed; dctx->generate = drbg_ctr_generate; dctx->uninstantiate = drbg_ctr_uninstantiate; cctx->keylen = keylen; dctx->strength = keylen * 8; dctx->blocklength = 16; dctx->seedlen = keylen + 16; if (dctx->xflags & DRBG_FLAG_CTR_USE_DF) { /* df initialisation */ static unsigned char df_key[32] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f }; /* Set key schedule for df_key */ AES_set_encrypt_key(df_key, dctx->strength, &cctx->df_ks); dctx->min_entropy = cctx->keylen; dctx->max_entropy = DRBG_MAX_LENGTH; dctx->min_nonce = dctx->min_entropy / 2; dctx->max_nonce = DRBG_MAX_LENGTH; dctx->max_pers = DRBG_MAX_LENGTH; dctx->max_adin = DRBG_MAX_LENGTH; } else { dctx->min_entropy = dctx->seedlen; dctx->max_entropy = dctx->seedlen; /* Nonce not used */ dctx->min_nonce = 0; dctx->max_nonce = 0; dctx->max_pers = dctx->seedlen; dctx->max_adin = dctx->seedlen; } dctx->max_request = 1 << 16; dctx->reseed_interval = 1 << 24; return 1; }