/* * Copyright 2016-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * This module is meant to be used as template for non-x87 floating- * point assembly modules. The template itself is x86_64-specific * though, as it was debugged on x86_64. So that implementor would * have to recognize platform-specific parts, UxTOy and inline asm, * and act accordingly. * * Huh? x86_64-specific code as template for non-x87? Note seven, which * is not a typo, but reference to 80-bit precision. This module on the * other hand relies on 64-bit precision operations, which are default * for x86_64 code. And since we are at it, just for sense of it, * large-block performance in cycles per processed byte for *this* code * is: * gcc-4.8 icc-15.0 clang-3.4(*) * * Westmere 4.96 5.09 4.37 * Sandy Bridge 4.95 4.90 4.17 * Haswell 4.92 4.87 3.78 * Bulldozer 4.67 4.49 4.68 * VIA Nano 7.07 7.05 5.98 * Silvermont 10.6 9.61 12.6 * * (*) clang managed to discover parallelism and deployed SIMD; * * And for range of other platforms with unspecified gcc versions: * * Freescale e300 12.5 * PPC74x0 10.8 * POWER6 4.92 * POWER7 4.50 * POWER8 4.10 * * z10 11.2 * z196+ 7.30 * * UltraSPARC III 16.0 * SPARC T4 16.1 */ #if !(defined(__GNUC__) && __GNUC__>=2) # error "this is gcc-specific template" #endif #include typedef unsigned char u8; typedef unsigned int u32; typedef unsigned long long u64; typedef union { double d; u64 u; } elem64; #define TWO(p) ((double)(1ULL<<(p))) #define TWO0 TWO(0) #define TWO32 TWO(32) #define TWO64 (TWO32*TWO(32)) #define TWO96 (TWO64*TWO(32)) #define TWO130 (TWO96*TWO(34)) #define EXP(p) ((1023ULL+(p))<<52) #if defined(__x86_64__) || (defined(__PPC__) && defined(__LITTLE_ENDIAN__)) # define U8TOU32(p) (*(const u32 *)(p)) # define U32TO8(p,v) (*(u32 *)(p) = (v)) #elif defined(__PPC__) # define U8TOU32(p) ({u32 ret; asm ("lwbrx %0,0,%1":"=r"(ret):"b"(p)); ret; }) # define U32TO8(p,v) asm ("stwbrx %0,0,%1"::"r"(v),"b"(p):"memory") #elif defined(__s390x__) # define U8TOU32(p) ({u32 ret; asm ("lrv %0,%1":"=d"(ret):"m"(*(u32 *)(p))); ret; }) # define U32TO8(p,v) asm ("strv %1,%0":"=m"(*(u32 *)(p)):"d"(v)) #endif #ifndef U8TOU32 # define U8TOU32(p) ((u32)(p)[0] | (u32)(p)[1]<<8 | \ (u32)(p)[2]<<16 | (u32)(p)[3]<<24 ) #endif #ifndef U32TO8 # define U32TO8(p,v) ((p)[0] = (u8)(v), (p)[1] = (u8)((v)>>8), \ (p)[2] = (u8)((v)>>16), (p)[3] = (u8)((v)>>24) ) #endif typedef struct { elem64 h[4]; double r[8]; double s[6]; } poly1305_internal; /* "round toward zero (truncate), mask all exceptions" */ #if defined(__x86_64__) static const u32 mxcsr = 0x7f80; #elif defined(__PPC__) static const u64 one = 1; #elif defined(__s390x__) static const u32 fpc = 1; #elif defined(__sparc__) static const u64 fsr = 1ULL<<30; #elif defined(__mips__) static const u32 fcsr = 1; #else #error "unrecognized platform" #endif int poly1305_init(void *ctx, const unsigned char key[16]) { poly1305_internal *st = (poly1305_internal *) ctx; elem64 r0, r1, r2, r3; /* h = 0, biased */ #if 0 st->h[0].d = TWO(52)*TWO0; st->h[1].d = TWO(52)*TWO32; st->h[2].d = TWO(52)*TWO64; st->h[3].d = TWO(52)*TWO96; #else st->h[0].u = EXP(52+0); st->h[1].u = EXP(52+32); st->h[2].u = EXP(52+64); st->h[3].u = EXP(52+96); #endif if (key) { /* * set "truncate" rounding mode */ #if defined(__x86_64__) u32 mxcsr_orig; asm volatile ("stmxcsr %0":"=m"(mxcsr_orig)); asm volatile ("ldmxcsr %0"::"m"(mxcsr)); #elif defined(__PPC__) double fpscr_orig, fpscr = *(double *)&one; asm volatile ("mffs %0":"=f"(fpscr_orig)); asm volatile ("mtfsf 255,%0"::"f"(fpscr)); #elif defined(__s390x__) u32 fpc_orig; asm volatile ("stfpc %0":"=m"(fpc_orig)); asm volatile ("lfpc %0"::"m"(fpc)); #elif defined(__sparc__) u64 fsr_orig; asm volatile ("stx %%fsr,%0":"=m"(fsr_orig)); asm volatile ("ldx %0,%%fsr"::"m"(fsr)); #elif defined(__mips__) u32 fcsr_orig; asm volatile ("cfc1 %0,$31":"=r"(fcsr_orig)); asm volatile ("ctc1 %0,$31"::"r"(fcsr)); #endif /* r &= 0xffffffc0ffffffc0ffffffc0fffffff */ r0.u = EXP(52+0) | (U8TOU32(&key[0]) & 0x0fffffff); r1.u = EXP(52+32) | (U8TOU32(&key[4]) & 0x0ffffffc); r2.u = EXP(52+64) | (U8TOU32(&key[8]) & 0x0ffffffc); r3.u = EXP(52+96) | (U8TOU32(&key[12]) & 0x0ffffffc); st->r[0] = r0.d - TWO(52)*TWO0; st->r[2] = r1.d - TWO(52)*TWO32; st->r[4] = r2.d - TWO(52)*TWO64; st->r[6] = r3.d - TWO(52)*TWO96; st->s[0] = st->r[2] * (5.0/TWO130); st->s[2] = st->r[4] * (5.0/TWO130); st->s[4] = st->r[6] * (5.0/TWO130); /* * base 2^32 -> base 2^16 */ st->r[1] = (st->r[0] + TWO(52)*TWO(16)*TWO0) - TWO(52)*TWO(16)*TWO0; st->r[0] -= st->r[1]; st->r[3] = (st->r[2] + TWO(52)*TWO(16)*TWO32) - TWO(52)*TWO(16)*TWO32; st->r[2] -= st->r[3]; st->r[5] = (st->r[4] + TWO(52)*TWO(16)*TWO64) - TWO(52)*TWO(16)*TWO64; st->r[4] -= st->r[5]; st->r[7] = (st->r[6] + TWO(52)*TWO(16)*TWO96) - TWO(52)*TWO(16)*TWO96; st->r[6] -= st->r[7]; st->s[1] = (st->s[0] + TWO(52)*TWO(16)*TWO0/TWO96) - TWO(52)*TWO(16)*TWO0/TWO96; st->s[0] -= st->s[1]; st->s[3] = (st->s[2] + TWO(52)*TWO(16)*TWO32/TWO96) - TWO(52)*TWO(16)*TWO32/TWO96; st->s[2] -= st->s[3]; st->s[5] = (st->s[4] + TWO(52)*TWO(16)*TWO64/TWO96) - TWO(52)*TWO(16)*TWO64/TWO96; st->s[4] -= st->s[5]; /* * restore original FPU control register */ #if defined(__x86_64__) asm volatile ("ldmxcsr %0"::"m"(mxcsr_orig)); #elif defined(__PPC__) asm volatile ("mtfsf 255,%0"::"f"(fpscr_orig)); #elif defined(__s390x__) asm volatile ("lfpc %0"::"m"(fpc_orig)); #elif defined(__sparc__) asm volatile ("ldx %0,%%fsr"::"m"(fsr_orig)); #elif defined(__mips__) asm volatile ("ctc1 %0,$31"::"r"(fcsr_orig)); #endif } return 0; } void poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, int padbit) { poly1305_internal *st = (poly1305_internal *)ctx; elem64 in0, in1, in2, in3; u64 pad = (u64)padbit<<32; double x0, x1, x2, x3; double h0lo, h0hi, h1lo, h1hi, h2lo, h2hi, h3lo, h3hi; double c0lo, c0hi, c1lo, c1hi, c2lo, c2hi, c3lo, c3hi; const double r0lo = st->r[0]; const double r0hi = st->r[1]; const double r1lo = st->r[2]; const double r1hi = st->r[3]; const double r2lo = st->r[4]; const double r2hi = st->r[5]; const double r3lo = st->r[6]; const double r3hi = st->r[7]; const double s1lo = st->s[0]; const double s1hi = st->s[1]; const double s2lo = st->s[2]; const double s2hi = st->s[3]; const double s3lo = st->s[4]; const double s3hi = st->s[5]; /* * set "truncate" rounding mode */ #if defined(__x86_64__) u32 mxcsr_orig; asm volatile ("stmxcsr %0":"=m"(mxcsr_orig)); asm volatile ("ldmxcsr %0"::"m"(mxcsr)); #elif defined(__PPC__) double fpscr_orig, fpscr = *(double *)&one; asm volatile ("mffs %0":"=f"(fpscr_orig)); asm volatile ("mtfsf 255,%0"::"f"(fpscr)); #elif defined(__s390x__) u32 fpc_orig; asm volatile ("stfpc %0":"=m"(fpc_orig)); asm volatile ("lfpc %0"::"m"(fpc)); #elif defined(__sparc__) u64 fsr_orig; asm volatile ("stx %%fsr,%0":"=m"(fsr_orig)); asm volatile ("ldx %0,%%fsr"::"m"(fsr)); #elif defined(__mips__) u32 fcsr_orig; asm volatile ("cfc1 %0,$31":"=r"(fcsr_orig)); asm volatile ("ctc1 %0,$31"::"r"(fcsr)); #endif /* * load base 2^32 and de-bias */ h0lo = st->h[0].d - TWO(52)*TWO0; h1lo = st->h[1].d - TWO(52)*TWO32; h2lo = st->h[2].d - TWO(52)*TWO64; h3lo = st->h[3].d - TWO(52)*TWO96; #ifdef __clang__ h0hi = 0; h1hi = 0; h2hi = 0; h3hi = 0; #else in0.u = EXP(52+0) | U8TOU32(&inp[0]); in1.u = EXP(52+32) | U8TOU32(&inp[4]); in2.u = EXP(52+64) | U8TOU32(&inp[8]); in3.u = EXP(52+96) | U8TOU32(&inp[12]) | pad; x0 = in0.d - TWO(52)*TWO0; x1 = in1.d - TWO(52)*TWO32; x2 = in2.d - TWO(52)*TWO64; x3 = in3.d - TWO(52)*TWO96; x0 += h0lo; x1 += h1lo; x2 += h2lo; x3 += h3lo; goto fast_entry; #endif do { in0.u = EXP(52+0) | U8TOU32(&inp[0]); in1.u = EXP(52+32) | U8TOU32(&inp[4]); in2.u = EXP(52+64) | U8TOU32(&inp[8]); in3.u = EXP(52+96) | U8TOU32(&inp[12]) | pad; x0 = in0.d - TWO(52)*TWO0; x1 = in1.d - TWO(52)*TWO32; x2 = in2.d - TWO(52)*TWO64; x3 = in3.d - TWO(52)*TWO96; /* * note that there are multiple ways to accumulate input, e.g. * one can as well accumulate to h0lo-h1lo-h1hi-h2hi... */ h0lo += x0; h0hi += x1; h2lo += x2; h2hi += x3; /* * carries that cross 32n-bit (and 130-bit) boundaries */ c0lo = (h0lo + TWO(52)*TWO32) - TWO(52)*TWO32; c1lo = (h1lo + TWO(52)*TWO64) - TWO(52)*TWO64; c2lo = (h2lo + TWO(52)*TWO96) - TWO(52)*TWO96; c3lo = (h3lo + TWO(52)*TWO130) - TWO(52)*TWO130; c0hi = (h0hi + TWO(52)*TWO32) - TWO(52)*TWO32; c1hi = (h1hi + TWO(52)*TWO64) - TWO(52)*TWO64; c2hi = (h2hi + TWO(52)*TWO96) - TWO(52)*TWO96; c3hi = (h3hi + TWO(52)*TWO130) - TWO(52)*TWO130; /* * base 2^48 -> base 2^32 with last reduction step */ x1 = (h1lo - c1lo) + c0lo; x2 = (h2lo - c2lo) + c1lo; x3 = (h3lo - c3lo) + c2lo; x0 = (h0lo - c0lo) + c3lo * (5.0/TWO130); x1 += (h1hi - c1hi) + c0hi; x2 += (h2hi - c2hi) + c1hi; x3 += (h3hi - c3hi) + c2hi; x0 += (h0hi - c0hi) + c3hi * (5.0/TWO130); #ifndef __clang__ fast_entry: #endif /* * base 2^32 * base 2^16 = base 2^48 */ h0lo = s3lo * x1 + s2lo * x2 + s1lo * x3 + r0lo * x0; h1lo = r0lo * x1 + s3lo * x2 + s2lo * x3 + r1lo * x0; h2lo = r1lo * x1 + r0lo * x2 + s3lo * x3 + r2lo * x0; h3lo = r2lo * x1 + r1lo * x2 + r0lo * x3 + r3lo * x0; h0hi = s3hi * x1 + s2hi * x2 + s1hi * x3 + r0hi * x0; h1hi = r0hi * x1 + s3hi * x2 + s2hi * x3 + r1hi * x0; h2hi = r1hi * x1 + r0hi * x2 + s3hi * x3 + r2hi * x0; h3hi = r2hi * x1 + r1hi * x2 + r0hi * x3 + r3hi * x0; inp += 16; len -= 16; } while (len >= 16); /* * carries that cross 32n-bit (and 130-bit) boundaries */ c0lo = (h0lo + TWO(52)*TWO32) - TWO(52)*TWO32; c1lo = (h1lo + TWO(52)*TWO64) - TWO(52)*TWO64; c2lo = (h2lo + TWO(52)*TWO96) - TWO(52)*TWO96; c3lo = (h3lo + TWO(52)*TWO130) - TWO(52)*TWO130; c0hi = (h0hi + TWO(52)*TWO32) - TWO(52)*TWO32; c1hi = (h1hi + TWO(52)*TWO64) - TWO(52)*TWO64; c2hi = (h2hi + TWO(52)*TWO96) - TWO(52)*TWO96; c3hi = (h3hi + TWO(52)*TWO130) - TWO(52)*TWO130; /* * base 2^48 -> base 2^32 with last reduction step */ x1 = (h1lo - c1lo) + c0lo; x2 = (h2lo - c2lo) + c1lo; x3 = (h3lo - c3lo) + c2lo; x0 = (h0lo - c0lo) + c3lo * (5.0/TWO130); x1 += (h1hi - c1hi) + c0hi; x2 += (h2hi - c2hi) + c1hi; x3 += (h3hi - c3hi) + c2hi; x0 += (h0hi - c0hi) + c3hi * (5.0/TWO130); /* * store base 2^32, with bias */ st->h[1].d = x1 + TWO(52)*TWO32; st->h[2].d = x2 + TWO(52)*TWO64; st->h[3].d = x3 + TWO(52)*TWO96; st->h[0].d = x0 + TWO(52)*TWO0; /* * restore original FPU control register */ #if defined(__x86_64__) asm volatile ("ldmxcsr %0"::"m"(mxcsr_orig)); #elif defined(__PPC__) asm volatile ("mtfsf 255,%0"::"f"(fpscr_orig)); #elif defined(__s390x__) asm volatile ("lfpc %0"::"m"(fpc_orig)); #elif defined(__sparc__) asm volatile ("ldx %0,%%fsr"::"m"(fsr_orig)); #elif defined(__mips__) asm volatile ("ctc1 %0,$31"::"r"(fcsr_orig)); #endif } void poly1305_emit(void *ctx, unsigned char mac[16], const u32 nonce[4]) { poly1305_internal *st = (poly1305_internal *) ctx; u64 h0, h1, h2, h3, h4; u32 g0, g1, g2, g3, g4; u64 t; u32 mask; /* * thanks to bias masking exponent gives integer result */ h0 = st->h[0].u & 0x000fffffffffffffULL; h1 = st->h[1].u & 0x000fffffffffffffULL; h2 = st->h[2].u & 0x000fffffffffffffULL; h3 = st->h[3].u & 0x000fffffffffffffULL; /* * can be partially reduced, so reduce... */ h4 = h3>>32; h3 &= 0xffffffffU; g4 = h4&-4; h4 &= 3; g4 += g4>>2; h0 += g4; h1 += h0>>32; h0 &= 0xffffffffU; h2 += h1>>32; h1 &= 0xffffffffU; h3 += h2>>32; h2 &= 0xffffffffU; /* compute h + -p */ g0 = (u32)(t = h0 + 5); g1 = (u32)(t = h1 + (t >> 32)); g2 = (u32)(t = h2 + (t >> 32)); g3 = (u32)(t = h3 + (t >> 32)); g4 = h4 + (u32)(t >> 32); /* if there was carry, select g0-g3 */ mask = 0 - (g4 >> 2); g0 &= mask; g1 &= mask; g2 &= mask; g3 &= mask; mask = ~mask; g0 |= (h0 & mask); g1 |= (h1 & mask); g2 |= (h2 & mask); g3 |= (h3 & mask); /* mac = (h + nonce) % (2^128) */ g0 = (u32)(t = (u64)g0 + nonce[0]); g1 = (u32)(t = (u64)g1 + (t >> 32) + nonce[1]); g2 = (u32)(t = (u64)g2 + (t >> 32) + nonce[2]); g3 = (u32)(t = (u64)g3 + (t >> 32) + nonce[3]); U32TO8(mac + 0, g0); U32TO8(mac + 4, g1); U32TO8(mac + 8, g2); U32TO8(mac + 12, g3); }