/* * Copyright 2018-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include #include "internal/cryptlib.h" #include "crypto/evp.h" #include "kdf_local.h" /* KRB5 KDF defined in RFC 3961, Section 5.1 */ static int KRB5KDF(const EVP_CIPHER *cipher, const unsigned char *key, size_t key_len, const unsigned char *constant, size_t constant_len, unsigned char *okey, size_t okey_len); struct evp_kdf_impl_st { const EVP_CIPHER *cipher; unsigned char *key; size_t key_len; unsigned char *constant; size_t constant_len; }; static void krb5kdf_reset(EVP_KDF_IMPL *ctx); static EVP_KDF_IMPL *krb5kdf_new(void) { EVP_KDF_IMPL *ctx; if ((ctx = OPENSSL_zalloc(sizeof(*ctx))) == NULL) KDFerr(KDF_F_KBKDF_NEW, ERR_R_MALLOC_FAILURE); return ctx; } static void krb5kdf_free(EVP_KDF_IMPL *ctx) { krb5kdf_reset(ctx); OPENSSL_free(ctx); } static void krb5kdf_reset(EVP_KDF_IMPL *ctx) { OPENSSL_clear_free(ctx->key, ctx->key_len); OPENSSL_clear_free(ctx->constant, ctx->constant_len); memset(ctx, 0, sizeof(*ctx)); } static int krb5kdf_derive(EVP_KDF_IMPL *ctx, unsigned char *key, size_t keylen) { if (ctx->cipher == NULL) { KDFerr(KDF_F_KRB5KDF_DERIVE, KDF_R_MISSING_CIPHER); return 0; } if (ctx->key == NULL) { KDFerr(KDF_F_KRB5KDF_DERIVE, KDF_R_MISSING_KEY); return 0; } if (ctx->constant == NULL) { KDFerr(KDF_F_KRB5KDF_DERIVE, KDF_R_MISSING_CONSTANT); return 0; } return KRB5KDF(ctx->cipher, ctx->key, ctx->key_len, ctx->constant, ctx->constant_len, key, keylen); } static size_t krb5kdf_size(EVP_KDF_IMPL *ctx) { if (ctx->cipher != NULL) return EVP_CIPHER_key_length(ctx->cipher); else return EVP_MAX_KEY_LENGTH; } static int krb5kdf_parse_buffer_arg(unsigned char **dst, size_t *dst_len, va_list args) { const unsigned char *p; size_t len; p = va_arg(args, const unsigned char *); len = va_arg(args, size_t); OPENSSL_clear_free(*dst, *dst_len); if (len == 0) { *dst = NULL; *dst_len = 0; return 1; } *dst = OPENSSL_memdup(p, len); if (*dst == NULL) return 0; *dst_len = len; return 1; } static int krb5kdf_ctrl(EVP_KDF_IMPL *ctx, int cmd, va_list args) { switch (cmd) { case EVP_KDF_CTRL_SET_CIPHER: ctx->cipher = va_arg(args, const EVP_CIPHER *); if (ctx->cipher == NULL) return 0; return 1; case EVP_KDF_CTRL_SET_KEY: return krb5kdf_parse_buffer_arg(&ctx->key, &ctx->key_len, args); case EVP_KDF_CTRL_SET_KRB5KDF_CONSTANT: return krb5kdf_parse_buffer_arg(&ctx->constant, &ctx->constant_len, args); default: return -2; } } static int krb5kdf_ctrl_str(EVP_KDF_IMPL *ctx, const char *type, const char *value) { if (value == NULL) { KDFerr(KDF_F_KDF_SSHKDF_CTRL_STR, KDF_R_VALUE_MISSING); return 0; } if (strcmp(type, "cipher") == 0) return kdf_cipher2ctrl(ctx, krb5kdf_ctrl, EVP_KDF_CTRL_SET_CIPHER, value); if (strcmp(type, "key") == 0) return kdf_str2ctrl(ctx, krb5kdf_ctrl, EVP_KDF_CTRL_SET_KEY, value); if (strcmp(type, "hexkey") == 0) return kdf_hex2ctrl(ctx, krb5kdf_ctrl, EVP_KDF_CTRL_SET_KEY, value); if (strcmp(type, "constant") == 0) return kdf_str2ctrl(ctx, krb5kdf_ctrl, EVP_KDF_CTRL_SET_KRB5KDF_CONSTANT, value); if (strcmp(type, "hexconstant") == 0) return kdf_hex2ctrl(ctx, krb5kdf_ctrl, EVP_KDF_CTRL_SET_KRB5KDF_CONSTANT, value); KDFerr(KDF_F_KBKDF_CTRL_STR, KDF_R_UNKNOWN_PARAMETER_TYPE); return -2; } #ifndef OPENSSL_NO_DES /* * DES3 is a special case, it requires a random-to-key function and its * input truncated to 21 bytes of the 24 produced by the cipher. * See RFC3961 6.3.1 */ static int fixup_des3_key(unsigned char *key) { unsigned char *cblock; int i, j; for (i = 2; i >= 0; i--) { cblock = &key[i * 8]; memmove(cblock, &key[i * 7], 7); cblock[7] = 0; for (j = 0; j < 7; j++) cblock[7] |= (cblock[j] & 1) << (j + 1); DES_set_odd_parity((DES_cblock *)cblock); } /* fail if keys are such that triple des degrades to single des */ if (CRYPTO_memcmp(&key[0], &key[8], 8) == 0 || CRYPTO_memcmp(&key[8], &key[16], 8) == 0) { return 0; } return 1; } #endif /* * N-fold(K) where blocksize is N, and constant_len is K * Note: Here |= denotes concatenation * * L = lcm(N,K) * R = L/K * * for r: 1 -> R * s |= constant rot 13*(r-1)) * * block = 0 * for k: 1 -> K * block += s[N(k-1)..(N-1)k] (one's complement addition) * * Optimizing for space we compute: * for each l in L-1 -> 0: * s[l] = (constant rot 13*(l/K))[l%k] * block[l % N] += s[l] (with carry) * finally add carry if any */ static void n_fold(unsigned char *block, unsigned int blocksize, const unsigned char *constant, size_t constant_len) { unsigned int tmp, gcd, remainder, lcm, carry; int b, l; if (constant_len == blocksize) { memcpy(block, constant, constant_len); return; } /* Least Common Multiple of lengths: LCM(a,b)*/ gcd = blocksize; remainder = constant_len; /* Calculate Great Common Divisor first GCD(a,b) */ while (remainder != 0) { tmp = gcd % remainder; gcd = remainder; remainder = tmp; } /* resulting a is the GCD, LCM(a,b) = |a*b|/GCD(a,b) */ lcm = blocksize * constant_len / gcd; /* now spread out the bits */ memset(block, 0, blocksize); /* last to first to be able to bring carry forward */ carry = 0; for (l = lcm - 1; l >= 0; l--) { unsigned int rotbits, rshift, rbyte; /* destination byte in block is l % N */ b = l % blocksize; /* Our virtual s buffer is R = L/K long (K = constant_len) */ /* So we rotate backwards from R-1 to 0 (none) rotations */ rotbits = 13 * (l / constant_len); /* find the byte on s where rotbits falls onto */ rbyte = l - (rotbits / 8); /* calculate how much shift on that byte */ rshift = rotbits & 0x07; /* rbyte % constant_len gives us the unrotated byte in the * constant buffer, get also the previous byte then * appropriately shift them to get the rotated byte we need */ tmp = (constant[(rbyte-1) % constant_len] << (8 - rshift) | constant[rbyte % constant_len] >> rshift) & 0xff; /* add with carry to any value placed by previous passes */ tmp += carry + block[b]; block[b] = tmp & 0xff; /* save any carry that may be left */ carry = tmp >> 8; } /* if any carry is left at the end, add it through the number */ for (b = blocksize - 1; b >= 0 && carry != 0; b--) { carry += block[b]; block[b] = carry & 0xff; carry >>= 8; } } static int cipher_init(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, const unsigned char *key, size_t key_len) { int klen, ret; ret = EVP_EncryptInit_ex(ctx, cipher, NULL, key, NULL); if (!ret) goto out; /* set the key len for the odd variable key len cipher */ klen = EVP_CIPHER_CTX_key_length(ctx); if (key_len != (size_t)klen) { ret = EVP_CIPHER_CTX_set_key_length(ctx, key_len); if (!ret) goto out; } /* we never want padding, either the length requested is a multiple of * the cipher block size or we are passed a cipher that can cope with * partial blocks via techniques like cipher text stealing */ ret = EVP_CIPHER_CTX_set_padding(ctx, 0); if (!ret) goto out; out: return ret; } static int KRB5KDF(const EVP_CIPHER *cipher, const unsigned char *key, size_t key_len, const unsigned char *constant, size_t constant_len, unsigned char *okey, size_t okey_len) { EVP_CIPHER_CTX *ctx = NULL; unsigned char block[EVP_MAX_BLOCK_LENGTH * 2]; unsigned char *plainblock, *cipherblock; size_t blocksize; size_t cipherlen; size_t osize; int des3_no_fixup = 0; int ret; if (key_len != okey_len) { /* special case for 3des, where the caller may be requesting * the random raw key, instead of the fixed up key */ if (EVP_CIPHER_nid(cipher) == NID_des_ede3_cbc && key_len == 24 && okey_len == 21) { des3_no_fixup = 1; } else { KDFerr(KDF_F_KRB5KDF, KDF_R_WRONG_OUTPUT_BUFFER_SIZE); return 0; } } ctx = EVP_CIPHER_CTX_new(); if (ctx == NULL) return 0; ret = cipher_init(ctx, cipher, key, key_len); if (!ret) goto out; /* Initialize input block */ blocksize = EVP_CIPHER_CTX_block_size(ctx); if (constant_len == 0 || constant_len > blocksize) { KDFerr(KDF_F_KRB5KDF, KDF_R_INVALID_CONSTANT_LENGTH); ret = 0; goto out; } n_fold(block, blocksize, constant, constant_len); plainblock = block; cipherblock = block + EVP_MAX_BLOCK_LENGTH; for (osize = 0; osize < okey_len; osize += cipherlen) { int olen; ret = EVP_EncryptUpdate(ctx, cipherblock, &olen, plainblock, blocksize); if (!ret) goto out; cipherlen = olen; ret = EVP_EncryptFinal_ex(ctx, cipherblock, &olen); if (!ret) goto out; if (olen != 0) { KDFerr(KDF_F_KRB5KDF, KDF_R_WRONG_FINAL_BLOCK_LENGTH); ret = 0; goto out; } /* write cipherblock out */ if (cipherlen > okey_len - osize) cipherlen = okey_len - osize; memcpy(okey + osize, cipherblock, cipherlen); if (okey_len > osize + cipherlen) { /* we need to reinitialize cipher context per spec */ ret = EVP_CIPHER_CTX_reset(ctx); if (!ret) goto out; ret = cipher_init(ctx, cipher, key, key_len); if (!ret) goto out; /* also swap block offsets so last ciphertext becomes new * plaintext */ plainblock = cipherblock; if (cipherblock == block) { cipherblock += EVP_MAX_BLOCK_LENGTH; } else { cipherblock = block; } } } #ifndef OPENSSL_NO_DES if (EVP_CIPHER_nid(cipher) == NID_des_ede3_cbc && !des3_no_fixup) { ret = fixup_des3_key(okey); if (!ret) { KDFerr(KDF_F_KRB5KDF, KDF_R_FAILED_TO_GENERATE_KEY); goto out; } } #endif ret = 1; out: EVP_CIPHER_CTX_free(ctx); OPENSSL_cleanse(block, EVP_MAX_BLOCK_LENGTH * 2); return ret; } const EVP_KDF_METHOD krb5kdf_kdf_meth = { EVP_KDF_KRB5KDF, krb5kdf_new, krb5kdf_free, krb5kdf_reset, krb5kdf_ctrl, krb5kdf_ctrl_str, krb5kdf_size, krb5kdf_derive, };