/* * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include "internal/numbers.h" #include #include #include #include "asn1_local.h" ASN1_INTEGER *ASN1_INTEGER_dup(const ASN1_INTEGER *x) { return ASN1_STRING_dup(x); } int ASN1_INTEGER_cmp(const ASN1_INTEGER *x, const ASN1_INTEGER *y) { int neg, ret; /* Compare signs */ neg = x->type & V_ASN1_NEG; if (neg != (y->type & V_ASN1_NEG)) { if (neg) return -1; else return 1; } ret = ASN1_STRING_cmp(x, y); if (neg) return -ret; else return ret; } /*- * This converts a big endian buffer and sign into its content encoding. * This is used for INTEGER and ENUMERATED types. * The internal representation is an ASN1_STRING whose data is a big endian * representation of the value, ignoring the sign. The sign is determined by * the type: if type & V_ASN1_NEG is true it is negative, otherwise positive. * * Positive integers are no problem: they are almost the same as the DER * encoding, except if the first byte is >= 0x80 we need to add a zero pad. * * Negative integers are a bit trickier... * The DER representation of negative integers is in 2s complement form. * The internal form is converted by complementing each octet and finally * adding one to the result. This can be done less messily with a little trick. * If the internal form has trailing zeroes then they will become FF by the * complement and 0 by the add one (due to carry) so just copy as many trailing * zeros to the destination as there are in the source. The carry will add one * to the last none zero octet: so complement this octet and add one and finally * complement any left over until you get to the start of the string. * * Padding is a little trickier too. If the first bytes is > 0x80 then we pad * with 0xff. However if the first byte is 0x80 and one of the following bytes * is non-zero we pad with 0xff. The reason for this distinction is that 0x80 * followed by optional zeros isn't padded. */ /* * If |pad| is zero, the operation is effectively reduced to memcpy, * and if |pad| is 0xff, then it performs two's complement, ~dst + 1. * Note that in latter case sequence of zeros yields itself, and so * does 0x80 followed by any number of zeros. These properties are * used elsewhere below... */ static void twos_complement(unsigned char *dst, const unsigned char *src, size_t len, unsigned char pad) { unsigned int carry = pad & 1; /* Begin at the end of the encoding */ dst += len; src += len; /* two's complement value: ~value + 1 */ while (len-- != 0) { *(--dst) = (unsigned char)(carry += *(--src) ^ pad); carry >>= 8; } } static size_t i2c_ibuf(const unsigned char *b, size_t blen, int neg, unsigned char **pp) { unsigned int pad = 0; size_t ret, i; unsigned char *p, pb = 0; if (b != NULL && blen) { ret = blen; i = b[0]; if (!neg && (i > 127)) { pad = 1; pb = 0; } else if (neg) { pb = 0xFF; if (i > 128) { pad = 1; } else if (i == 128) { /* * Special case [of minimal negative for given length]: * if any other bytes non zero we pad, otherwise we don't. */ for (pad = 0, i = 1; i < blen; i++) pad |= b[i]; pb = pad != 0 ? 0xffU : 0; pad = pb & 1; } } ret += pad; } else { ret = 1; blen = 0; /* reduce '(b == NULL || blen == 0)' to '(blen == 0)' */ } if (pp == NULL || (p = *pp) == NULL) return ret; /* * This magically handles all corner cases, such as '(b == NULL || * blen == 0)', non-negative value, "negative" zero, 0x80 followed * by any number of zeros... */ *p = pb; p += pad; /* yes, p[0] can be written twice, but it's little * price to pay for eliminated branches */ twos_complement(p, b, blen, pb); *pp += ret; return ret; } /* * convert content octets into a big endian buffer. Returns the length * of buffer or 0 on error: for malformed INTEGER. If output buffer is * NULL just return length. */ static size_t c2i_ibuf(unsigned char *b, int *pneg, const unsigned char *p, size_t plen) { int neg, pad; /* Zero content length is illegal */ if (plen == 0) { ASN1err(ASN1_F_C2I_IBUF, ASN1_R_ILLEGAL_ZERO_CONTENT); return 0; } neg = p[0] & 0x80; if (pneg) *pneg = neg; /* Handle common case where length is 1 octet separately */ if (plen == 1) { if (b != NULL) { if (neg) b[0] = (p[0] ^ 0xFF) + 1; else b[0] = p[0]; } return 1; } pad = 0; if (p[0] == 0) { pad = 1; } else if (p[0] == 0xFF) { size_t i; /* * Special case [of "one less minimal negative" for given length]: * if any other bytes non zero it was padded, otherwise not. */ for (pad = 0, i = 1; i < plen; i++) pad |= p[i]; pad = pad != 0 ? 1 : 0; } /* reject illegal padding: first two octets MSB can't match */ if (pad && (neg == (p[1] & 0x80))) { ASN1err(ASN1_F_C2I_IBUF, ASN1_R_ILLEGAL_PADDING); return 0; } /* skip over pad */ p += pad; plen -= pad; if (b != NULL) twos_complement(b, p, plen, neg ? 0xffU : 0); return plen; } int i2c_ASN1_INTEGER(ASN1_INTEGER *a, unsigned char **pp) { return i2c_ibuf(a->data, a->length, a->type & V_ASN1_NEG, pp); } /* Convert big endian buffer into uint64_t, return 0 on error */ static int asn1_get_uint64(uint64_t *pr, const unsigned char *b, size_t blen) { size_t i; uint64_t r; if (blen > sizeof(*pr)) { ASN1err(ASN1_F_ASN1_GET_UINT64, ASN1_R_TOO_LARGE); return 0; } if (b == NULL) return 0; for (r = 0, i = 0; i < blen; i++) { r <<= 8; r |= b[i]; } *pr = r; return 1; } /* * Write uint64_t to big endian buffer and return offset to first * written octet. In other words it returns offset in range from 0 * to 7, with 0 denoting 8 written octets and 7 - one. */ static size_t asn1_put_uint64(unsigned char b[sizeof(uint64_t)], uint64_t r) { size_t off = sizeof(uint64_t); do { b[--off] = (unsigned char)r; } while (r >>= 8); return off; } /* * Absolute value of INT64_MIN: we can't just use -INT64_MIN as gcc produces * overflow warnings. */ #define ABS_INT64_MIN ((uint64_t)INT64_MAX + (-(INT64_MIN + INT64_MAX))) /* signed version of asn1_get_uint64 */ static int asn1_get_int64(int64_t *pr, const unsigned char *b, size_t blen, int neg) { uint64_t r; if (asn1_get_uint64(&r, b, blen) == 0) return 0; if (neg) { if (r <= INT64_MAX) { /* Most significant bit is guaranteed to be clear, negation * is guaranteed to be meaningful in platform-neutral sense. */ *pr = -(int64_t)r; } else if (r == ABS_INT64_MIN) { /* This never happens if INT64_MAX == ABS_INT64_MIN, e.g. * on ones'-complement system. */ *pr = (int64_t)(0 - r); } else { ASN1err(ASN1_F_ASN1_GET_INT64, ASN1_R_TOO_SMALL); return 0; } } else { if (r <= INT64_MAX) { *pr = (int64_t)r; } else { ASN1err(ASN1_F_ASN1_GET_INT64, ASN1_R_TOO_LARGE); return 0; } } return 1; } /* Convert ASN1 INTEGER content octets to ASN1_INTEGER structure */ ASN1_INTEGER *c2i_ASN1_INTEGER(ASN1_INTEGER **a, const unsigned char **pp, long len) { ASN1_INTEGER *ret = NULL; size_t r; int neg; r = c2i_ibuf(NULL, NULL, *pp, len); if (r == 0) return NULL; if ((a == NULL) || ((*a) == NULL)) { ret = ASN1_INTEGER_new(); if (ret == NULL) return NULL; ret->type = V_ASN1_INTEGER; } else ret = *a; if (ASN1_STRING_set(ret, NULL, r) == 0) goto err; c2i_ibuf(ret->data, &neg, *pp, len); if (neg) ret->type |= V_ASN1_NEG; *pp += len; if (a != NULL) (*a) = ret; return ret; err: ASN1err(ASN1_F_C2I_ASN1_INTEGER, ERR_R_MALLOC_FAILURE); if ((a == NULL) || (*a != ret)) ASN1_INTEGER_free(ret); return NULL; } static int asn1_string_get_int64(int64_t *pr, const ASN1_STRING *a, int itype) { if (a == NULL) { ASN1err(ASN1_F_ASN1_STRING_GET_INT64, ERR_R_PASSED_NULL_PARAMETER); return 0; } if ((a->type & ~V_ASN1_NEG) != itype) { ASN1err(ASN1_F_ASN1_STRING_GET_INT64, ASN1_R_WRONG_INTEGER_TYPE); return 0; } return asn1_get_int64(pr, a->data, a->length, a->type & V_ASN1_NEG); } static int asn1_string_set_int64(ASN1_STRING *a, int64_t r, int itype) { unsigned char tbuf[sizeof(r)]; size_t off; a->type = itype; if (r < 0) { /* Most obvious '-r' triggers undefined behaviour for most * common INT64_MIN. Even though below '0 - (uint64_t)r' can * appear two's-complement centric, it does produce correct/ * expected result even on one's-complement. This is because * cast to unsigned has to change bit pattern... */ off = asn1_put_uint64(tbuf, 0 - (uint64_t)r); a->type |= V_ASN1_NEG; } else { off = asn1_put_uint64(tbuf, r); a->type &= ~V_ASN1_NEG; } return ASN1_STRING_set(a, tbuf + off, sizeof(tbuf) - off); } static int asn1_string_get_uint64(uint64_t *pr, const ASN1_STRING *a, int itype) { if (a == NULL) { ASN1err(ASN1_F_ASN1_STRING_GET_UINT64, ERR_R_PASSED_NULL_PARAMETER); return 0; } if ((a->type & ~V_ASN1_NEG) != itype) { ASN1err(ASN1_F_ASN1_STRING_GET_UINT64, ASN1_R_WRONG_INTEGER_TYPE); return 0; } if (a->type & V_ASN1_NEG) { ASN1err(ASN1_F_ASN1_STRING_GET_UINT64, ASN1_R_ILLEGAL_NEGATIVE_VALUE); return 0; } return asn1_get_uint64(pr, a->data, a->length); } static int asn1_string_set_uint64(ASN1_STRING *a, uint64_t r, int itype) { unsigned char tbuf[sizeof(r)]; size_t off; a->type = itype; off = asn1_put_uint64(tbuf, r); return ASN1_STRING_set(a, tbuf + off, sizeof(tbuf) - off); } /* * This is a version of d2i_ASN1_INTEGER that ignores the sign bit of ASN1 * integers: some broken software can encode a positive INTEGER with its MSB * set as negative (it doesn't add a padding zero). */ ASN1_INTEGER *d2i_ASN1_UINTEGER(ASN1_INTEGER **a, const unsigned char **pp, long length) { ASN1_INTEGER *ret = NULL; const unsigned char *p; unsigned char *s; long len; int inf, tag, xclass; int i; if ((a == NULL) || ((*a) == NULL)) { if ((ret = ASN1_INTEGER_new()) == NULL) return NULL; ret->type = V_ASN1_INTEGER; } else ret = (*a); p = *pp; inf = ASN1_get_object(&p, &len, &tag, &xclass, length); if (inf & 0x80) { i = ASN1_R_BAD_OBJECT_HEADER; goto err; } if (tag != V_ASN1_INTEGER) { i = ASN1_R_EXPECTING_AN_INTEGER; goto err; } /* * We must OPENSSL_malloc stuff, even for 0 bytes otherwise it signifies * a missing NULL parameter. */ s = OPENSSL_malloc((int)len + 1); if (s == NULL) { i = ERR_R_MALLOC_FAILURE; goto err; } ret->type = V_ASN1_INTEGER; if (len) { if ((*p == 0) && (len != 1)) { p++; len--; } memcpy(s, p, (int)len); p += len; } OPENSSL_free(ret->data); ret->data = s; ret->length = (int)len; if (a != NULL) (*a) = ret; *pp = p; return ret; err: ASN1err(ASN1_F_D2I_ASN1_UINTEGER, i); if ((a == NULL) || (*a != ret)) ASN1_INTEGER_free(ret); return NULL; } static ASN1_STRING *bn_to_asn1_string(const BIGNUM *bn, ASN1_STRING *ai, int atype) { ASN1_INTEGER *ret; int len; if (ai == NULL) { ret = ASN1_STRING_type_new(atype); } else { ret = ai; ret->type = atype; } if (ret == NULL) { ASN1err(ASN1_F_BN_TO_ASN1_STRING, ERR_R_NESTED_ASN1_ERROR); goto err; } if (BN_is_negative(bn) && !BN_is_zero(bn)) ret->type |= V_ASN1_NEG_INTEGER; len = BN_num_bytes(bn); if (len == 0) len = 1; if (ASN1_STRING_set(ret, NULL, len) == 0) { ASN1err(ASN1_F_BN_TO_ASN1_STRING, ERR_R_MALLOC_FAILURE); goto err; } /* Correct zero case */ if (BN_is_zero(bn)) ret->data[0] = 0; else len = BN_bn2bin(bn, ret->data); ret->length = len; return ret; err: if (ret != ai) ASN1_INTEGER_free(ret); return NULL; } static BIGNUM *asn1_string_to_bn(const ASN1_INTEGER *ai, BIGNUM *bn, int itype) { BIGNUM *ret; if ((ai->type & ~V_ASN1_NEG) != itype) { ASN1err(ASN1_F_ASN1_STRING_TO_BN, ASN1_R_WRONG_INTEGER_TYPE); return NULL; } ret = BN_bin2bn(ai->data, ai->length, bn); if (ret == NULL) { ASN1err(ASN1_F_ASN1_STRING_TO_BN, ASN1_R_BN_LIB); return NULL; } if (ai->type & V_ASN1_NEG) BN_set_negative(ret, 1); return ret; } int ASN1_INTEGER_get_int64(int64_t *pr, const ASN1_INTEGER *a) { return asn1_string_get_int64(pr, a, V_ASN1_INTEGER); } int ASN1_INTEGER_set_int64(ASN1_INTEGER *a, int64_t r) { return asn1_string_set_int64(a, r, V_ASN1_INTEGER); } int ASN1_INTEGER_get_uint64(uint64_t *pr, const ASN1_INTEGER *a) { return asn1_string_get_uint64(pr, a, V_ASN1_INTEGER); } int ASN1_INTEGER_set_uint64(ASN1_INTEGER *a, uint64_t r) { return asn1_string_set_uint64(a, r, V_ASN1_INTEGER); } int ASN1_INTEGER_set(ASN1_INTEGER *a, long v) { return ASN1_INTEGER_set_int64(a, v); } long ASN1_INTEGER_get(const ASN1_INTEGER *a) { int i; int64_t r; if (a == NULL) return 0; i = ASN1_INTEGER_get_int64(&r, a); if (i == 0) return -1; if (r > LONG_MAX || r < LONG_MIN) return -1; return (long)r; } ASN1_INTEGER *BN_to_ASN1_INTEGER(const BIGNUM *bn, ASN1_INTEGER *ai) { return bn_to_asn1_string(bn, ai, V_ASN1_INTEGER); } BIGNUM *ASN1_INTEGER_to_BN(const ASN1_INTEGER *ai, BIGNUM *bn) { return asn1_string_to_bn(ai, bn, V_ASN1_INTEGER); } int ASN1_ENUMERATED_get_int64(int64_t *pr, const ASN1_ENUMERATED *a) { return asn1_string_get_int64(pr, a, V_ASN1_ENUMERATED); } int ASN1_ENUMERATED_set_int64(ASN1_ENUMERATED *a, int64_t r) { return asn1_string_set_int64(a, r, V_ASN1_ENUMERATED); } int ASN1_ENUMERATED_set(ASN1_ENUMERATED *a, long v) { return ASN1_ENUMERATED_set_int64(a, v); } long ASN1_ENUMERATED_get(const ASN1_ENUMERATED *a) { int i; int64_t r; if (a == NULL) return 0; if ((a->type & ~V_ASN1_NEG) != V_ASN1_ENUMERATED) return -1; if (a->length > (int)sizeof(long)) return 0xffffffffL; i = ASN1_ENUMERATED_get_int64(&r, a); if (i == 0) return -1; if (r > LONG_MAX || r < LONG_MIN) return -1; return (long)r; } ASN1_ENUMERATED *BN_to_ASN1_ENUMERATED(const BIGNUM *bn, ASN1_ENUMERATED *ai) { return bn_to_asn1_string(bn, ai, V_ASN1_ENUMERATED); } BIGNUM *ASN1_ENUMERATED_to_BN(const ASN1_ENUMERATED *ai, BIGNUM *bn) { return asn1_string_to_bn(ai, bn, V_ASN1_ENUMERATED); } /* Internal functions used by x_int64.c */ int c2i_uint64_int(uint64_t *ret, int *neg, const unsigned char **pp, long len) { unsigned char buf[sizeof(uint64_t)]; size_t buflen; buflen = c2i_ibuf(NULL, NULL, *pp, len); if (buflen == 0) return 0; if (buflen > sizeof(uint64_t)) { ASN1err(ASN1_F_C2I_UINT64_INT, ASN1_R_TOO_LARGE); return 0; } (void)c2i_ibuf(buf, neg, *pp, len); return asn1_get_uint64(ret, buf, buflen); } int i2c_uint64_int(unsigned char *p, uint64_t r, int neg) { unsigned char buf[sizeof(uint64_t)]; size_t off; off = asn1_put_uint64(buf, r); return i2c_ibuf(buf + off, sizeof(buf) - off, neg, &p); }