/* pybind11/pytypes.h: Convenience wrapper classes for basic Python types Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #pragma once #include "detail/common.h" #include "buffer_info.h" #include #include NAMESPACE_BEGIN(PYBIND11_NAMESPACE) /* A few forward declarations */ class handle; class object; class str; class iterator; struct arg; struct arg_v; NAMESPACE_BEGIN(detail) class args_proxy; inline bool isinstance_generic(handle obj, const std::type_info &tp); // Accessor forward declarations template class accessor; namespace accessor_policies { struct obj_attr; struct str_attr; struct generic_item; struct sequence_item; struct list_item; struct tuple_item; } using obj_attr_accessor = accessor; using str_attr_accessor = accessor; using item_accessor = accessor; using sequence_accessor = accessor; using list_accessor = accessor; using tuple_accessor = accessor; /// Tag and check to identify a class which implements the Python object API class pyobject_tag { }; template using is_pyobject = std::is_base_of>; /** \rst A mixin class which adds common functions to `handle`, `object` and various accessors. The only requirement for `Derived` is to implement ``PyObject *Derived::ptr() const``. \endrst */ template class object_api : public pyobject_tag { const Derived &derived() const { return static_cast(*this); } public: /** \rst Return an iterator equivalent to calling ``iter()`` in Python. The object must be a collection which supports the iteration protocol. \endrst */ iterator begin() const; /// Return a sentinel which ends iteration. iterator end() const; /** \rst Return an internal functor to invoke the object's sequence protocol. Casting the returned ``detail::item_accessor`` instance to a `handle` or `object` subclass causes a corresponding call to ``__getitem__``. Assigning a `handle` or `object` subclass causes a call to ``__setitem__``. \endrst */ item_accessor operator[](handle key) const; /// See above (the only difference is that they key is provided as a string literal) item_accessor operator[](const char *key) const; /** \rst Return an internal functor to access the object's attributes. Casting the returned ``detail::obj_attr_accessor`` instance to a `handle` or `object` subclass causes a corresponding call to ``getattr``. Assigning a `handle` or `object` subclass causes a call to ``setattr``. \endrst */ obj_attr_accessor attr(handle key) const; /// See above (the only difference is that they key is provided as a string literal) str_attr_accessor attr(const char *key) const; /** \rst Matches * unpacking in Python, e.g. to unpack arguments out of a ``tuple`` or ``list`` for a function call. Applying another * to the result yields ** unpacking, e.g. to unpack a dict as function keyword arguments. See :ref:`calling_python_functions`. \endrst */ args_proxy operator*() const; /// Check if the given item is contained within this object, i.e. ``item in obj``. template bool contains(T &&item) const; /** \rst Assuming the Python object is a function or implements the ``__call__`` protocol, ``operator()`` invokes the underlying function, passing an arbitrary set of parameters. The result is returned as a `object` and may need to be converted back into a Python object using `handle::cast()`. When some of the arguments cannot be converted to Python objects, the function will throw a `cast_error` exception. When the Python function call fails, a `error_already_set` exception is thrown. \endrst */ template object operator()(Args &&...args) const; template PYBIND11_DEPRECATED("call(...) was deprecated in favor of operator()(...)") object call(Args&&... args) const; /// Equivalent to ``obj is other`` in Python. bool is(object_api const& other) const { return derived().ptr() == other.derived().ptr(); } /// Equivalent to ``obj is None`` in Python. bool is_none() const { return derived().ptr() == Py_None; } /// Equivalent to obj == other in Python bool equal(object_api const &other) const { return rich_compare(other, Py_EQ); } bool not_equal(object_api const &other) const { return rich_compare(other, Py_NE); } bool operator<(object_api const &other) const { return rich_compare(other, Py_LT); } bool operator<=(object_api const &other) const { return rich_compare(other, Py_LE); } bool operator>(object_api const &other) const { return rich_compare(other, Py_GT); } bool operator>=(object_api const &other) const { return rich_compare(other, Py_GE); } object operator-() const; object operator~() const; object operator+(object_api const &other) const; object operator+=(object_api const &other) const; object operator-(object_api const &other) const; object operator-=(object_api const &other) const; object operator*(object_api const &other) const; object operator*=(object_api const &other) const; object operator/(object_api const &other) const; object operator/=(object_api const &other) const; object operator|(object_api const &other) const; object operator|=(object_api const &other) const; object operator&(object_api const &other) const; object operator&=(object_api const &other) const; object operator^(object_api const &other) const; object operator^=(object_api const &other) const; object operator<<(object_api const &other) const; object operator<<=(object_api const &other) const; object operator>>(object_api const &other) const; object operator>>=(object_api const &other) const; PYBIND11_DEPRECATED("Use py::str(obj) instead") pybind11::str str() const; /// Get or set the object's docstring, i.e. ``obj.__doc__``. str_attr_accessor doc() const; /// Return the object's current reference count int ref_count() const { return static_cast(Py_REFCNT(derived().ptr())); } /// Return a handle to the Python type object underlying the instance handle get_type() const; private: bool rich_compare(object_api const &other, int value) const; }; NAMESPACE_END(detail) /** \rst Holds a reference to a Python object (no reference counting) The `handle` class is a thin wrapper around an arbitrary Python object (i.e. a ``PyObject *`` in Python's C API). It does not perform any automatic reference counting and merely provides a basic C++ interface to various Python API functions. .. seealso:: The `object` class inherits from `handle` and adds automatic reference counting features. \endrst */ class handle : public detail::object_api { public: /// The default constructor creates a handle with a ``nullptr``-valued pointer handle() = default; /// Creates a ``handle`` from the given raw Python object pointer handle(PyObject *ptr) : m_ptr(ptr) { } // Allow implicit conversion from PyObject* /// Return the underlying ``PyObject *`` pointer PyObject *ptr() const { return m_ptr; } PyObject *&ptr() { return m_ptr; } /** \rst Manually increase the reference count of the Python object. Usually, it is preferable to use the `object` class which derives from `handle` and calls this function automatically. Returns a reference to itself. \endrst */ const handle& inc_ref() const & { Py_XINCREF(m_ptr); return *this; } /** \rst Manually decrease the reference count of the Python object. Usually, it is preferable to use the `object` class which derives from `handle` and calls this function automatically. Returns a reference to itself. \endrst */ const handle& dec_ref() const & { Py_XDECREF(m_ptr); return *this; } /** \rst Attempt to cast the Python object into the given C++ type. A `cast_error` will be throw upon failure. \endrst */ template T cast() const; /// Return ``true`` when the `handle` wraps a valid Python object explicit operator bool() const { return m_ptr != nullptr; } /** \rst Deprecated: Check that the underlying pointers are the same. Equivalent to ``obj1 is obj2`` in Python. \endrst */ PYBIND11_DEPRECATED("Use obj1.is(obj2) instead") bool operator==(const handle &h) const { return m_ptr == h.m_ptr; } PYBIND11_DEPRECATED("Use !obj1.is(obj2) instead") bool operator!=(const handle &h) const { return m_ptr != h.m_ptr; } PYBIND11_DEPRECATED("Use handle::operator bool() instead") bool check() const { return m_ptr != nullptr; } protected: PyObject *m_ptr = nullptr; }; /** \rst Holds a reference to a Python object (with reference counting) Like `handle`, the `object` class is a thin wrapper around an arbitrary Python object (i.e. a ``PyObject *`` in Python's C API). In contrast to `handle`, it optionally increases the object's reference count upon construction, and it *always* decreases the reference count when the `object` instance goes out of scope and is destructed. When using `object` instances consistently, it is much easier to get reference counting right at the first attempt. \endrst */ class object : public handle { public: object() = default; PYBIND11_DEPRECATED("Use reinterpret_borrow() or reinterpret_steal()") object(handle h, bool is_borrowed) : handle(h) { if (is_borrowed) inc_ref(); } /// Copy constructor; always increases the reference count object(const object &o) : handle(o) { inc_ref(); } /// Move constructor; steals the object from ``other`` and preserves its reference count object(object &&other) noexcept { m_ptr = other.m_ptr; other.m_ptr = nullptr; } /// Destructor; automatically calls `handle::dec_ref()` ~object() { dec_ref(); } /** \rst Resets the internal pointer to ``nullptr`` without without decreasing the object's reference count. The function returns a raw handle to the original Python object. \endrst */ handle release() { PyObject *tmp = m_ptr; m_ptr = nullptr; return handle(tmp); } object& operator=(const object &other) { other.inc_ref(); dec_ref(); m_ptr = other.m_ptr; return *this; } object& operator=(object &&other) noexcept { if (this != &other) { handle temp(m_ptr); m_ptr = other.m_ptr; other.m_ptr = nullptr; temp.dec_ref(); } return *this; } // Calling cast() on an object lvalue just copies (via handle::cast) template T cast() const &; // Calling on an object rvalue does a move, if needed and/or possible template T cast() &&; protected: // Tags for choosing constructors from raw PyObject * struct borrowed_t { }; struct stolen_t { }; template friend T reinterpret_borrow(handle); template friend T reinterpret_steal(handle); public: // Only accessible from derived classes and the reinterpret_* functions object(handle h, borrowed_t) : handle(h) { inc_ref(); } object(handle h, stolen_t) : handle(h) { } }; /** \rst Declare that a `handle` or ``PyObject *`` is a certain type and borrow the reference. The target type ``T`` must be `object` or one of its derived classes. The function doesn't do any conversions or checks. It's up to the user to make sure that the target type is correct. .. code-block:: cpp PyObject *p = PyList_GetItem(obj, index); py::object o = reinterpret_borrow(p); // or py::tuple t = reinterpret_borrow(p); // <-- `p` must be already be a `tuple` \endrst */ template T reinterpret_borrow(handle h) { return {h, object::borrowed_t{}}; } /** \rst Like `reinterpret_borrow`, but steals the reference. .. code-block:: cpp PyObject *p = PyObject_Str(obj); py::str s = reinterpret_steal(p); // <-- `p` must be already be a `str` \endrst */ template T reinterpret_steal(handle h) { return {h, object::stolen_t{}}; } NAMESPACE_BEGIN(detail) inline std::string error_string(); NAMESPACE_END(detail) /// Fetch and hold an error which was already set in Python. An instance of this is typically /// thrown to propagate python-side errors back through C++ which can either be caught manually or /// else falls back to the function dispatcher (which then raises the captured error back to /// python). class error_already_set : public std::runtime_error { public: /// Constructs a new exception from the current Python error indicator, if any. The current /// Python error indicator will be cleared. error_already_set() : std::runtime_error(detail::error_string()) { PyErr_Fetch(&m_type.ptr(), &m_value.ptr(), &m_trace.ptr()); } error_already_set(const error_already_set &) = default; error_already_set(error_already_set &&) = default; inline ~error_already_set(); /// Give the currently-held error back to Python, if any. If there is currently a Python error /// already set it is cleared first. After this call, the current object no longer stores the /// error variables (but the `.what()` string is still available). void restore() { PyErr_Restore(m_type.release().ptr(), m_value.release().ptr(), m_trace.release().ptr()); } // Does nothing; provided for backwards compatibility. PYBIND11_DEPRECATED("Use of error_already_set.clear() is deprecated") void clear() {} /// Check if the currently trapped error type matches the given Python exception class (or a /// subclass thereof). May also be passed a tuple to search for any exception class matches in /// the given tuple. bool matches(handle exc) const { return PyErr_GivenExceptionMatches(m_type.ptr(), exc.ptr()); } const object& type() const { return m_type; } const object& value() const { return m_value; } const object& trace() const { return m_trace; } private: object m_type, m_value, m_trace; }; /** \defgroup python_builtins _ Unless stated otherwise, the following C++ functions behave the same as their Python counterparts. */ /** \ingroup python_builtins \rst Return true if ``obj`` is an instance of ``T``. Type ``T`` must be a subclass of `object` or a class which was exposed to Python as ``py::class_``. \endrst */ template ::value, int> = 0> bool isinstance(handle obj) { return T::check_(obj); } template ::value, int> = 0> bool isinstance(handle obj) { return detail::isinstance_generic(obj, typeid(T)); } template <> inline bool isinstance(handle obj) = delete; template <> inline bool isinstance(handle obj) { return obj.ptr() != nullptr; } /// \ingroup python_builtins /// Return true if ``obj`` is an instance of the ``type``. inline bool isinstance(handle obj, handle type) { const auto result = PyObject_IsInstance(obj.ptr(), type.ptr()); if (result == -1) throw error_already_set(); return result != 0; } /// \addtogroup python_builtins /// @{ inline bool hasattr(handle obj, handle name) { return PyObject_HasAttr(obj.ptr(), name.ptr()) == 1; } inline bool hasattr(handle obj, const char *name) { return PyObject_HasAttrString(obj.ptr(), name) == 1; } inline void delattr(handle obj, handle name) { if (PyObject_DelAttr(obj.ptr(), name.ptr()) != 0) { throw error_already_set(); } } inline void delattr(handle obj, const char *name) { if (PyObject_DelAttrString(obj.ptr(), name) != 0) { throw error_already_set(); } } inline object getattr(handle obj, handle name) { PyObject *result = PyObject_GetAttr(obj.ptr(), name.ptr()); if (!result) { throw error_already_set(); } return reinterpret_steal(result); } inline object getattr(handle obj, const char *name) { PyObject *result = PyObject_GetAttrString(obj.ptr(), name); if (!result) { throw error_already_set(); } return reinterpret_steal(result); } inline object getattr(handle obj, handle name, handle default_) { if (PyObject *result = PyObject_GetAttr(obj.ptr(), name.ptr())) { return reinterpret_steal(result); } else { PyErr_Clear(); return reinterpret_borrow(default_); } } inline object getattr(handle obj, const char *name, handle default_) { if (PyObject *result = PyObject_GetAttrString(obj.ptr(), name)) { return reinterpret_steal(result); } else { PyErr_Clear(); return reinterpret_borrow(default_); } } inline void setattr(handle obj, handle name, handle value) { if (PyObject_SetAttr(obj.ptr(), name.ptr(), value.ptr()) != 0) { throw error_already_set(); } } inline void setattr(handle obj, const char *name, handle value) { if (PyObject_SetAttrString(obj.ptr(), name, value.ptr()) != 0) { throw error_already_set(); } } inline ssize_t hash(handle obj) { auto h = PyObject_Hash(obj.ptr()); if (h == -1) { throw error_already_set(); } return h; } /// @} python_builtins NAMESPACE_BEGIN(detail) inline handle get_function(handle value) { if (value) { #if PY_MAJOR_VERSION >= 3 if (PyInstanceMethod_Check(value.ptr())) value = PyInstanceMethod_GET_FUNCTION(value.ptr()); else #endif if (PyMethod_Check(value.ptr())) value = PyMethod_GET_FUNCTION(value.ptr()); } return value; } // Helper aliases/functions to support implicit casting of values given to python accessors/methods. // When given a pyobject, this simply returns the pyobject as-is; for other C++ type, the value goes // through pybind11::cast(obj) to convert it to an `object`. template ::value, int> = 0> auto object_or_cast(T &&o) -> decltype(std::forward(o)) { return std::forward(o); } // The following casting version is implemented in cast.h: template ::value, int> = 0> object object_or_cast(T &&o); // Match a PyObject*, which we want to convert directly to handle via its converting constructor inline handle object_or_cast(PyObject *ptr) { return ptr; } template class accessor : public object_api> { using key_type = typename Policy::key_type; public: accessor(handle obj, key_type key) : obj(obj), key(std::move(key)) { } accessor(const accessor &) = default; accessor(accessor &&) = default; // accessor overload required to override default assignment operator (templates are not allowed // to replace default compiler-generated assignments). void operator=(const accessor &a) && { std::move(*this).operator=(handle(a)); } void operator=(const accessor &a) & { operator=(handle(a)); } template void operator=(T &&value) && { Policy::set(obj, key, object_or_cast(std::forward(value))); } template void operator=(T &&value) & { get_cache() = reinterpret_borrow(object_or_cast(std::forward(value))); } template PYBIND11_DEPRECATED("Use of obj.attr(...) as bool is deprecated in favor of pybind11::hasattr(obj, ...)") explicit operator enable_if_t::value || std::is_same::value, bool>() const { return hasattr(obj, key); } template PYBIND11_DEPRECATED("Use of obj[key] as bool is deprecated in favor of obj.contains(key)") explicit operator enable_if_t::value, bool>() const { return obj.contains(key); } operator object() const { return get_cache(); } PyObject *ptr() const { return get_cache().ptr(); } template T cast() const { return get_cache().template cast(); } private: object &get_cache() const { if (!cache) { cache = Policy::get(obj, key); } return cache; } private: handle obj; key_type key; mutable object cache; }; NAMESPACE_BEGIN(accessor_policies) struct obj_attr { using key_type = object; static object get(handle obj, handle key) { return getattr(obj, key); } static void set(handle obj, handle key, handle val) { setattr(obj, key, val); } }; struct str_attr { using key_type = const char *; static object get(handle obj, const char *key) { return getattr(obj, key); } static void set(handle obj, const char *key, handle val) { setattr(obj, key, val); } }; struct generic_item { using key_type = object; static object get(handle obj, handle key) { PyObject *result = PyObject_GetItem(obj.ptr(), key.ptr()); if (!result) { throw error_already_set(); } return reinterpret_steal(result); } static void set(handle obj, handle key, handle val) { if (PyObject_SetItem(obj.ptr(), key.ptr(), val.ptr()) != 0) { throw error_already_set(); } } }; struct sequence_item { using key_type = size_t; static object get(handle obj, size_t index) { PyObject *result = PySequence_GetItem(obj.ptr(), static_cast(index)); if (!result) { throw error_already_set(); } return reinterpret_steal(result); } static void set(handle obj, size_t index, handle val) { // PySequence_SetItem does not steal a reference to 'val' if (PySequence_SetItem(obj.ptr(), static_cast(index), val.ptr()) != 0) { throw error_already_set(); } } }; struct list_item { using key_type = size_t; static object get(handle obj, size_t index) { PyObject *result = PyList_GetItem(obj.ptr(), static_cast(index)); if (!result) { throw error_already_set(); } return reinterpret_borrow(result); } static void set(handle obj, size_t index, handle val) { // PyList_SetItem steals a reference to 'val' if (PyList_SetItem(obj.ptr(), static_cast(index), val.inc_ref().ptr()) != 0) { throw error_already_set(); } } }; struct tuple_item { using key_type = size_t; static object get(handle obj, size_t index) { PyObject *result = PyTuple_GetItem(obj.ptr(), static_cast(index)); if (!result) { throw error_already_set(); } return reinterpret_borrow(result); } static void set(handle obj, size_t index, handle val) { // PyTuple_SetItem steals a reference to 'val' if (PyTuple_SetItem(obj.ptr(), static_cast(index), val.inc_ref().ptr()) != 0) { throw error_already_set(); } } }; NAMESPACE_END(accessor_policies) /// STL iterator template used for tuple, list, sequence and dict template class generic_iterator : public Policy { using It = generic_iterator; public: using difference_type = ssize_t; using iterator_category = typename Policy::iterator_category; using value_type = typename Policy::value_type; using reference = typename Policy::reference; using pointer = typename Policy::pointer; generic_iterator() = default; generic_iterator(handle seq, ssize_t index) : Policy(seq, index) { } reference operator*() const { return Policy::dereference(); } reference operator[](difference_type n) const { return *(*this + n); } pointer operator->() const { return **this; } It &operator++() { Policy::increment(); return *this; } It operator++(int) { auto copy = *this; Policy::increment(); return copy; } It &operator--() { Policy::decrement(); return *this; } It operator--(int) { auto copy = *this; Policy::decrement(); return copy; } It &operator+=(difference_type n) { Policy::advance(n); return *this; } It &operator-=(difference_type n) { Policy::advance(-n); return *this; } friend It operator+(const It &a, difference_type n) { auto copy = a; return copy += n; } friend It operator+(difference_type n, const It &b) { return b + n; } friend It operator-(const It &a, difference_type n) { auto copy = a; return copy -= n; } friend difference_type operator-(const It &a, const It &b) { return a.distance_to(b); } friend bool operator==(const It &a, const It &b) { return a.equal(b); } friend bool operator!=(const It &a, const It &b) { return !(a == b); } friend bool operator< (const It &a, const It &b) { return b - a > 0; } friend bool operator> (const It &a, const It &b) { return b < a; } friend bool operator>=(const It &a, const It &b) { return !(a < b); } friend bool operator<=(const It &a, const It &b) { return !(a > b); } }; NAMESPACE_BEGIN(iterator_policies) /// Quick proxy class needed to implement ``operator->`` for iterators which can't return pointers template struct arrow_proxy { T value; arrow_proxy(T &&value) : value(std::move(value)) { } T *operator->() const { return &value; } }; /// Lightweight iterator policy using just a simple pointer: see ``PySequence_Fast_ITEMS`` class sequence_fast_readonly { protected: using iterator_category = std::random_access_iterator_tag; using value_type = handle; using reference = const handle; using pointer = arrow_proxy; sequence_fast_readonly(handle obj, ssize_t n) : ptr(PySequence_Fast_ITEMS(obj.ptr()) + n) { } reference dereference() const { return *ptr; } void increment() { ++ptr; } void decrement() { --ptr; } void advance(ssize_t n) { ptr += n; } bool equal(const sequence_fast_readonly &b) const { return ptr == b.ptr; } ssize_t distance_to(const sequence_fast_readonly &b) const { return ptr - b.ptr; } private: PyObject **ptr; }; /// Full read and write access using the sequence protocol: see ``detail::sequence_accessor`` class sequence_slow_readwrite { protected: using iterator_category = std::random_access_iterator_tag; using value_type = object; using reference = sequence_accessor; using pointer = arrow_proxy; sequence_slow_readwrite(handle obj, ssize_t index) : obj(obj), index(index) { } reference dereference() const { return {obj, static_cast(index)}; } void increment() { ++index; } void decrement() { --index; } void advance(ssize_t n) { index += n; } bool equal(const sequence_slow_readwrite &b) const { return index == b.index; } ssize_t distance_to(const sequence_slow_readwrite &b) const { return index - b.index; } private: handle obj; ssize_t index; }; /// Python's dictionary protocol permits this to be a forward iterator class dict_readonly { protected: using iterator_category = std::forward_iterator_tag; using value_type = std::pair; using reference = const value_type; using pointer = arrow_proxy; dict_readonly() = default; dict_readonly(handle obj, ssize_t pos) : obj(obj), pos(pos) { increment(); } reference dereference() const { return {key, value}; } void increment() { if (!PyDict_Next(obj.ptr(), &pos, &key, &value)) { pos = -1; } } bool equal(const dict_readonly &b) const { return pos == b.pos; } private: handle obj; PyObject *key = nullptr, *value = nullptr; ssize_t pos = -1; }; NAMESPACE_END(iterator_policies) #if !defined(PYPY_VERSION) using tuple_iterator = generic_iterator; using list_iterator = generic_iterator; #else using tuple_iterator = generic_iterator; using list_iterator = generic_iterator; #endif using sequence_iterator = generic_iterator; using dict_iterator = generic_iterator; inline bool PyIterable_Check(PyObject *obj) { PyObject *iter = PyObject_GetIter(obj); if (iter) { Py_DECREF(iter); return true; } else { PyErr_Clear(); return false; } } inline bool PyNone_Check(PyObject *o) { return o == Py_None; } #if PY_MAJOR_VERSION >= 3 inline bool PyEllipsis_Check(PyObject *o) { return o == Py_Ellipsis; } #endif inline bool PyUnicode_Check_Permissive(PyObject *o) { return PyUnicode_Check(o) || PYBIND11_BYTES_CHECK(o); } inline bool PyStaticMethod_Check(PyObject *o) { return o->ob_type == &PyStaticMethod_Type; } class kwargs_proxy : public handle { public: explicit kwargs_proxy(handle h) : handle(h) { } }; class args_proxy : public handle { public: explicit args_proxy(handle h) : handle(h) { } kwargs_proxy operator*() const { return kwargs_proxy(*this); } }; /// Python argument categories (using PEP 448 terms) template using is_keyword = std::is_base_of; template using is_s_unpacking = std::is_same; // * unpacking template using is_ds_unpacking = std::is_same; // ** unpacking template using is_positional = satisfies_none_of; template using is_keyword_or_ds = satisfies_any_of; // Call argument collector forward declarations template class simple_collector; template class unpacking_collector; NAMESPACE_END(detail) // TODO: After the deprecated constructors are removed, this macro can be simplified by // inheriting ctors: `using Parent::Parent`. It's not an option right now because // the `using` statement triggers the parent deprecation warning even if the ctor // isn't even used. #define PYBIND11_OBJECT_COMMON(Name, Parent, CheckFun) \ public: \ PYBIND11_DEPRECATED("Use reinterpret_borrow<"#Name">() or reinterpret_steal<"#Name">()") \ Name(handle h, bool is_borrowed) : Parent(is_borrowed ? Parent(h, borrowed_t{}) : Parent(h, stolen_t{})) { } \ Name(handle h, borrowed_t) : Parent(h, borrowed_t{}) { } \ Name(handle h, stolen_t) : Parent(h, stolen_t{}) { } \ PYBIND11_DEPRECATED("Use py::isinstance(obj) instead") \ bool check() const { return m_ptr != nullptr && (bool) CheckFun(m_ptr); } \ static bool check_(handle h) { return h.ptr() != nullptr && CheckFun(h.ptr()); } #define PYBIND11_OBJECT_CVT(Name, Parent, CheckFun, ConvertFun) \ PYBIND11_OBJECT_COMMON(Name, Parent, CheckFun) \ /* This is deliberately not 'explicit' to allow implicit conversion from object: */ \ Name(const object &o) \ : Parent(check_(o) ? o.inc_ref().ptr() : ConvertFun(o.ptr()), stolen_t{}) \ { if (!m_ptr) throw error_already_set(); } \ Name(object &&o) \ : Parent(check_(o) ? o.release().ptr() : ConvertFun(o.ptr()), stolen_t{}) \ { if (!m_ptr) throw error_already_set(); } \ template \ Name(const ::pybind11::detail::accessor &a) : Name(object(a)) { } #define PYBIND11_OBJECT(Name, Parent, CheckFun) \ PYBIND11_OBJECT_COMMON(Name, Parent, CheckFun) \ /* This is deliberately not 'explicit' to allow implicit conversion from object: */ \ Name(const object &o) : Parent(o) { } \ Name(object &&o) : Parent(std::move(o)) { } #define PYBIND11_OBJECT_DEFAULT(Name, Parent, CheckFun) \ PYBIND11_OBJECT(Name, Parent, CheckFun) \ Name() : Parent() { } /// \addtogroup pytypes /// @{ /** \rst Wraps a Python iterator so that it can also be used as a C++ input iterator Caveat: copying an iterator does not (and cannot) clone the internal state of the Python iterable. This also applies to the post-increment operator. This iterator should only be used to retrieve the current value using ``operator*()``. \endrst */ class iterator : public object { public: using iterator_category = std::input_iterator_tag; using difference_type = ssize_t; using value_type = handle; using reference = const handle; using pointer = const handle *; PYBIND11_OBJECT_DEFAULT(iterator, object, PyIter_Check) iterator& operator++() { advance(); return *this; } iterator operator++(int) { auto rv = *this; advance(); return rv; } reference operator*() const { if (m_ptr && !value.ptr()) { auto& self = const_cast(*this); self.advance(); } return value; } pointer operator->() const { operator*(); return &value; } /** \rst The value which marks the end of the iteration. ``it == iterator::sentinel()`` is equivalent to catching ``StopIteration`` in Python. .. code-block:: cpp void foo(py::iterator it) { while (it != py::iterator::sentinel()) { // use `*it` ++it; } } \endrst */ static iterator sentinel() { return {}; } friend bool operator==(const iterator &a, const iterator &b) { return a->ptr() == b->ptr(); } friend bool operator!=(const iterator &a, const iterator &b) { return a->ptr() != b->ptr(); } private: void advance() { value = reinterpret_steal(PyIter_Next(m_ptr)); if (PyErr_Occurred()) { throw error_already_set(); } } private: object value = {}; }; class iterable : public object { public: PYBIND11_OBJECT_DEFAULT(iterable, object, detail::PyIterable_Check) }; class bytes; class str : public object { public: PYBIND11_OBJECT_CVT(str, object, detail::PyUnicode_Check_Permissive, raw_str) str(const char *c, size_t n) : object(PyUnicode_FromStringAndSize(c, (ssize_t) n), stolen_t{}) { if (!m_ptr) pybind11_fail("Could not allocate string object!"); } // 'explicit' is explicitly omitted from the following constructors to allow implicit conversion to py::str from C++ string-like objects str(const char *c = "") : object(PyUnicode_FromString(c), stolen_t{}) { if (!m_ptr) pybind11_fail("Could not allocate string object!"); } str(const std::string &s) : str(s.data(), s.size()) { } explicit str(const bytes &b); /** \rst Return a string representation of the object. This is analogous to the ``str()`` function in Python. \endrst */ explicit str(handle h) : object(raw_str(h.ptr()), stolen_t{}) { } operator std::string() const { object temp = *this; if (PyUnicode_Check(m_ptr)) { temp = reinterpret_steal(PyUnicode_AsUTF8String(m_ptr)); if (!temp) pybind11_fail("Unable to extract string contents! (encoding issue)"); } char *buffer; ssize_t length; if (PYBIND11_BYTES_AS_STRING_AND_SIZE(temp.ptr(), &buffer, &length)) pybind11_fail("Unable to extract string contents! (invalid type)"); return std::string(buffer, (size_t) length); } template str format(Args &&...args) const { return attr("format")(std::forward(args)...); } private: /// Return string representation -- always returns a new reference, even if already a str static PyObject *raw_str(PyObject *op) { PyObject *str_value = PyObject_Str(op); #if PY_MAJOR_VERSION < 3 if (!str_value) throw error_already_set(); PyObject *unicode = PyUnicode_FromEncodedObject(str_value, "utf-8", nullptr); Py_XDECREF(str_value); str_value = unicode; #endif return str_value; } }; /// @} pytypes inline namespace literals { /** \rst String literal version of `str` \endrst */ inline str operator"" _s(const char *s, size_t size) { return {s, size}; } } /// \addtogroup pytypes /// @{ class bytes : public object { public: PYBIND11_OBJECT(bytes, object, PYBIND11_BYTES_CHECK) // Allow implicit conversion: bytes(const char *c = "") : object(PYBIND11_BYTES_FROM_STRING(c), stolen_t{}) { if (!m_ptr) pybind11_fail("Could not allocate bytes object!"); } bytes(const char *c, size_t n) : object(PYBIND11_BYTES_FROM_STRING_AND_SIZE(c, (ssize_t) n), stolen_t{}) { if (!m_ptr) pybind11_fail("Could not allocate bytes object!"); } // Allow implicit conversion: bytes(const std::string &s) : bytes(s.data(), s.size()) { } explicit bytes(const pybind11::str &s); operator std::string() const { char *buffer; ssize_t length; if (PYBIND11_BYTES_AS_STRING_AND_SIZE(m_ptr, &buffer, &length)) pybind11_fail("Unable to extract bytes contents!"); return std::string(buffer, (size_t) length); } }; inline bytes::bytes(const pybind11::str &s) { object temp = s; if (PyUnicode_Check(s.ptr())) { temp = reinterpret_steal(PyUnicode_AsUTF8String(s.ptr())); if (!temp) pybind11_fail("Unable to extract string contents! (encoding issue)"); } char *buffer; ssize_t length; if (PYBIND11_BYTES_AS_STRING_AND_SIZE(temp.ptr(), &buffer, &length)) pybind11_fail("Unable to extract string contents! (invalid type)"); auto obj = reinterpret_steal(PYBIND11_BYTES_FROM_STRING_AND_SIZE(buffer, length)); if (!obj) pybind11_fail("Could not allocate bytes object!"); m_ptr = obj.release().ptr(); } inline str::str(const bytes& b) { char *buffer; ssize_t length; if (PYBIND11_BYTES_AS_STRING_AND_SIZE(b.ptr(), &buffer, &length)) pybind11_fail("Unable to extract bytes contents!"); auto obj = reinterpret_steal(PyUnicode_FromStringAndSize(buffer, (ssize_t) length)); if (!obj) pybind11_fail("Could not allocate string object!"); m_ptr = obj.release().ptr(); } class none : public object { public: PYBIND11_OBJECT(none, object, detail::PyNone_Check) none() : object(Py_None, borrowed_t{}) { } }; #if PY_MAJOR_VERSION >= 3 class ellipsis : public object { public: PYBIND11_OBJECT(ellipsis, object, detail::PyEllipsis_Check) ellipsis() : object(Py_Ellipsis, borrowed_t{}) { } }; #endif class bool_ : public object { public: PYBIND11_OBJECT_CVT(bool_, object, PyBool_Check, raw_bool) bool_() : object(Py_False, borrowed_t{}) { } // Allow implicit conversion from and to `bool`: bool_(bool value) : object(value ? Py_True : Py_False, borrowed_t{}) { } operator bool() const { return m_ptr && PyLong_AsLong(m_ptr) != 0; } private: /// Return the truth value of an object -- always returns a new reference static PyObject *raw_bool(PyObject *op) { const auto value = PyObject_IsTrue(op); if (value == -1) return nullptr; return handle(value ? Py_True : Py_False).inc_ref().ptr(); } }; NAMESPACE_BEGIN(detail) // Converts a value to the given unsigned type. If an error occurs, you get back (Unsigned) -1; // otherwise you get back the unsigned long or unsigned long long value cast to (Unsigned). // (The distinction is critically important when casting a returned -1 error value to some other // unsigned type: (A)-1 != (B)-1 when A and B are unsigned types of different sizes). template Unsigned as_unsigned(PyObject *o) { if (sizeof(Unsigned) <= sizeof(unsigned long) #if PY_VERSION_HEX < 0x03000000 || PyInt_Check(o) #endif ) { unsigned long v = PyLong_AsUnsignedLong(o); return v == (unsigned long) -1 && PyErr_Occurred() ? (Unsigned) -1 : (Unsigned) v; } else { unsigned long long v = PyLong_AsUnsignedLongLong(o); return v == (unsigned long long) -1 && PyErr_Occurred() ? (Unsigned) -1 : (Unsigned) v; } } NAMESPACE_END(detail) class int_ : public object { public: PYBIND11_OBJECT_CVT(int_, object, PYBIND11_LONG_CHECK, PyNumber_Long) int_() : object(PyLong_FromLong(0), stolen_t{}) { } // Allow implicit conversion from C++ integral types: template ::value, int> = 0> int_(T value) { if (sizeof(T) <= sizeof(long)) { if (std::is_signed::value) m_ptr = PyLong_FromLong((long) value); else m_ptr = PyLong_FromUnsignedLong((unsigned long) value); } else { if (std::is_signed::value) m_ptr = PyLong_FromLongLong((long long) value); else m_ptr = PyLong_FromUnsignedLongLong((unsigned long long) value); } if (!m_ptr) pybind11_fail("Could not allocate int object!"); } template ::value, int> = 0> operator T() const { return std::is_unsigned::value ? detail::as_unsigned(m_ptr) : sizeof(T) <= sizeof(long) ? (T) PyLong_AsLong(m_ptr) : (T) PYBIND11_LONG_AS_LONGLONG(m_ptr); } }; class float_ : public object { public: PYBIND11_OBJECT_CVT(float_, object, PyFloat_Check, PyNumber_Float) // Allow implicit conversion from float/double: float_(float value) : object(PyFloat_FromDouble((double) value), stolen_t{}) { if (!m_ptr) pybind11_fail("Could not allocate float object!"); } float_(double value = .0) : object(PyFloat_FromDouble((double) value), stolen_t{}) { if (!m_ptr) pybind11_fail("Could not allocate float object!"); } operator float() const { return (float) PyFloat_AsDouble(m_ptr); } operator double() const { return (double) PyFloat_AsDouble(m_ptr); } }; class weakref : public object { public: PYBIND11_OBJECT_DEFAULT(weakref, object, PyWeakref_Check) explicit weakref(handle obj, handle callback = {}) : object(PyWeakref_NewRef(obj.ptr(), callback.ptr()), stolen_t{}) { if (!m_ptr) pybind11_fail("Could not allocate weak reference!"); } }; class slice : public object { public: PYBIND11_OBJECT_DEFAULT(slice, object, PySlice_Check) slice(ssize_t start_, ssize_t stop_, ssize_t step_) { int_ start(start_), stop(stop_), step(step_); m_ptr = PySlice_New(start.ptr(), stop.ptr(), step.ptr()); if (!m_ptr) pybind11_fail("Could not allocate slice object!"); } bool compute(size_t length, size_t *start, size_t *stop, size_t *step, size_t *slicelength) const { return PySlice_GetIndicesEx((PYBIND11_SLICE_OBJECT *) m_ptr, (ssize_t) length, (ssize_t *) start, (ssize_t *) stop, (ssize_t *) step, (ssize_t *) slicelength) == 0; } bool compute(ssize_t length, ssize_t *start, ssize_t *stop, ssize_t *step, ssize_t *slicelength) const { return PySlice_GetIndicesEx((PYBIND11_SLICE_OBJECT *) m_ptr, length, start, stop, step, slicelength) == 0; } }; class capsule : public object { public: PYBIND11_OBJECT_DEFAULT(capsule, object, PyCapsule_CheckExact) PYBIND11_DEPRECATED("Use reinterpret_borrow() or reinterpret_steal()") capsule(PyObject *ptr, bool is_borrowed) : object(is_borrowed ? object(ptr, borrowed_t{}) : object(ptr, stolen_t{})) { } explicit capsule(const void *value, const char *name = nullptr, void (*destructor)(PyObject *) = nullptr) : object(PyCapsule_New(const_cast(value), name, destructor), stolen_t{}) { if (!m_ptr) pybind11_fail("Could not allocate capsule object!"); } PYBIND11_DEPRECATED("Please pass a destructor that takes a void pointer as input") capsule(const void *value, void (*destruct)(PyObject *)) : object(PyCapsule_New(const_cast(value), nullptr, destruct), stolen_t{}) { if (!m_ptr) pybind11_fail("Could not allocate capsule object!"); } capsule(const void *value, void (*destructor)(void *)) { m_ptr = PyCapsule_New(const_cast(value), nullptr, [](PyObject *o) { auto destructor = reinterpret_cast(PyCapsule_GetContext(o)); void *ptr = PyCapsule_GetPointer(o, nullptr); destructor(ptr); }); if (!m_ptr) pybind11_fail("Could not allocate capsule object!"); if (PyCapsule_SetContext(m_ptr, (void *) destructor) != 0) pybind11_fail("Could not set capsule context!"); } capsule(void (*destructor)()) { m_ptr = PyCapsule_New(reinterpret_cast(destructor), nullptr, [](PyObject *o) { auto destructor = reinterpret_cast(PyCapsule_GetPointer(o, nullptr)); destructor(); }); if (!m_ptr) pybind11_fail("Could not allocate capsule object!"); } template operator T *() const { auto name = this->name(); T * result = static_cast(PyCapsule_GetPointer(m_ptr, name)); if (!result) pybind11_fail("Unable to extract capsule contents!"); return result; } const char *name() const { return PyCapsule_GetName(m_ptr); } }; class tuple : public object { public: PYBIND11_OBJECT_CVT(tuple, object, PyTuple_Check, PySequence_Tuple) explicit tuple(size_t size = 0) : object(PyTuple_New((ssize_t) size), stolen_t{}) { if (!m_ptr) pybind11_fail("Could not allocate tuple object!"); } size_t size() const { return (size_t) PyTuple_Size(m_ptr); } bool empty() const { return size() == 0; } detail::tuple_accessor operator[](size_t index) const { return {*this, index}; } detail::item_accessor operator[](handle h) const { return object::operator[](h); } detail::tuple_iterator begin() const { return {*this, 0}; } detail::tuple_iterator end() const { return {*this, PyTuple_GET_SIZE(m_ptr)}; } }; class dict : public object { public: PYBIND11_OBJECT_CVT(dict, object, PyDict_Check, raw_dict) dict() : object(PyDict_New(), stolen_t{}) { if (!m_ptr) pybind11_fail("Could not allocate dict object!"); } template ...>::value>, // MSVC workaround: it can't compile an out-of-line definition, so defer the collector typename collector = detail::deferred_t, Args...>> explicit dict(Args &&...args) : dict(collector(std::forward(args)...).kwargs()) { } size_t size() const { return (size_t) PyDict_Size(m_ptr); } bool empty() const { return size() == 0; } detail::dict_iterator begin() const { return {*this, 0}; } detail::dict_iterator end() const { return {}; } void clear() const { PyDict_Clear(ptr()); } template bool contains(T &&key) const { return PyDict_Contains(m_ptr, detail::object_or_cast(std::forward(key)).ptr()) == 1; } private: /// Call the `dict` Python type -- always returns a new reference static PyObject *raw_dict(PyObject *op) { if (PyDict_Check(op)) return handle(op).inc_ref().ptr(); return PyObject_CallFunctionObjArgs((PyObject *) &PyDict_Type, op, nullptr); } }; class sequence : public object { public: PYBIND11_OBJECT_DEFAULT(sequence, object, PySequence_Check) size_t size() const { return (size_t) PySequence_Size(m_ptr); } bool empty() const { return size() == 0; } detail::sequence_accessor operator[](size_t index) const { return {*this, index}; } detail::item_accessor operator[](handle h) const { return object::operator[](h); } detail::sequence_iterator begin() const { return {*this, 0}; } detail::sequence_iterator end() const { return {*this, PySequence_Size(m_ptr)}; } }; class list : public object { public: PYBIND11_OBJECT_CVT(list, object, PyList_Check, PySequence_List) explicit list(size_t size = 0) : object(PyList_New((ssize_t) size), stolen_t{}) { if (!m_ptr) pybind11_fail("Could not allocate list object!"); } size_t size() const { return (size_t) PyList_Size(m_ptr); } bool empty() const { return size() == 0; } detail::list_accessor operator[](size_t index) const { return {*this, index}; } detail::item_accessor operator[](handle h) const { return object::operator[](h); } detail::list_iterator begin() const { return {*this, 0}; } detail::list_iterator end() const { return {*this, PyList_GET_SIZE(m_ptr)}; } template void append(T &&val) const { PyList_Append(m_ptr, detail::object_or_cast(std::forward(val)).ptr()); } template void insert(size_t index, T &&val) const { PyList_Insert(m_ptr, static_cast(index), detail::object_or_cast(std::forward(val)).ptr()); } }; class args : public tuple { PYBIND11_OBJECT_DEFAULT(args, tuple, PyTuple_Check) }; class kwargs : public dict { PYBIND11_OBJECT_DEFAULT(kwargs, dict, PyDict_Check) }; class set : public object { public: PYBIND11_OBJECT_CVT(set, object, PySet_Check, PySet_New) set() : object(PySet_New(nullptr), stolen_t{}) { if (!m_ptr) pybind11_fail("Could not allocate set object!"); } size_t size() const { return (size_t) PySet_Size(m_ptr); } bool empty() const { return size() == 0; } template bool add(T &&val) const { return PySet_Add(m_ptr, detail::object_or_cast(std::forward(val)).ptr()) == 0; } void clear() const { PySet_Clear(m_ptr); } template bool contains(T &&val) const { return PySet_Contains(m_ptr, detail::object_or_cast(std::forward(val)).ptr()) == 1; } }; class function : public object { public: PYBIND11_OBJECT_DEFAULT(function, object, PyCallable_Check) handle cpp_function() const { handle fun = detail::get_function(m_ptr); if (fun && PyCFunction_Check(fun.ptr())) return fun; return handle(); } bool is_cpp_function() const { return (bool) cpp_function(); } }; class staticmethod : public object { public: PYBIND11_OBJECT_CVT(staticmethod, object, detail::PyStaticMethod_Check, PyStaticMethod_New) }; class buffer : public object { public: PYBIND11_OBJECT_DEFAULT(buffer, object, PyObject_CheckBuffer) buffer_info request(bool writable = false) const { int flags = PyBUF_STRIDES | PyBUF_FORMAT; if (writable) flags |= PyBUF_WRITABLE; Py_buffer *view = new Py_buffer(); if (PyObject_GetBuffer(m_ptr, view, flags) != 0) { delete view; throw error_already_set(); } return buffer_info(view); } }; class memoryview : public object { public: explicit memoryview(const buffer_info& info) { static Py_buffer buf { }; // Py_buffer uses signed sizes, strides and shape!.. static std::vector py_strides { }; static std::vector py_shape { }; buf.buf = info.ptr; buf.itemsize = info.itemsize; buf.format = const_cast(info.format.c_str()); buf.ndim = (int) info.ndim; buf.len = info.size; py_strides.clear(); py_shape.clear(); for (size_t i = 0; i < (size_t) info.ndim; ++i) { py_strides.push_back(info.strides[i]); py_shape.push_back(info.shape[i]); } buf.strides = py_strides.data(); buf.shape = py_shape.data(); buf.suboffsets = nullptr; buf.readonly = false; buf.internal = nullptr; m_ptr = PyMemoryView_FromBuffer(&buf); if (!m_ptr) pybind11_fail("Unable to create memoryview from buffer descriptor"); } PYBIND11_OBJECT_CVT(memoryview, object, PyMemoryView_Check, PyMemoryView_FromObject) }; /// @} pytypes /// \addtogroup python_builtins /// @{ inline size_t len(handle h) { ssize_t result = PyObject_Length(h.ptr()); if (result < 0) pybind11_fail("Unable to compute length of object"); return (size_t) result; } inline size_t len_hint(handle h) { #if PY_VERSION_HEX >= 0x03040000 ssize_t result = PyObject_LengthHint(h.ptr(), 0); #else ssize_t result = PyObject_Length(h.ptr()); #endif if (result < 0) { // Sometimes a length can't be determined at all (eg generators) // In which case simply return 0 PyErr_Clear(); return 0; } return (size_t) result; } inline str repr(handle h) { PyObject *str_value = PyObject_Repr(h.ptr()); if (!str_value) throw error_already_set(); #if PY_MAJOR_VERSION < 3 PyObject *unicode = PyUnicode_FromEncodedObject(str_value, "utf-8", nullptr); Py_XDECREF(str_value); str_value = unicode; if (!str_value) throw error_already_set(); #endif return reinterpret_steal(str_value); } inline iterator iter(handle obj) { PyObject *result = PyObject_GetIter(obj.ptr()); if (!result) { throw error_already_set(); } return reinterpret_steal(result); } /// @} python_builtins NAMESPACE_BEGIN(detail) template iterator object_api::begin() const { return iter(derived()); } template iterator object_api::end() const { return iterator::sentinel(); } template item_accessor object_api::operator[](handle key) const { return {derived(), reinterpret_borrow(key)}; } template item_accessor object_api::operator[](const char *key) const { return {derived(), pybind11::str(key)}; } template obj_attr_accessor object_api::attr(handle key) const { return {derived(), reinterpret_borrow(key)}; } template str_attr_accessor object_api::attr(const char *key) const { return {derived(), key}; } template args_proxy object_api::operator*() const { return args_proxy(derived().ptr()); } template template bool object_api::contains(T &&item) const { return attr("__contains__")(std::forward(item)).template cast(); } template pybind11::str object_api::str() const { return pybind11::str(derived()); } template str_attr_accessor object_api::doc() const { return attr("__doc__"); } template handle object_api::get_type() const { return (PyObject *) Py_TYPE(derived().ptr()); } template bool object_api::rich_compare(object_api const &other, int value) const { int rv = PyObject_RichCompareBool(derived().ptr(), other.derived().ptr(), value); if (rv == -1) throw error_already_set(); return rv == 1; } #define PYBIND11_MATH_OPERATOR_UNARY(op, fn) \ template object object_api::op() const { \ object result = reinterpret_steal(fn(derived().ptr())); \ if (!result.ptr()) \ throw error_already_set(); \ return result; \ } #define PYBIND11_MATH_OPERATOR_BINARY(op, fn) \ template \ object object_api::op(object_api const &other) const { \ object result = reinterpret_steal( \ fn(derived().ptr(), other.derived().ptr())); \ if (!result.ptr()) \ throw error_already_set(); \ return result; \ } PYBIND11_MATH_OPERATOR_UNARY (operator~, PyNumber_Invert) PYBIND11_MATH_OPERATOR_UNARY (operator-, PyNumber_Negative) PYBIND11_MATH_OPERATOR_BINARY(operator+, PyNumber_Add) PYBIND11_MATH_OPERATOR_BINARY(operator+=, PyNumber_InPlaceAdd) PYBIND11_MATH_OPERATOR_BINARY(operator-, PyNumber_Subtract) PYBIND11_MATH_OPERATOR_BINARY(operator-=, PyNumber_InPlaceSubtract) PYBIND11_MATH_OPERATOR_BINARY(operator*, PyNumber_Multiply) PYBIND11_MATH_OPERATOR_BINARY(operator*=, PyNumber_InPlaceMultiply) PYBIND11_MATH_OPERATOR_BINARY(operator/, PyNumber_TrueDivide) PYBIND11_MATH_OPERATOR_BINARY(operator/=, PyNumber_InPlaceTrueDivide) PYBIND11_MATH_OPERATOR_BINARY(operator|, PyNumber_Or) PYBIND11_MATH_OPERATOR_BINARY(operator|=, PyNumber_InPlaceOr) PYBIND11_MATH_OPERATOR_BINARY(operator&, PyNumber_And) PYBIND11_MATH_OPERATOR_BINARY(operator&=, PyNumber_InPlaceAnd) PYBIND11_MATH_OPERATOR_BINARY(operator^, PyNumber_Xor) PYBIND11_MATH_OPERATOR_BINARY(operator^=, PyNumber_InPlaceXor) PYBIND11_MATH_OPERATOR_BINARY(operator<<, PyNumber_Lshift) PYBIND11_MATH_OPERATOR_BINARY(operator<<=, PyNumber_InPlaceLshift) PYBIND11_MATH_OPERATOR_BINARY(operator>>, PyNumber_Rshift) PYBIND11_MATH_OPERATOR_BINARY(operator>>=, PyNumber_InPlaceRshift) #undef PYBIND11_MATH_OPERATOR_UNARY #undef PYBIND11_MATH_OPERATOR_BINARY NAMESPACE_END(detail) NAMESPACE_END(PYBIND11_NAMESPACE)