/** * @file int64.c * * @brief Functions for 64-bit integer computations. * * 21-jan-1998: David Perkins */ #include #include #include #include #include #if HAVE_STRING_H #include #else #include #endif #include #include #include #include #include #include /** * Divide an unsigned 64-bit integer by 10. * * @param[in] u64 Number to be divided. * @param[out] pu64Q Quotient. * @param[out] puR Remainder. */ void divBy10(struct counter64 u64, struct counter64 *pu64Q, unsigned int *puR) { unsigned long ulT; unsigned long ulQ; unsigned long ulR; /* * top 16 bits */ ulT = (u64.high >> 16) & 0x0ffff; ulQ = ulT / 10; ulR = ulT % 10; pu64Q->high = ulQ << 16; /* * next 16 */ ulT = (u64.high & 0x0ffff); ulT += (ulR << 16); ulQ = ulT / 10; ulR = ulT % 10; pu64Q->high = pu64Q->high | ulQ; /* * next 16 */ ulT = ((u64.low >> 16) & 0x0ffff) + (ulR << 16); ulQ = ulT / 10; ulR = ulT % 10; pu64Q->low = ulQ << 16; /* * final 16 */ ulT = (u64.low & 0x0ffff); ulT += (ulR << 16); ulQ = ulT / 10; ulR = ulT % 10; pu64Q->low = pu64Q->low | ulQ; *puR = (unsigned int) (ulR); } /** * Multiply an unsigned 64-bit integer by 10. * * @param[in] u64 Number to be multiplied. * @param[out] pu64P Product. */ void multBy10(struct counter64 u64, struct counter64 *pu64P) { unsigned long ulT; unsigned long ulP; unsigned long ulK; /* * lower 16 bits */ ulT = u64.low & 0x0ffff; ulP = ulT * 10; ulK = ulP >> 16; pu64P->low = ulP & 0x0ffff; /* * next 16 */ ulT = (u64.low >> 16) & 0x0ffff; ulP = (ulT * 10) + ulK; ulK = ulP >> 16; pu64P->low = (ulP & 0x0ffff) << 16 | pu64P->low; /* * next 16 bits */ ulT = u64.high & 0x0ffff; ulP = (ulT * 10) + ulK; ulK = ulP >> 16; pu64P->high = ulP & 0x0ffff; /* * final 16 */ ulT = (u64.high >> 16) & 0x0ffff; ulP = (ulT * 10) + ulK; ulK = ulP >> 16; pu64P->high = (ulP & 0x0ffff) << 16 | pu64P->high; } /** * Add an unsigned 16-bit int to an unsigned 64-bit integer. * * @param[in,out] pu64 Number to be incremented. * @param[in] u16 Amount to add. * */ void incrByU16(struct counter64 *pu64, unsigned int u16) { incrByU32(pu64, u16); } /** * Add an unsigned 32-bit int to an unsigned 64-bit integer. * * @param[in,out] pu64 Number to be incremented. * @param[in] u32 Amount to add. * */ void incrByU32(struct counter64 *pu64, unsigned int u32) { uint32_t tmp; tmp = pu64->low; pu64->low = (uint32_t)(tmp + u32); if (pu64->low < tmp) pu64->high = (uint32_t)(pu64->high + 1); } /** * Subtract two 64-bit numbers. * * @param[in] pu64one Number to start from. * @param[in] pu64two Amount to subtract. * @param[out] pu64out pu64one - pu64two. */ void u64Subtract(const struct counter64 *pu64one, const struct counter64 *pu64two, struct counter64 *pu64out) { int carry; carry = pu64one->low < pu64two->low; pu64out->low = (uint32_t)(pu64one->low - pu64two->low); pu64out->high = (uint32_t)(pu64one->high - pu64two->high - carry); } /** * Add two 64-bit numbers. * * @param[in] pu64one Amount to add. * @param[in,out] pu64out pu64out += pu64one. */ void u64Incr(struct counter64 *pu64out, const struct counter64 *pu64one) { pu64out->high = (uint32_t)(pu64out->high + pu64one->high); incrByU32(pu64out, pu64one->low); } /** * Add the difference of two 64-bit numbers to a 64-bit counter. * * @param[in] pu64one * @param[in] pu64two * @param[out] pu64out pu64out += (pu64one - pu64two) */ void u64UpdateCounter(struct counter64 *pu64out, const struct counter64 *pu64one, const struct counter64 *pu64two) { struct counter64 tmp; u64Subtract(pu64one, pu64two, &tmp); u64Incr(pu64out, &tmp); } netsnmp_feature_child_of(u64copy, netsnmp_unused) #ifndef NETSNMP_FEATURE_REMOVE_U64COPY /** * Copy a 64-bit number. * * @param[in] pu64two Number to be copied. * @param[out] pu64one Where to store the copy - *pu64one = *pu64two. */ void u64Copy(struct counter64 *pu64one, const struct counter64 *pu64two) { *pu64one = *pu64two; } #endif /* NETSNMP_FEATURE_REMOVE_U64COPY */ /** * Set an unsigned 64-bit number to zero. * * @param[in] pu64 Number to be zeroed. */ void zeroU64(struct counter64 *pu64) { pu64->low = 0; pu64->high = 0; } /** * Check if an unsigned 64-bit number is zero. * * @param[in] pu64 Number to be checked. */ int isZeroU64(const struct counter64 *pu64) { return pu64->low == 0 && pu64->high == 0; } /** * check the old and new values of a counter64 for 32bit wrapping * * @param adjust : set to 1 to auto-increment new_val->high * if a 32bit wrap is detected. * * @param old_val * @param new_val * * @note * The old and new values must be be from within a time period * which would only allow the 32bit portion of the counter to * wrap once. i.e. if the 32bit portion of the counter could * wrap every 60 seconds, the old and new values should be compared * at least every 59 seconds (though I'd recommend at least every * 50 seconds to allow for timer inaccuracies). * * @retval 64 : 64bit wrap * @retval 32 : 32bit wrap * @retval 0 : did not wrap * @retval -1 : bad parameter * @retval -2 : unexpected high value (changed by more than 1) */ int netsnmp_c64_check_for_32bit_wrap(struct counter64 *old_val, struct counter64 *new_val, int adjust) { if( (NULL == old_val) || (NULL == new_val) ) return -1; DEBUGMSGTL(("9:c64:check_wrap", "check wrap 0x%0lx.0x%0lx 0x%0lx.0x%0lx\n", old_val->high, old_val->low, new_val->high, new_val->low)); /* * check for wraps */ if ((new_val->low >= old_val->low) && (new_val->high == old_val->high)) { DEBUGMSGTL(("9:c64:check_wrap", "no wrap\n")); return 0; } /* * low wrapped. did high change? */ if (new_val->high == old_val->high) { DEBUGMSGTL(("c64:check_wrap", "32 bit wrap\n")); if (adjust) new_val->high = (uint32_t)(new_val->high + 1); return 32; } else if (new_val->high == (uint32_t)(old_val->high + 1)) { DEBUGMSGTL(("c64:check_wrap", "64 bit wrap\n")); return 64; } return -2; } /** * update a 64 bit value with the difference between two (possibly) 32 bit vals * * @param prev_val : the 64 bit current counter * @param old_prev_val : the (possibly 32 bit) previous value * @param new_val : the (possible 32bit) new value * @param need_wrap_check: pointer to integer indicating if wrap check is needed * flag may be cleared if 64 bit counter is detected * * @note * The old_prev_val and new_val values must be be from within a time * period which would only allow the 32bit portion of the counter to * wrap once. i.e. if the 32bit portion of the counter could * wrap every 60 seconds, the old and new values should be compared * at least every 59 seconds (though I'd recommend at least every * 50 seconds to allow for timer inaccuracies). * * Suggested use: * * static needwrapcheck = 1; * static counter64 current, prev_val, new_val; * * your_functions_to_update_new_value(&new_val); * if (0 == needwrapcheck) * memcpy(current, new_val, sizeof(new_val)); * else { * netsnmp_c64_check32_and_update(¤t,&new,&prev,&needwrapcheck); * memcpy(prev_val, new_val, sizeof(new_val)); * } * * * @retval 0 : success * @retval -1 : error checking for 32 bit wrap * @retval -2 : look like we have 64 bit values, but sums aren't consistent */ int netsnmp_c64_check32_and_update(struct counter64 *prev_val, struct counter64 *new_val, struct counter64 *old_prev_val, int *need_wrap_check) { int rc; /* * counters are 32bit or unknown (which we'll treat as 32bit). * update the prev values with the difference between the * new stats and the prev old_stats: * prev->stats += (new->stats - prev->old_stats) */ if ((NULL == need_wrap_check) || (0 != *need_wrap_check)) { rc = netsnmp_c64_check_for_32bit_wrap(old_prev_val,new_val, 1); if (rc < 0) { DEBUGMSGTL(("c64","32 bit check failed\n")); return -1; } } else rc = 0; /* * update previous values */ (void) u64UpdateCounter(prev_val, new_val, old_prev_val); /* * if wrap check was 32 bit, undo adjust, now that prev is updated */ if (32 == rc) { /* * check wrap incremented high, so reset it. (Because having * high set for a 32 bit counter will confuse us in the next update). */ if (1 != new_val->high) DEBUGMSGTL(("c64", "error expanding to 64 bits: new_val->high != 1")); new_val->high = 0; } else if (64 == rc) { /* * if we really have 64 bit counters, the summing we've been * doing for prev values should be equal to the new values. */ if ((prev_val->low != new_val->low) || (prev_val->high != new_val->high)) { DEBUGMSGTL(("c64", "looks like a 64bit wrap, but prev!=new\n")); return -2; } else if (NULL != need_wrap_check) *need_wrap_check = 0; } return 0; } /** Convert an unsigned 64-bit number to ASCII. */ void printU64(char *buf, /* char [I64CHARSZ+1]; */ const struct counter64 *pu64) { struct counter64 u64a; struct counter64 u64b; char aRes[I64CHARSZ + 1]; unsigned int u; int j; u64a = *pu64; aRes[I64CHARSZ] = 0; for (j = 0; j < I64CHARSZ; j++) { divBy10(u64a, &u64b, &u); aRes[(I64CHARSZ - 1) - j] = (char) ('0' + u); u64a = u64b; if (isZeroU64(&u64a)) break; } strcpy(buf, &aRes[(I64CHARSZ - 1) - j]); } /** Convert a signed 64-bit number to ASCII. */ void printI64(char *buf, /* char [I64CHARSZ+1]; */ const struct counter64 *pu64) { struct counter64 u64a; if (pu64->high & 0x80000000) { u64a.high = (uint32_t) ~pu64->high; u64a.low = (uint32_t) ~pu64->low; incrByU32(&u64a, 1); /* bit invert and incr by 1 to print 2s complement */ buf[0] = '-'; printU64(buf + 1, &u64a); } else { printU64(buf, pu64); } } /** Convert a signed 64-bit integer from ASCII to struct counter64. */ int read64(struct counter64 *i64, const char *str) { struct counter64 i64p; unsigned int u; int sign = 0; int ok = 0; zeroU64(i64); if (*str == '-') { sign = 1; str++; } while (*str && isdigit((unsigned char)(*str))) { ok = 1; u = *str - '0'; multBy10(*i64, &i64p); *i64 = i64p; incrByU16(i64, u); str++; } if (sign) { i64->high = (uint32_t) ~i64->high; i64->low = (uint32_t) ~i64->low; incrByU16(i64, 1); } return ok; }