/* -*- Mode: C; c-basic-offset:4 ; indent-tabs-mode:nil ; -*- */ /* * * (C) 2003 by Argonne National Laboratory. * See COPYRIGHT in top-level directory. */ #include "mpi.h" #include #include #include "mpitest.h" /* static char MTEST_Descrip[] = "Test MPI_Reduce with non-commutative user-define operations and arbitrary root"; */ /* * This tests that the reduce operation respects the noncommutative flag. * and that can distinguish between P_{root} P_{root+1} * ... P_{root-1} and P_0 ... P_{size-1} . The MPI standard clearly * specifies that the result is P_0 ... P_{size-1}, independent of the root * (see 4.9.4 in MPI-1) */ /* This implements a simple matrix-matrix multiply. This is an associative but not commutative operation. The matrix size is set in matSize; the number of matrices is the count argument. The matrix is stored in C order, so that c(i,j) is cin[j+i*matSize] */ #define MAXCOL 256 static int matSize = 0; /* Must be < MAXCOL */ void uop(void *cinPtr, void *coutPtr, int *count, MPI_Datatype * dtype); void uop(void *cinPtr, void *coutPtr, int *count, MPI_Datatype * dtype) { const int *cin; int *cout; int i, j, k, nmat; int tempCol[MAXCOL]; if (*count != 1) printf("Panic!\n"); for (nmat = 0; nmat < *count; nmat++) { cin = (const int *) cinPtr; cout = (int *) coutPtr; for (j = 0; j < matSize; j++) { for (i = 0; i < matSize; i++) { tempCol[i] = 0; for (k = 0; k < matSize; k++) { /* col[i] += cin(i,k) * cout(k,j) */ tempCol[i] += cin[k + i * matSize] * cout[j + k * matSize]; } } for (i = 0; i < matSize; i++) { cout[j + i * matSize] = tempCol[i]; } } cinPtr = (int *) cinPtr + matSize * matSize; coutPtr = (int *) coutPtr + matSize * matSize; } } /* Initialize the integer matrix as a permutation of rank with rank+1. If we call this matrix P_r, we know that product of P_0 P_1 ... P_{size-1} is the matrix with rows ordered as 1,size,2,3,4,...,size-1 (The matrix is basically a circular shift right, shifting right n-1 steps for an n x n dimensional matrix, with the last step swapping rows 1 and size) */ static void initMat(MPI_Comm comm, int mat[]) { int i, size, rank; MPI_Comm_rank(comm, &rank); MPI_Comm_size(comm, &size); /* Remember the matrix size */ matSize = size; for (i = 0; i < matSize * matSize; i++) mat[i] = 0; for (i = 0; i < matSize; i++) { if (i == rank) mat[((i + 1) % matSize) + i * matSize] = 1; else if (i == ((rank + 1) % matSize)) mat[((i + matSize - 1) % matSize) + i * matSize] = 1; else mat[i + i * matSize] = 1; } } /* Compare a matrix with the identity matrix */ /* static int isIdentity(MPI_Comm comm, int mat[]) { int i, j, size, rank, errs = 0; MPI_Comm_rank(comm, &rank); MPI_Comm_size(comm, &size); for (i=0; i MAXCOL) { /* Skip because there are too many processes */ MTestFreeComm(&comm); continue; } /* Only one matrix for now */ count = 1; /* A single matrix, the size of the communicator */ MPI_Type_contiguous(size * size, MPI_INT, &mattype); MPI_Type_commit(&mattype); buf = (int *) malloc(count * size * size * sizeof(int)); if (!buf) MPI_Abort(MPI_COMM_WORLD, 1); bufout = (int *) malloc(count * size * size * sizeof(int)); if (!bufout) MPI_Abort(MPI_COMM_WORLD, 1); for (root = 0; root < size; root++) { initMat(comm, buf); MPI_Reduce(buf, bufout, count, mattype, op, root, comm); if (rank == root) { errs += isPermutedIdentity(comm, bufout); } /* Try the same test, but using MPI_IN_PLACE */ initMat(comm, bufout); if (rank == root) { MPI_Reduce(MPI_IN_PLACE, bufout, count, mattype, op, root, comm); } else { MPI_Reduce(bufout, NULL, count, mattype, op, root, comm); } if (rank == root) { errs += isPermutedIdentity(comm, bufout); } } MPI_Type_free(&mattype); free(buf); free(bufout); MTestFreeComm(&comm); } MPI_Op_free(&op); MTest_Finalize(errs); return MTestReturnValue(errs); }