/* -*- Mode: C; c-basic-offset:4 ; indent-tabs-mode:nil ; -*- */ /* * * (C) 2003 by Argonne National Laboratory. * See COPYRIGHT in top-level directory. */ #include "mpi.h" #include "mpitest.h" #include #include #ifdef HAVE_SYS_TIME_H #include #endif #include #include #include /* FIXME: What is this test supposed to accomplish? */ #define START_BUF (1) #define LARGE_BUF (256 * 1024) /* FIXME: MAX_BUF is too large */ #define MAX_BUF (128 * 1024 * 1024) #define LOOPS 10 char *sbuf, *rbuf; int *recvcounts, *displs; int errs = 0; /* #define dprintf printf */ #define dprintf(...) typedef enum { REGULAR, BCAST, SPIKE, HALF_FULL, LINEAR_DECREASE, BELL_CURVE } test_t; void comm_tests(MPI_Comm comm); double run_test(long long msg_size, MPI_Comm comm, test_t test_type, double *max_time); int main(int argc, char **argv) { int comm_size, comm_rank; MPI_Comm comm; MTest_Init(&argc, &argv); MPI_Comm_size(MPI_COMM_WORLD, &comm_size); MPI_Comm_rank(MPI_COMM_WORLD, &comm_rank); if (comm_size < 3) { fprintf(stderr, "At least 3 processes required\n"); MPI_Abort(MPI_COMM_WORLD, 1); } if (LARGE_BUF * comm_size > MAX_BUF) goto fn_exit; sbuf = (void *) calloc(MAX_BUF, 1); rbuf = (void *) calloc(MAX_BUF, 1); srand(time(NULL)); recvcounts = (void *) malloc(comm_size * sizeof(int)); displs = (void *) malloc(comm_size * sizeof(int)); if (!recvcounts || !displs || !sbuf || !rbuf) { fprintf(stderr, "Unable to allocate memory:\n"); if (!sbuf) fprintf(stderr, "\tsbuf of %d bytes\n", MAX_BUF); if (!rbuf) fprintf(stderr, "\trbuf of %d bytes\n", MAX_BUF); if (!recvcounts) fprintf(stderr, "\trecvcounts of %zd bytes\n", comm_size * sizeof(int)); if (!displs) fprintf(stderr, "\tdispls of %zd bytes\n", comm_size * sizeof(int)); fflush(stderr); MPI_Abort(MPI_COMM_WORLD, -1); } if (!comm_rank) { dprintf("Message Range: (%d, %d); System size: %d\n", START_BUF, LARGE_BUF, comm_size); fflush(stdout); } /* COMM_WORLD tests */ if (!comm_rank) { dprintf("\n\n==========================================================\n"); dprintf(" MPI_COMM_WORLD\n"); dprintf("==========================================================\n"); } comm_tests(MPI_COMM_WORLD); /* non-COMM_WORLD tests */ if (!comm_rank) { dprintf("\n\n==========================================================\n"); dprintf(" non-COMM_WORLD\n"); dprintf("==========================================================\n"); } MPI_Comm_split(MPI_COMM_WORLD, (comm_rank == comm_size - 1) ? 0 : 1, 0, &comm); if (comm_rank < comm_size - 1) comm_tests(comm); MPI_Comm_free(&comm); /* Randomized communicator tests */ if (!comm_rank) { dprintf("\n\n==========================================================\n"); dprintf(" Randomized Communicator\n"); dprintf("==========================================================\n"); } MPI_Comm_split(MPI_COMM_WORLD, 0, rand(), &comm); comm_tests(comm); MPI_Comm_free(&comm); free(sbuf); free(rbuf); free(recvcounts); free(displs); fn_exit: MTest_Finalize(errs); return MTestReturnValue(errs); } void comm_tests(MPI_Comm comm) { int comm_size, comm_rank; double rtime, max_time; long long msg_size; MPI_Comm_size(comm, &comm_size); MPI_Comm_rank(comm, &comm_rank); for (msg_size = START_BUF; msg_size <= LARGE_BUF; msg_size *= 2) { if (!comm_rank) { dprintf("\n====> MSG_SIZE: %d\n", (int) msg_size); fflush(stdout); } rtime = run_test(msg_size, comm, REGULAR, &max_time); if (!comm_rank) { dprintf("REGULAR:\tAVG: %.3f\tMAX: %.3f\n", rtime, max_time); fflush(stdout); } rtime = run_test(msg_size, comm, BCAST, &max_time); if (!comm_rank) { dprintf("BCAST:\tAVG: %.3f\tMAX: %.3f\n", rtime, max_time); fflush(stdout); } rtime = run_test(msg_size, comm, SPIKE, &max_time); if (!comm_rank) { dprintf("SPIKE:\tAVG: %.3f\tMAX: %.3f\n", rtime, max_time); fflush(stdout); } rtime = run_test(msg_size, comm, HALF_FULL, &max_time); if (!comm_rank) { dprintf("HALF_FULL:\tAVG: %.3f\tMAX: %.3f\n", rtime, max_time); fflush(stdout); } rtime = run_test(msg_size, comm, LINEAR_DECREASE, &max_time); if (!comm_rank) { dprintf("LINEAR_DECREASE:\tAVG: %.3f\tMAX: %.3f\n", rtime, max_time); fflush(stdout); } rtime = run_test(msg_size, comm, BELL_CURVE, &max_time); if (!comm_rank) { dprintf("BELL_CURVE:\tAVG: %.3f\tMAX: %.3f\n", rtime, max_time); fflush(stdout); } } } double run_test(long long msg_size, MPI_Comm comm, test_t test_type, double *max_time) { int i, j; int comm_size, comm_rank; double start, end; double total_time, avg_time; MPI_Aint tmp; MPI_Comm_size(comm, &comm_size); MPI_Comm_rank(comm, &comm_rank); displs[0] = 0; for (i = 0; i < comm_size; i++) { if (test_type == REGULAR) recvcounts[i] = msg_size; else if (test_type == BCAST) recvcounts[i] = (!i) ? msg_size : 0; else if (test_type == SPIKE) recvcounts[i] = (!i) ? (msg_size / 2) : (msg_size / (2 * (comm_size - 1))); else if (test_type == HALF_FULL) recvcounts[i] = (i < (comm_size / 2)) ? (2 * msg_size) : 0; else if (test_type == LINEAR_DECREASE) { tmp = 2 * msg_size * (comm_size - 1 - i) / (comm_size - 1); if (tmp != (int) tmp) { fprintf(stderr, "Integer overflow in variable tmp\n"); MPI_Abort(MPI_COMM_WORLD, 1); } recvcounts[i] = (int) tmp; /* If the maximum message size is too large, don't run */ if (tmp > MAX_BUF) return MTestReturnValue(errs); } else if (test_type == BELL_CURVE) { for (j = 0; j < i; j++) { if (i - 1 + j >= comm_size) continue; tmp = msg_size * comm_size / (log(comm_size) * i); recvcounts[i - 1 + j] = (int) tmp; displs[i - 1 + j] = 0; /* If the maximum message size is too large, don't run */ if (tmp > MAX_BUF) return MTestReturnValue(errs); } } if (i < comm_size - 1) displs[i + 1] = displs[i] + recvcounts[i]; } /* Test that: * 1: sbuf is large enough * 2: rbuf is large enough * 3: There were no failures (e.g., tmp nowhere > rbuf size) */ MPI_Barrier(comm); start = MPI_Wtime(); for (i = 0; i < LOOPS; i++) { MPI_Allgatherv(sbuf, recvcounts[comm_rank], MPI_CHAR, rbuf, recvcounts, displs, MPI_CHAR, comm); } end = MPI_Wtime(); MPI_Barrier(comm); /* Convert to microseconds (why?) */ total_time = 1.0e6 * (end - start); MPI_Reduce(&total_time, &avg_time, 1, MPI_DOUBLE, MPI_SUM, 0, comm); MPI_Reduce(&total_time, max_time, 1, MPI_DOUBLE, MPI_MAX, 0, comm); return (avg_time / (LOOPS * comm_size)); }