/* -*- Mode: C; c-basic-offset:4 ; -*- */ /* * (C) 2011 by Argonne National Laboratory. * See COPYRIGHT in top-level directory. */ /* One-Sided MPI 2-D Strided Accumulate Test * * Author: James Dinan * Date : November, 2012 * * This code performs N strided put operations followed by get operations into * a 2d patch of a shared array. The array has dimensions [X, Y] and the * subarray has dimensions [SUB_X, SUB_Y] and begins at index [0, 0]. The * input and output buffers are specified using an MPI indexed type. */ #include #include #include #include #include "mpitest.h" #include "squelch.h" #define XDIM 8 #define YDIM 1024 #define SUB_XDIM 1 #define SUB_YDIM 2 #define ITERATIONS 10 int main(int argc, char **argv) { int rank, nranks, rank_world, nranks_world; int i, j, peer, bufsize, errors; double *win_buf, *src_buf, *dst_buf; MPI_Win buf_win; MPI_Comm shr_comm; MTest_Init(&argc, &argv); MPI_Comm_rank(MPI_COMM_WORLD, &rank_world); MPI_Comm_size(MPI_COMM_WORLD, &nranks_world); MPI_Comm_split_type(MPI_COMM_WORLD, MPI_COMM_TYPE_SHARED, rank_world, MPI_INFO_NULL, &shr_comm); MPI_Comm_rank(shr_comm, &rank); MPI_Comm_size(shr_comm, &nranks); bufsize = XDIM * YDIM * sizeof(double); MPI_Alloc_mem(bufsize, MPI_INFO_NULL, &src_buf); MPI_Alloc_mem(bufsize, MPI_INFO_NULL, &dst_buf); MPI_Win_allocate_shared(bufsize, 1, MPI_INFO_NULL, shr_comm, &win_buf, &buf_win); MPI_Win_fence(0, buf_win); for (i = 0; i < XDIM * YDIM; i++) { *(win_buf + i) = -1.0; *(src_buf + i) = 1.0 + rank; } MPI_Win_fence(0, buf_win); peer = (rank + 1) % nranks; /* Perform ITERATIONS strided accumulate operations */ for (i = 0; i < ITERATIONS; i++) { int idx_rem[SUB_YDIM]; int blk_len[SUB_YDIM]; MPI_Datatype src_type, dst_type; for (j = 0; j < SUB_YDIM; j++) { idx_rem[j] = j * XDIM; blk_len[j] = SUB_XDIM; } MPI_Type_indexed(SUB_YDIM, blk_len, idx_rem, MPI_DOUBLE, &src_type); MPI_Type_indexed(SUB_YDIM, blk_len, idx_rem, MPI_DOUBLE, &dst_type); MPI_Type_commit(&src_type); MPI_Type_commit(&dst_type); /* PUT */ MPI_Win_lock(MPI_LOCK_EXCLUSIVE, peer, 0, buf_win); MPI_Get_accumulate(src_buf, 1, src_type, dst_buf, 1, src_type, peer, 0, 1, dst_type, MPI_REPLACE, buf_win); MPI_Win_unlock(peer, buf_win); /* GET */ MPI_Win_lock(MPI_LOCK_EXCLUSIVE, peer, 0, buf_win); MPI_Get_accumulate(src_buf, 1, src_type, dst_buf, 1, src_type, peer, 0, 1, dst_type, MPI_NO_OP, buf_win); MPI_Win_unlock(peer, buf_win); MPI_Type_free(&src_type); MPI_Type_free(&dst_type); } MPI_Barrier(MPI_COMM_WORLD); /* Verify that the results are correct */ MPI_Win_lock(MPI_LOCK_EXCLUSIVE, rank, 0, buf_win); errors = 0; for (i = 0; i < SUB_XDIM; i++) { for (j = 0; j < SUB_YDIM; j++) { const double actual = *(win_buf + i + j * XDIM); const double expected = (1.0 + ((rank + nranks - 1) % nranks)); if (fabs(actual - expected) > 1.0e-10) { SQUELCH(printf("%d: Data validation failed at [%d, %d] expected=%f actual=%f\n", rank, j, i, expected, actual);); errors++; fflush(stdout); } } } for (i = SUB_XDIM; i < XDIM; i++) { for (j = 0; j < SUB_YDIM; j++) { const double actual = *(win_buf + i + j * XDIM); const double expected = -1.0; if (fabs(actual - expected) > 1.0e-10) { SQUELCH(printf("%d: Data validation failed at [%d, %d] expected=%f actual=%f\n", rank, j, i, expected, actual);); errors++; fflush(stdout); } } } for (i = 0; i < XDIM; i++) { for (j = SUB_YDIM; j < YDIM; j++) { const double actual = *(win_buf + i + j * XDIM); const double expected = -1.0; if (fabs(actual - expected) > 1.0e-10) { SQUELCH(printf("%d: Data validation failed at [%d, %d] expected=%f actual=%f\n", rank, j, i, expected, actual);); errors++; fflush(stdout); } } } MPI_Win_unlock(rank, buf_win); MPI_Win_free(&buf_win); MPI_Free_mem(src_buf); MPI_Free_mem(dst_buf); MPI_Comm_free(&shr_comm); MTest_Finalize(errors); MPI_Finalize(); return MTestReturnValue(errors); }