/* -*- Mode: C; c-basic-offset:4 ; indent-tabs-mode:nil ; -*- */ /* * (C) 2004 by Argonne National Laboratory. * See COPYRIGHT in top-level directory. */ #include "mpi.h" #include #include #include "mpitest.h" #include /* static char MTEST_Descrip[] = "Test MPI_Allreduce with non-commutative user-defined operations using matrix rotations"; */ /* This example is similar to allred3.c, but uses only 3x3 matrics with integer-valued entries. This is an associative but not commutative operation. The number of matrices is the count argument. The matrix is stored in C order, so that c(i,j) is cin[j+i*3] Three different matrices are used: I = identity matrix A = (1 0 0 B = (0 1 0 0 0 1 1 0 0 0 1 0) 0 0 1) The product I^k A I^(p-2-k-j) B I^j is (0 1 0 0 0 1 1 0 0) for all values of k, p, and j. */ void matmult(void *cinPtr, void *coutPtr, int *count, MPI_Datatype * dtype); void matmult(void *cinPtr, void *coutPtr, int *count, MPI_Datatype * dtype) { const int *cin = (const int *) cinPtr; int *cout = (int *) coutPtr; int i, j, k, nmat; int tempcol[3]; int offset1, offset2; for (nmat = 0; nmat < *count; nmat++) { for (j = 0; j < 3; j++) { for (i = 0; i < 3; i++) { tempcol[i] = 0; for (k = 0; k < 3; k++) { /* col[i] += cin(i,k) * cout(k,j) */ offset1 = k + i * 3; offset2 = j + k * 3; tempcol[i] += cin[offset1] * cout[offset2]; } } for (i = 0; i < 3; i++) { offset1 = j + i * 3; cout[offset1] = tempcol[i]; } } /* Advance to the next matrix */ cin += 9; cout += 9; } } /* Initialize the integer matrix as one of the above matrix entries, as a function of count. We guarantee that both the A and B matrices are included. */ static void initMat(int rank, int size, int nmat, int mat[]) { int i, kind; /* Zero the matrix */ for (i = 0; i < 9; i++) { mat[i] = 0; } /* Decide which matrix to create (I, A, or B) */ if (size == 2) { /* rank 0 is A, 1 is B */ kind = 1 + rank; } else { int tmpA, tmpB; /* Most ranks are identity matrices */ kind = 0; /* Make sure exactly one rank gets the A matrix * and one the B matrix */ tmpA = size / 4; tmpB = (3 * size) / 4; if (rank == tmpA) kind = 1; if (rank == tmpB) kind = 2; } switch (kind) { case 0: /* Identity */ mat[0] = 1; mat[4] = 1; mat[8] = 1; break; case 1: /* A */ mat[0] = 1; mat[5] = 1; mat[7] = 1; break; case 2: /* B */ mat[1] = 1; mat[3] = 1; mat[8] = 1; break; } } /* Compare a matrix with the known result */ static int checkResult(int nmat, int mat[], const char *msg) { int n, k, errs = 0, wrank; static int solution[9] = { 0, 1, 0, 0, 0, 1, 1, 0, 0 }; MPI_Comm_rank(MPI_COMM_WORLD, &wrank); for (n = 0; n < nmat; n++) { for (k = 0; k < 9; k++) { if (mat[k] != solution[k]) { errs++; if (errs == 1) { printf("Errors for communicators %s\n", MTestGetIntracommName()); fflush(stdout); } if (errs < 10) { printf("[%d]matrix #%d(%s): Expected mat[%d,%d] = %d, got %d\n", wrank, n, msg, k / 3, k % 3, solution[k], mat[k]); fflush(stdout); } } } /* Advance to the next matrix */ mat += 9; } return errs; } int main(int argc, char *argv[]) { int errs = 0; int size, rank; int minsize = 2, count; MPI_Comm comm; int *buf, *bufout; MPI_Op op; MPI_Datatype mattype; int i; MTest_Init(&argc, &argv); MPI_Op_create(matmult, 0, &op); /* A single rotation matrix (3x3, stored as 9 consequetive elements) */ MPI_Type_contiguous(9, MPI_INT, &mattype); MPI_Type_commit(&mattype); /* Sanity check: test that our routines work properly */ { int one = 1; buf = (int *) malloc(4 * 9 * sizeof(int)); initMat(0, 4, 0, &buf[0]); initMat(1, 4, 0, &buf[9]); initMat(2, 4, 0, &buf[18]); initMat(3, 4, 0, &buf[27]); matmult(&buf[0], &buf[9], &one, &mattype); matmult(&buf[9], &buf[18], &one, &mattype); matmult(&buf[18], &buf[27], &one, &mattype); checkResult(1, &buf[27], "Sanity Check"); free(buf); } while (MTestGetIntracommGeneral(&comm, minsize, 1)) { if (comm == MPI_COMM_NULL) continue; MPI_Comm_size(comm, &size); MPI_Comm_rank(comm, &rank); for (count = 1; count < size; count++) { /* Allocate the matrices */ buf = (int *) malloc(count * 9 * sizeof(int)); if (!buf) { MPI_Abort(MPI_COMM_WORLD, 1); } bufout = (int *) malloc(count * 9 * sizeof(int)); if (!bufout) { MPI_Abort(MPI_COMM_WORLD, 1); } for (i = 0; i < count; i++) { initMat(rank, size, i, &buf[i * 9]); } MPI_Allreduce(buf, bufout, count, mattype, op, comm); errs += checkResult(count, bufout, ""); /* Try the same test, but using MPI_IN_PLACE */ for (i = 0; i < count; i++) { initMat(rank, size, i, &bufout[i * 9]); } MPI_Allreduce(MPI_IN_PLACE, bufout, count, mattype, op, comm); errs += checkResult(count, bufout, "IN_PLACE"); free(buf); free(bufout); } MTestFreeComm(&comm); } MPI_Op_free(&op); MPI_Type_free(&mattype); MTest_Finalize(errs); MPI_Finalize(); return 0; }